I am creating Benford plots for all the numeric variables in my dataset. https://en.wikipedia.org/wiki/Benford%27s_law
Running a single variable
#install.packages("benford.analysis")
library(benford.analysis)
plot(benford(iris$Sepal.Length))
Looks great. And the legend says "Dataset: iris$Sepal.Length", perfect!.
Using apply to run 4 variables,
apply(iris[1:4], 2, function(x) plot(benford(x)))
Creates four plots, however, each plot's legend says "Dataset: x"
I attempted to use a for loop,
for (i in colnames(iris[1:4])){
plot(benford(iris[[i]]))
}
This creates four plots, but now the legends says "Dataset: iris[[i]]". And I would like the name of the variable on each chart.
I tried a different loop, hoping to get titles with an evaluated parsed string like "iris$Sepal.Length":
for (i in colnames(iris[1:4])){
plot(benford(eval(parse(text=paste0("iris$", i)))))
}
But now the legend says "Dataset: eval(parse(text=paste0("iris$", i)))".
AND, Now I've run into the infamous eval(parse(text=paste0( (eg: How to "eval" results returned by "paste0"? and R: eval(parse(...)) is often suboptimal )
I would like labels such as "Dataset: iris$Sepal.Length" or "Dataset: Sepal.Length". How can I create multiple plots with meaningfully variable names in the legend?
This is happening because of the first line within the benford function=:
benford <- function(data, number.of.digits = 2, sign = "positive", discrete=TRUE, round=3){
data.name <- as.character(deparse(substitute(data)))
Source: https://github.com/cran/benford.analysis/blob/master/R/functions-new.R
data.name is then used to name your graph. Whatever variable name or expression you pass to the function will unfortunately be caught by the deparse(substitute()) call, and will be used as the name for your graph.
One short-term solution is to copy and rewrite the function:
#install.packages("benford.analysis")
library(benford.analysis)
#install.packages("data.table")
library(data.table) # needed for function
# load hidden functions into namespace - needed for function
r <- unclass(lsf.str(envir = asNamespace("benford.analysis"), all = T))
for(name in r) eval(parse(text=paste0(name, '<-benford.analysis:::', name)))
benford_rev <- function{} # see below
for (i in colnames(iris[1:4])){
plot(benford_rev(iris[[i]], data.name = i))
}
This has negative side effects of:
Not being maintainable with package revisions
Fills your GlobalEnv with normally hidden functions in the package
So hopefully someone can propose a better way!
benford_rev <- function(data, number.of.digits = 2, sign = "positive", discrete=TRUE, round=3, data.name = as.character(deparse(substitute(data)))){ # changed
# removed line
benford.digits <- generate.benford.digits(number.of.digits)
benford.dist <- generate.benford.distribution(benford.digits)
empirical.distribution <- generate.empirical.distribution(data, number.of.digits,sign, second.order = FALSE, benford.digits)
n <- length(empirical.distribution$data)
second.order <- generate.empirical.distribution(data, number.of.digits,sign, second.order = TRUE, benford.digits, discrete = discrete, round = round)
n.second.order <- length(second.order$data)
benford.dist.freq <- benford.dist*n
## calculating useful summaries and differences
difference <- empirical.distribution$dist.freq - benford.dist.freq
squared.diff <- ((empirical.distribution$dist.freq - benford.dist.freq)^2)/benford.dist.freq
absolute.diff <- abs(empirical.distribution$dist.freq - benford.dist.freq)
### chi-squared test
chisq.bfd <- chisq.test.bfd(squared.diff, data.name)
### MAD
mean.abs.dev <- sum(abs(empirical.distribution$dist - benford.dist)/(length(benford.dist)))
if (number.of.digits > 3) {
MAD.conformity <- NA
} else {
digits.used <- c("First Digit", "First-Two Digits", "First-Three Digits")[number.of.digits]
MAD.conformity <- MAD.conformity(MAD = mean.abs.dev, digits.used)$conformity
}
### Summation
summation <- generate.summation(benford.digits,empirical.distribution$data, empirical.distribution$data.digits)
abs.excess.summation <- abs(summation - mean(summation))
### Mantissa
mantissa <- extract.mantissa(empirical.distribution$data)
