I am running agglomerative clustering on a data set of 130K rows (130K unique keys) and 7 columns, each column ranging from 20 to 2000 unique levels. The data are categorical, specifically alphanumeric codes. At most they can be thought of as factors. I am experimenting with what results I might get from a couple of alternatives to k-modes, including hierarchical clustering and MCA.
My question is, is there any good way to visualize the results up to a certain level with the tree structure?
Standard steps are not a problem:
library{cluster}
Compute Gower distance,
ptm <- proc.time()
gower.dist <- daisy(df[,colnams], metric = c("gower"))
elapsed <- proc.time() - ptm
c(elapsed[3],elapsed[3]/60)
Compute agglomerative clustering object from Gower distance
aggl.clust.c <- hclust(gower.dist, method = "complete")
Now to plotting it. The following line works, but the plot is humanly unreadable
plot(aggl.clust.c, main = "Agglomerative, complete linkages")
Ideally what I am looking for would be something like so (the below is pseudocode that failed on my system)
plot(cutree(aggl.clust.c, k=7), main = "Agglomerative, complete linkages")
I am running R version 3.2.3. That version cannot change (and I don't believe it ought to make a difference for what I am trying to do).
I'd be interested in doing the same in Python, if anyone has good pointers.
I found a useful answer to my question re plotting part of a tree using the as.dendogram() method. Link: http://www.sthda.com/english/wiki/beautiful-dendrogram-visualizations-in-r-5-must-known-methods-unsupervised-machine-learning
Related
I'm performing hierarchical cluster analysis using Ward's method on a dataset containing 1000 observations and 37 variables (all are 5-point likert-scales).
First, I ran the analysis in SPSS via
CLUSTER Var01 to Var37
/METHOD WARD
/MEASURE=SEUCLID
/ID=ID
/PRINT CLUSTER(2,10) SCHEDULE
/PLOT DENDROGRAM
/SAVE CLUSTER(2,10).
FREQUENCIES CLU2_1.
I additionaly performed the analysis in R:
datA <- subset(dat, select = Var01:Var37)
dist <- dist(datA, method = "euclidean")
hc <- hclust(d = dist, method = "ward.D2")
table(cutree(hc, k = 2))
The resulting cluster sizes are:
1 2
SPSS 712 288
R 610 390
These results are obviously confusing to me, as they differ substentially (which becomes highly visible when observing the dendrograms; also applies for the 3-10 clusters solutions). "ward.D2" takes into account the squared distance, if I'm not mistaken, so I included the simple distance matrix here. However, I tried several (combinations) of distance and clustering methods, e.g. EUCLID instead of SEUCLID, squaring the distance matrix in R, applying "ward.D" method,.... I also looked at the distance matrices generated by SPSS and R, which are identical (when applying the same method). Ultimately, I excluded duplicate cases (N=29) from my data, guessing that those might have caused differences when being allocated (randomly) at a certain point. All this did not result in matching outputs in R and SPSS.
I tried running the analysis with the agnes() function from the cluster package, which resulted in - again - different results compared to SPSS and even hclust() (But that's a topic for another post, I guess).
Are the underlying clustering procedures that different between the programs/packages? Or did I overlook a crucial detail? Is there a "correct" procedure that replicates the results yielded in SPSS?
If the distance matrices are identical and the merging methods are identical, the only thing that should create different outcomes is having tied distances handled differently in two algorithms. Tied distances might be present with the original full distance matrix, or might occur during the joining process. If one program searches the matrix and finds two or more distances tied at the minimum value at that step, and it selects the first one, while another program selects the last one, or one or both select one at random from among the ties, different results could occur.
I'd suggest starting with a small example with some data with randomness added to values to make tied distances unlikely and see if the two programs produce matching results on those data. If not, there's a deeper problem. If so, then tie handling might be the issue.
I am trying to carry out hierarchical cluster analysis (based on Ward's method) on a large dataset (thousands of records and 13 variables) representing multi-species observations of marine predators, to identify possible significant clusters in species composition.
Each record has date, time etc and presence/absence data (0 / 1) for each species.
I attempted hierarchical clustering with the function pvclust. I transposed the data (pvclust works on transposed tables), then I ran pvclust on the data selecting Jacquard distances (“binary” in R) as a distance measure (suitable for species pres/abs data) and Ward’s method (“ward.D2”). I used “parallel = TRUE” to reduce computation time. However, using a default of nboots= 1000, my computer was not able to finish the computation in hours and finally I got ann error, so I tried with lower nboots (100).
I cannot provide my dataset here, and I do not think it makes sense to provide a small test dataset, as one of the main issues here seems to be the size itself of the dataset. However, I am providing the lines of code I used for the transposition, clustering and plotting:
tdata <- t(data)
cluster <- pvclust(tdata, method.hclust="ward.D2", method.dist="binary",
nboot=100, parallel=TRUE)
plot(cluster, labels=FALSE)
This is the dendrogram I obtained (never mind the confusion at the lower levels due to overlap of branches).
As you can see, the p-values for the higher ramifications of the dendrogram all seem to be 0.
Now, I understand that my data may not be perfect, but I still think there is something wrong with the method I am using, as I would not expect all these values to be zero even with very low significance in the clusters.
So my questions would be
is there anything I got wrong in the pvclust function itself?
may my low nboots (due to “weak” computer) be a reason for the non-significance of my results?
are there other functions in R I could try for hierarchical clustering that also deliver p-values?
Thanks in advance!
.............