mean.mantissa <- mean(mantissa)
var.mantissa <- var(mantissa)
ek.mantissa <- excess.kurtosis(mantissa)
sk.mantissa <- skewness(mantissa)
### Mantissa Arc Test
mat.bfd <- mantissa.arc.test(mantissa, data.name)
### Distortion Factor
distortion.factor <- DF(empirical.distribution$data)
## recovering the lines of the numbers
if (sign == "positive") lines <- which(data > 0 & !is.na(data))
if (sign == "negative") lines <- which(data < 0 & !is.na(data))
if (sign == "both") lines <- which(data != 0 & !is.na(data))
#lines <- which(data %in% empirical.distribution$data)
## output
output <- list(info = list(data.name = data.name,
n = n,
n.second.order = n.second.order,
number.of.digits = number.of.digits),
data = data.table(lines.used = lines,
data.used = empirical.distribution$data,
data.mantissa = mantissa,
data.digits = empirical.distribution$data.digits),
s.o.data = data.table(second.order = second.order$data,
data.second.order.digits = second.order$data.digits),
bfd = data.table(digits = benford.digits,
data.dist = empirical.distribution$dist,
data.second.order.dist = second.order$dist,
benford.dist = benford.dist,
data.second.order.dist.freq = second.order$dist.freq,
data.dist.freq = empirical.distribution$dist.freq,
benford.dist.freq = benford.dist.freq,
benford.so.dist.freq = benford.dist*n.second.order,
data.summation = summation,
abs.excess.summation = abs.excess.summation,
difference = difference,
squared.diff = squared.diff,
absolute.diff = absolute.diff),
mantissa = data.table(statistic = c("Mean Mantissa",
"Var Mantissa",
"Ex. Kurtosis Mantissa",
"Skewness Mantissa"),
values = c(mean.mantissa = mean.mantissa,
var.mantissa = var.mantissa,
ek.mantissa = ek.mantissa,
sk.mantissa = sk.mantissa)),
MAD = mean.abs.dev,
MAD.conformity = MAD.conformity,
distortion.factor = distortion.factor,
stats = list(chisq = chisq.bfd,
mantissa.arc.test = mat.bfd)
)
class(output) <- "Benford"
return(output)
}
I have just updated the package (GitHub version) to allow for a user supplied name.
Now the function has a new parameter called data.name in which you can provide a character vector with the name of the data and override the default. Thus, for your example you can simply run the following code.
First install the GitHub version (I will submit this version to CRAN soon).
devtools::install_github("carloscinelli/benford.analysis") # install new version
Now you can provide the name of the data inside the for loop:
library(benford.analysis)
for (i in colnames(iris[1:4])){
plot(benford(iris[[i]], data.name = i))
}
And all the plots will have the correct naming as you wish (below).
Created on 2019-08-10 by the reprex package (v0.2.1)
Related
I am trying to work on a for loop to make running a function I've developed more efficient.
However, when I put it in a for loop, it is overwriting columns that it should not be and returning incorrect results.
Edit: The error is that in the resulting dataframe MiSeq_Bord_Outliers_table0, the resulting columns containing label Outlier_type is returning incorrect outputs.
As per the Outlier_Hunter function, when Avg_Trim_Cov and S2_Total_Read_Pairs_Processed are below their
respective Q1 Thresholds their respective Outlier_type columns should read "Lower_Outlier", if between Q1 & Q3 Threshold, "Normal" and if above Q3 Threshold then "Upper_outlier". But when the for loop is executed, only "Upper_outlier" is shown in the Outlier_type columns.
Edit: The inputs have been simplified and tested on the different computer with a clean console. If there were any artifacts there before, they should have been eliminated now, and there should be no errors here now. It is important to run the outlier_results_1var part first. If you test run this code and get errors, please let me know which part failed.
Edit: MiSeq_Bord_Outliers_table0_error is the error that is being reproduced. This is the error result, not an input.
Can someone please tell me why is it returning these incorrect results and what I can do to fix it? I will upload the relevant code below. Or is there another way to do this without a for loop?
#libraries used
library(tidyverse)
library(datapasta)
library(data.table)
library(janitor)
library(ggpubr)
library(labeling)
#2.) Outlier_Hunter Function
#Function to Generate the Outlier table
#Outlier Hunter function takes 4 arguments: the dataset, column/variable of interest,
#Q1 and Q3. Q1 and Q3 are stored in the results of Quartile_Hunter.
#Input ex: MiSeq_Bord_final_report0, Avg_Trim_Cov, MiSeq_Bord_Quartiles_ATC$First_Quartile[1], MiSeq_Bord_Quartiles_ATC$Third_Quartile[1]
#Usage ex: Outlier_Hunter(MiSeq_Bord_final_report0, Avg_Trim_Cov,
#MiSeq_Bord_Quartiles_ATC$First_Quartile[1], MiSeq_Bord_Quartiles_ATC$Third_Quartile[1])
#Here is the Function to get the Outlier Table
Outlier_Hunter <- function(Platform_Genus_final_report0, my_col, Q1, Q3) {
#set up and generalize the variable name you want to work with
varname <- enquo(my_col)
#print(varname) #just to see what variable the function is working with
#get the outliers
Platform_Genus_Variable_Outliers <- Platform_Genus_final_report0 %>%
select(ReadID, Platform, Genus, !!varname) %>%
#Tell if it is an outlier, and if so, what kind of outlier
mutate(
Q1_Threshold = Q1,
Q3_Threshold = Q3,
Outlier_type =
case_when(
!!varname < Q1_Threshold ~ "Lower_Outlier",
!!varname >= Q1_Threshold & !!varname <= Q3_Threshold ~ "Normal",
!!varname > Q3_Threshold ~ "Upper_Outlier"
)
)
}
#MiSeq_Bord_Quartiles entries
MiSeq_Bord_Quartiles <- data.frame(
stringsAsFactors = FALSE,
row.names = c("Avg_Trim_Cov", "S2_Total_Read_Pairs_Processed"),
Platform = c("MiSeq", "MiSeq"),
Genus = c("Bord", "Bord"),
Min = c(0.03, 295),
First_Quartile = c(80.08, 687613.25),
Median = c(97.085, 818806.5),
Third_Quartile = c(121.5625, 988173.75),
Max = c(327.76, 2836438)
)
#Remove the hashtag below to test if what you have is correct
#datapasta::df_paste(head(MiSeq_Bord_Quartiles, 5))
#dataset entry
MiSeq_Bord_final_report0 <- data.frame(
stringsAsFactors = FALSE,
ReadID = c("A005_20160223_S11_L001","A050_20210122_S6_L001",
"A073_20210122_S7_L001",
"A076_20210426_S11_L001",
"A080_20210426_S12_L001"),
Platform = c("MiSeq","MiSeq",
"MiSeq","MiSeq","MiSeq"),
Genus = c("Bordetella",
"Bordetella","Bordetella",
"Bordetella","Bordetella"),
Avg_Raw_Read_bp = c(232.85,241.09,
248.54,246.99,248.35),
Avg_Trimmed_Read_bp = c(204.32,232.6,
238.56,242.54,244.91),
Avg_Trim_Cov = c(72.04,101.05,
92.81,41.77,54.83),
Genome_Size_Mb = c(4.1, 4.1, 4.1, 4.1, 4.1),
S1_Input_reads = c(1450010L,
1786206L,1601542L,710792L,925462L),
S1_Contaminant_reads = c(12220L,6974L,
7606L,1076L,1782L),
S1_Total_reads_removed = c(12220L,6974L,
7606L,1076L,1782L),
S1_Result_reads = c(1437790L,
1779232L,1593936L,709716L,923680L),
S2_Read_Pairs_Written = c(712776L,882301L,
790675L,352508L,459215L),
S2_Total_Read_Pairs_Processed = c(718895L,889616L,
796968L,354858L,461840L)
)
MiSeq_Bord_final_report0
#Execution for 1 variable
outlier_results_1var <- Outlier_Hunter(MiSeq_Bord_final_report0, Avg_Trim_Cov,
MiSeq_Bord_Quartiles$First_Quartile[1], MiSeq_Bord_Quartiles$Third_Quartile[1])
#Now do it with a for loop
col_var_outliers <- row.names(MiSeq_Bord_Quartiles)
#col_var_outliers <- c("Avg_Trim_Cov", "S2_Total_Read_Pairs_Processed")
#change line above to change input of variables few into Outlier Hunter Function
outlier_list_MiSeq_Bord <- list()
for (y in col_var_outliers) {
outlier_results0 <- Outlier_Hunter(MiSeq_Bord_final_report0, y, MiSeq_Bord_Quartiles[y, "First_Quartile"], MiSeq_Bord_Quartiles[y, "Third_Quartile"])
outlier_results1 <- outlier_results0
colnames(outlier_results1)[5:7] <- paste0(y, "_", colnames(outlier_results1[, c(5:7)]), sep = "")
outlier_list_MiSeq_Bord[[y]] <- outlier_results1
}
MiSeq_Bord_Outliers_table0 <- reduce(outlier_list_MiSeq_Bord, left_join, by = c("ReadID", "Platform", "Genus"))
#the columns containing label Outlier_type is where the code goes wrong.