I have tried to run the same code on a subset of 500 records with nboots = 1000. This worked in a reasonable computation time, but the output is still not very satisfying - see dendrogram2 .dendrogram obtained for a SUBSET of 500 records and nboots=1000
I am applying the functions from the flexclust package for hard competitive learning clustering, and I am having trouble with the convergence.
I am using this algorithm because I was looking for a method to perform a weighed clustering, giving different weights to groups of variables. I chose hard competitive learning based on a response for a previous question (Weighted Kmeans R).
I am trying to find the optimal number of clusters, and to do so I am using the function stepFlexclust with the following code:
new("flexclustControl") ## check the default values
fc_control <- new("flexclustControl")
fc_control#iter.max <- 500 ### 500 iterations
fc_control#verbose <- 1 # this will set the verbose to TRUE
fc_control#tolerance <- 0.01
### I want to give more weight to the first 24 variables of the dataframe
my_weights <- rep(c(1, 0.064), c(24, 31))
set.seed(1908)
hardcl <- stepFlexclust(x=df, k=c(7:20), nrep=100, verbose=TRUE,
FUN = cclust, dist = "euclidean", method = "hardcl", weights=my_weights, #Parameters for hard competitive learning
control = fc_control,
multicore=TRUE)
However, the algorithm does not converge, even with 500 iterations. I would appreciate any suggestion. Should I increase the number of iterations? Is this an indicator that something else is not going well, or did I a mistake with the R commands?
Thanks in advance.
Two things that answer my question (as well as a comment on weighted variables for kmeans, or better said, with hard competitive learning):
The weights are for observations (=rows of x), not variables (=columns of x). so using hardcl for weighting variables is wrong.
In hardcl or neural gas you need much more iterations compared to standard k-means: In k-means one iteration uses the complete data set to change the centroids, hard competitive learning and uses only a single observation. In comparison to k-means multiply the number of iterations by your sample size.
I'm trying to write a low-pass filter in R, to clean a "dirty" data matrix.
I did a google search, came up with a dazzling range of packages. Some apply to 1D signals (time series mostly, e.g. How do I run a high pass or low pass filter on data points in R? ); some apply to images. However I'm trying to filter a plain R data matrix. The image filters are the closest equivalent, but I'm a bit reluctant to go this way as they typically involve (i) installation of more or less complex/heavy solutions (imageMagick...), and/or (ii) conversion from matrix to image.
Here is sample data:
r<-seq(0:360)/360*(2*pi)
x<-cos(r)
y<-sin(r)
z<-outer(x,y,"*")
noise<-0.3*matrix(runif(length(x)*length(y)),nrow=length(x))
zz<-z+noise
image(zz)
What I'm looking for is a filter that will return a "cleaned" matrix (i.e. something close to z, in this case).
I'm aware this is a rather open-ended question, and I'm also happy with pointers ("have you looked at package so-and-so"), although of course I'd value sample code from users with experience on signal processing !
Thanks.
One option may be using a non-linear prediction method and getting the fitted values from the model.
For example by using a polynomial regression, we can predict the original data as the purple one,
By following the same logic, you can do the same thing to all columns of the zz matrix as,
predictions <- matrix(, nrow = 361, ncol = 0)
for(i in 1:ncol(zz)) {
pred <- as.matrix(fitted(lm(zz[,i]~poly(1:nrow(zz),2,raw=TRUE))))
predictions <- cbind(predictions,pred)
}
Then you can plot the predictions,
par(mfrow=c(1,3))
image(z,main="Original")
image(zz,main="Noisy")
image(predictions,main="Predicted")
Note that, I used a polynomial regression with degree 2, you can change the degree for a better fitting across the columns. Or maybe, you can use some other powerful non-linear prediction methods (maybe SVM, ANN etc.) to get a more accurate model.
I need to run clustering on the correlations of data row vectors, that is, instead of using individual variables as clustering predictor variables, I intend to use the correlations between the vector of variables between data rows.
Is there a function in R that does vector-based clustering. If not and I need to do it manually, what is the right data format to feed in a function such as cmeans or kmeans?
Say, I have m variables and n data rows, the m variables constitute one vector for each data row. so I have a n X n matrix for correlation or cosine. Can this matrix be plugged in the clustering function directly or certain processing is required?
Many thanks.
You can transform your correlation matrix into a dissimilarity matrix,
for instance 1-cor(x) (or 2-cor(x) or 1-abs(cor(x))).
# Sample data
n <- 200
k <- 10
x <- matrix( rnorm(n*k), nr=k )
x <- x * row(x) # 10 dimensions, with less information in some of them
# Clustering
library(cluster)
r <- pam(1-cor(x), diss=TRUE, k=5)
# Check the results
plot(prcomp(t(x))$x[,1:2], col=r$clustering, pch=16, cex=3)
R clustering is often a bit limited. This is a design limitation of R, since it heavily relies on low-level C code for performance. The fast kmeans implementation included with R is an example of such a low-level code, that in turn is tied to using Euclidean distance.
There are a dozen of extensions and alternatives available in the community around R. There are PAM, CLARA and CLARANS for example. They aren't exactly k-means, but closely related. There should be a "spherical k-means" somewhere, that is sensible for cosine distance. There is the whole family of hierarchical clusterings (which scale rather badly - usually O(n^3), with O(n^2) in a few exceptions - but are very easy to understand conceptually).
If you want to explore some more clustering options, have a look at ELKI, it should allow clustering (with various methods, including k-means) by correlation based distances (and it also includes such distance functions). It's not R, though, but Java. So if you are bound to using R, it won't work for you.