#When Avg_Trim_Cov and S2_Total_Read_Pairs_Processed are below their
#respective Q1 Thresholds their respective Outlier_type columns should read
#"Lower_Outlier", if between Q1 & Q3 Threshold, "Normal" and if above Q3
#Threshold then "Upper_outlier". But when the for loop is executed, only
"Upper_outlier" is shown in the Outlier_type columns.
datapasta::df_paste(head(MiSeq_Bord_Outliers_table0, 5))
MiSeq_Bord_Outliers_table0_error <- data.frame(
stringsAsFactors = FALSE,
ReadID = c("A005_20160223_S11_L001",
"A050_20210122_S6_L001",
"A073_20210122_S7_L001","A076_20210426_S11_L001",
"A080_20210426_S12_L001"),
Platform = c("MiSeq",
"MiSeq","MiSeq","MiSeq",
"MiSeq"),
Genus = c("Bordetella","Bordetella","Bordetella",
"Bordetella","Bordetella"),
Avg_Trim_Cov = c(72.04,
101.05,92.81,41.77,54.83),
Avg_Trim_Cov_Q1_Threshold = c(80.08,
80.08,80.08,80.08,80.08),
Avg_Trim_Cov_Q3_Threshold = c(121.5625,
121.5625,121.5625,121.5625,
121.5625),
Avg_Trim_Cov_Outlier_type = c("Upper_Outlier","Upper_Outlier",
"Upper_Outlier","Upper_Outlier",
"Upper_Outlier"),
S2_Total_Read_Pairs_Processed = c(718895L,
889616L,796968L,354858L,
461840L),
S2_Total_Read_Pairs_Processed_Q1_Threshold = c(687613.25,
687613.25,687613.25,
687613.25,687613.25),
S2_Total_Read_Pairs_Processed_Q3_Threshold = c(988173.75,
988173.75,988173.75,
988173.75,988173.75),
S2_Total_Read_Pairs_Processed_Outlier_type = c("Upper_Outlier","Upper_Outlier",
"Upper_Outlier","Upper_Outlier",
"Upper_Outlier")
)
For use in a loop like you do, it would be more useful to write your Outlier_Hunter() function to take the target column as a character string rather than an expression.
To do that, try replacing all instances of !!varname in your function with .data[[my_col]], and remove the enquo() line altogether.
Note that with these changes, you also need to change how you call the function when you don't have the column name in a variable. For example, your single execution would become:
Outlier_Hunter(
MiSeq_Bord_final_report0,
"Avg_Trim_Cov",
MiSeq_Bord_Quartiles$First_Quartile[1],
MiSeq_Bord_Quartiles$Third_Quartile[1]
)
For more info about programming with tidy evaluation functions, you may find this rlang vignette useful.
I am trying to visualize sequences of events by using Sankey diagrams.
I have a set of event (Event1 to Event16) over sequences of different length.
The steps of the sequences are noted by T0, T0 - 1, T0 - 2 ...
The width of the flow is corresponding to the frequency rate of the sequences.
I would like that all the nodes corresponding to a given step to be aligned vertically.
By using the GoogleVis package I succeed to obtain the following :
Sankey with GoogleVis
As you can see some events T0-1, T0-2 and T0-3... are on the far right, instead of with the others of their time step.
It seems to be due to the fact that it is not possible to have nodes whithout children...
Do you know a way to have hierarchize nodes or/and nodes whithout children, for GoogleVis ?
If not, do you know another R package which could allow to have these characteristics for interactive plots ?
My R code is bellow. The main variable containing the sequences is a list of list, see picture.
Data containing sequences
My code :
# Package
library(googleVis)
library(dplyr)
library(reshape2)
library(tidyverse)
# Load
load("SeqCh")
# Loop -------------------------------------------------------------
# Inits
From = c()
To = c()
Freq = c()
Target = SeqCh
# Get maximum length of sequence
maxls = 0
for (kk in 1:length(Target)){
temp = length(Target[[kk]])
if (temp > maxls){
maxls = temp
}
}
# Loop on length of sequences
for (zz in 2:maxls){
# Prefix to add to manage same event repeated
if (zz == 2){
SufixFrom = "(T0)"
SufixTo = "(T0 - 1)"
} else {
SufixFrom = paste("(T0 - ", as.character(zz-2), ")", sep = "")
SufixTo = paste("(T0 - ", as.character(zz-1), ")", sep = "")
}
# Message
cat("\n")
print(paste(" Processing events from ", SufixFrom, " to ", SufixTo))
# Loop on Target
ind = lapply(Target, function(x) length(x) == zz)
TargetSub = Target[unlist(ind)]
FreqSub = Support[unlist(ind)]
for (jj in 1:length(TargetSub)){
temp = TargetSub[[jj]]
TempFrom = paste(temp[zz-1], SufixFrom, sep = " ")
TempTo = paste(temp[zz], SufixTo, sep = " ")
From = c(From, TempFrom)
To = c(To, TempTo)
Freq = c(Freq, FreqSub[jj])
}
} # end for loop on length of sequences
# All in same variable
Flows = data.frame("From" = From, "To" = To, "Occurence_Frequency" = Freq, stringsAsFactors = FALSE)
# Plot --------------------------------------------------------------------
plot(gvisSankey(Flows, from='From', to='To', weight="Occurence_Frequency",
options=list(height=900, width=1800, sankey="{link:{color:{fill:'lightblue'}}}")))
Thanks, Romain.
When I run the following code, I do NOT get this error:
## https://www.dataiku.com/learn/guide/code/r/time_series.html
library(readxl)
library(forecast)
library(dplyr)
library(prophet)
library(rstan)
library(Hmisc)
library(caret)
data<-read_excel("Time Series/Items.xlsx", col_types = c("text", "numeric"))
Nper=0.75
stmodels=c("meanf","naive","snaive","rwf","croston","stlf","ses","holt","hw","splinef","thetaf","ets","auto.arima","tbats","prophet")
gkuniforecast = function(data, Np, Ncolumn, tsfreq, model) {
## Preparation
N = ceiling(Np*nrow(data))
## Models
if (model=="prophet"){
df=data
names(df)=c("ds","y")
df$ds=as.Date(paste(df$ds,"-01",sep=""), "%Y-%b-%d")
train.df = df[1:N,]
na.df=data.frame(ds=rep(NA, N),y=rep(NA, N))
test.df <- rbind(na.df, df[(N+1):nrow(data),])
m <- prophet(train.df)
future <- make_future_dataframe(m, periods = nrow(data)-N, freq = 'month')
pro_forecast <- predict(m, future)
plot(m, pro_forecast)
##prophet_plot_components(m, forecast)
acc=matrix(rep(NA, 16),nrow=2,ncol=8,dimnames=list(c("Training set", "Test set"),c("ME","RMSE","MAE","MPE","MAPE","MASE","ACF1","Theil's U")))
acc["Test set","RMSE"]=sqrt(mean((pro_forecast$yhat - test.df)^2, na.rm = TRUE))
}else{
x=pull(data,Ncolumn)
train.x = ts(x[1:N], frequency=tsfreq)
test.x <- ts(c(rep(NA, N), x[(N+1):NROW(x)]), frequency=tsfreq)
str1=paste0("m_",model," = ",model,"(train.x)")
if (Np==1) {str2=paste0("f_",model," = forecast(m_",model,", h=NROW(x)")
} else {str2=paste0("f_",model," = forecast(m_",model,", h=NROW(x)-N)")}
str3=paste0("plot(f_",model,")")
str4="lines(test.x)"
str5=paste0("acc=accuracy(f_",model,",test.x)")
str=paste0(str1,";",str2,";",str3,";",str4,";",str5)
eval(parse(text=str))
}
return(acc)
}
acc = lapply(stmodels, gkuniforecast, data=data, Np=Nper, Ncolumn=2,tsfreq=12)
But when I run this code, I do:
##Forecast data prep
tsfreq=5
x=pull(data,1)
train.x = ts(x[1:N], frequency=tsfreq)
test.x <- ts(c(rep(NA, N), x[(N+1):NROW(x)]), frequency=tsfreq)
stmodels=c("meanf","naive","snaive","rwf","croston","stlf","ses","holt","hw"##,"splinef"
,"thetaf","ets","auto.arima","tbats")
for (i in 1:length(stmodels)){
str1=paste0("m_",stmodels[i]," = ",stmodels[i],"(train.x)")
str2=paste0("f_",stmodels[i]," = forecast(m_",stmodels[i],", h=NROW(x)-N)")
str3=paste0("plot(f_",stmodels[i],")")
str4="lines(test.x)"
str5=paste0('acc[["',stmodels[i],'"]]=accuracy(f_',stmodels[i],',test.x)')
str=paste0(str1,";",str2,";",str3,";",str4,";",str5)
eval(parse(text=str))
}
There seems to be a problem with 'hw' (splinef is commented out, because it gives me another error), but I do not understand why in the first dataset, I get no errors and I do with the second dataset. What is also different is the frequency.
Again the error is:
Please select a longer horizon when the forecasts are first computed
You are mixing functions that create forecasts directly (like meanf()) with functions that generate models (like ets()). For functions that generate forecasts directly, you need to specify the forecast horizon when you call the function. See https://otexts.org/fpp2/the-forecast-package-in-r.html for a list of functions that produce forecasts directly.
I recently posted a similar inquiry in the shiny google group, but did not find a solution. We are developing a Shiny app and as the subject indicates we get an "error: subscript out of bounds" message upon running the app. However, when we isolate the offending code and run it on its own in RStudio, there is no error.
This makes me wonder if there is a bug in Shiny itself, or if we are missing something.
Please see the instructions below along with a small example that produces the error. We are using Shiny version 0.8.0 and RStudio 0.98.501.
Thanks for your help!
To run the app, place ui.R and server.R (see below) in a folder and run
library(shiny)
runApp("<folder path>")
It should produce a user interface with a button on the left, but on the right you will see "error: subscript out of bounds".
However, if just run the following three lines of code (approximately lines 57-59 in server.R)
show=data.frame(ps=c(4,-1,0,1),ns=c(0,1,0,0),ts=c(45842,15653,28535,21656))
best.fit1=regsubsets(ts~ps+ns,data=show,nvmax=1)
pred1=predict.regsubsets(best.fit1,show,id=1) # line that offends Shiny
in RStudio (need to include the function "predict.regsubsets" - given at the beginning of server.R), then there are no errors.
#####################
## server.R
#####################
library(rms)
library(leaps)
library(shiny)
library(datasets)
library(stringr)
library(ttutils)
library(plyr)
library(utils)
library(ggplot2)
# object is a regsubsets object
# newdata is of the form of a row or collection of rows in the dataset
# id specifies the number of terms in the model, since regsubsets objects
# includes models of size 1 up to a specified number
predict.regsubsets=function(object,newdata,id,...){
form=as.formula(object$call[[2]])
mat=model.matrix(form,newdata)
mat.dims=dim(mat)
coefi=coef(object,id=id)
xvars=names(coefi)
# because mat only has those categorical variable categories associated with newdata,
# it is possible that xvars (whose variables are defined by the "best" model of size i)
# has a category that is not in mat
diffs=setdiff(xvars,colnames(mat))
ndiffs=length(diffs)
if(ndiffs>0){
# add columns of 0's for each variable in xvars that is not in mat
mat=cbind(mat,matrix(0,mat.dims[1],ndiffs))
# for the last "ndiffs" columns, make appropriate names
colnames(mat)[(mat.dims[2]+1):(mat.dims[2]+ndiffs)]=diffs
mat[,xvars]%*%coefi
}
else{
mat[,xvars]%*%coefi
}
}
# Define server logic required to summarize and view the selected dataset
shinyServer(function(input, output) {
mainTable1 <- reactive({
})
output$table21 <- renderTable({
mainTable1()
})
formulamodel1 <- reactive({
#ticketsale<-dataset1Input()
show=data.frame(ps=c(4,-1,0,1),ns=c(0,1,0,0),ts=c(45842,15653,28535,21656))
best.fit1=regsubsets(ts~ps+ns,data=show,nvmax=1)
pred1=predict.regsubsets(best.fit1,show,id=1)
})
output$model1fit <- renderPrint({
formulamodel1()
})
})
######################
## end server.R
######################
######################
## ui.R
######################
library(rms)
library(leaps)
library(shiny)
library(datasets)
library(stringr)
library(ttutils)
library(plyr)
library(utils)
library(ggplot2)
shinyUI(pageWithSidebar(
headerPanel("Forecasting ticket sales for xxx"),
sidebarPanel(
p(strong("Model Fitting")),
selectInput("order1", "Sort results by:",c("a","b","c")),
submitButton("Run Model")
),
mainPanel(
h3(strong("Model fit without using ticket sales") ),
tableOutput("table21"),
verbatimTextOutput(outputId = "model1fit")
)
))
These three lines only seem to work when executed in the global environment. If you take that snippet and run it inside of a local({...}) block you'll see the same error.
The error is coming from the first line of predict.regsubsets, where you look at object$call[[2]]. It's object$call that is very different depending on whether it's executed in the global environment or not; it's created in leaps:::regsubsets.formula by calling sys.call(sys.parent()). Perhaps this needs to be sys.call(sys.parent(0)) (just a guess)?
Thanks to John Harrison for this answer. He attempted to reply via the shiny Google group but the system deleted his answers, as well as my attempt later to post his solution. Here it is.
John Harrison says:
The issue is with the regsubsets function:
> test_env <- new.env(parent = globalenv())
> with(test_env, {show=data.frame(ps=c(4,-1,0,1),ns=c(0,1,0,0),ts=c(45842,15653,28535,21656))
+ best.fit1=regsubsets(ts~ps+ns,data=show,nvmax=1)
+ #pred1=predict.regsubsets(best.fit1,show,id=1)
+ #pred1
+ best.fit1})
Subset selection object
Call: eval(expr, envir, enclos)
2 Variables (and intercept)
Forced in Forced out
ps FALSE FALSE
ns FALSE FALSE
1 subsets of each size up to 1
Selection Algorithm: exhaustive
You can see it gets it Call: output relative to the environment its in:
> getAnywhere(regsubsets.formula)
A single object matching ‘regsubsets.formula’ was found
It was found in the following places
registered S3 method for regsubsets from namespace leaps
namespace:leaps
with value
function (x, data, weights = NULL, nbest = 1, nvmax = 8, force.in = NULL,
force.out = NULL, intercept = TRUE, method = c("exhaustive",
"backward", "forward", "seqrep"), really.big = FALSE,
...)
{
formula <- x
rm(x)
mm <- match.call()
mm$formula <- formula
mm$x <- NULL
mm$nbest <- mm$nvmax <- mm$force.in <- mm$force.out <- NULL
mm$intercept <- mm$method <- mm$really.big <- NULL
mm[[1]] <- as.name("model.frame")
mm <- eval(mm, sys.frame(sys.parent()))
x <- model.matrix(terms(formula, data = data), mm)[, -1]
y <- model.extract(mm, "response")
wt <- model.extract(mm, "weights")
if (is.null(wt))
wt <- rep(1, length(y))
else wt <- weights
a <- leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
force.in = force.in, force.out = force.out, intercept = intercept)
rval <- switch(1 + pmatch(method[1], c("exhaustive", "backward",
"forward", "seqrep"), nomatch = 0), stop(paste("Ambiguous or unrecognised method name :",
method)), leaps.exhaustive(a, really.big), leaps.backward(a),
leaps.forward(a), leaps.seqrep(a))
rval$call <- sys.call(sys.parent())
rval
}
<environment: namespace:leaps>
rval$call <- sys.call(sys.parent())
is the offending line of code
I replied:
I'm in a bit over my head in terms of these R functions, environments, etc. I roughly followed your explanation above but I don't understand it enough to have any real sort of idea of what to do to fix it (or whether it is even fixable). Could you easily point me in the right direction?
John replied:
You could define your own regsubsets function:
myregsubsets <- function (x, data, weights = NULL, nbest = 1, nvmax = 8, force.in = NULL,
force.out = NULL, intercept = TRUE, method = c("exhaustive",
"backward", "forward", "seqrep"), really.big = FALSE,
...){
formula <- x
rm(x)
mm <- match.call()
mm$formula <- formula
mm$x <- NULL
mm$nbest <- mm$nvmax <- mm$force.in <- mm$force.out <- NULL
mm$intercept <- mm$method <- mm$really.big <- NULL
mm[[1]] <- as.name("model.frame")
mm <- eval(mm, sys.frame(sys.parent()))
x <- model.matrix(terms(formula, data = data), mm)[, -1]
y <- model.extract(mm, "response")
wt <- model.extract(mm, "weights")
if (is.null(wt))
wt <- rep(1, length(y))
else wt <- weights
a <- leaps:::leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
force.in = force.in, force.out = force.out, intercept = intercept)
rval <- switch(1 + pmatch(method[1], c("exhaustive", "backward",
"forward", "seqrep"), nomatch = 0), stop(paste("Ambiguous or unrecognised method name :",
method)), leaps:::leaps.exhaustive(a, really.big), leaps:::leaps.backward(a),
leaps:::leaps.forward(a), leaps:::leaps.seqrep(a))
rval$call <- sys.call(sys.parent())
rval$x <- formula
rval
}
predict.regsubsets=function(object,newdata,id,...){
form=as.formula(object$x)
mat=model.matrix(form,newdata)
mat.dims=dim(mat)
coefi=coef(object,id=id)
xvars=names(coefi)
# because mat only has those categorical variable categories associated with newdata,
# it is possible that xvars (whose variables are defined by the "best" model of size i)
# has a category that is not in mat
diffs=setdiff(xvars,colnames(mat))
ndiffs=length(diffs)
if(ndiffs>0){
# add columns of 0's for each variable in xvars that is not in mat
mat=cbind(mat,matrix(0,mat.dims[1],ndiffs))
# for the last "ndiffs" columns, make appropriate names
colnames(mat)[(mat.dims[2]+1):(mat.dims[2]+ndiffs)]=diffs
mat[,xvars]%*%coefi
}
else{
mat[,xvars]%*%coefi
}
}
Later, John added:
The regsubsets function assumed the user was calling it in a certain fashion. The myregsubsets is a replacement for regsubsets.formula. In your predict.regsubsets you access the formula using as.formula(object$call[[2]]). When nested in environments this doesnt give you what is expected. The myregsubsets replacement gets the formula using rval$x <- formula. The changed predict.regsubsets then uses form=as.formula(object$x) rather then as.formula(object$call[[2]]).
I am new to R , I am trying to run example which is given in "rebmix-help pdf". It use galaxy dataset and here is the code
library(rebmix)
devAskNewPage(ask = TRUE)
data("galaxy")
write.table(galaxy, file = "galaxy.txt", sep = "\t",eol = "\n", row.names = FALSE, col.names = FALSE)
REBMIX <- array(list(NULL), c(3, 3, 3))
Table <- NULL
Preprocessing <- c("histogram", "Parzen window", "k-nearest neighbour")
InformationCriterion <- c("AIC", "BIC", "CLC")
pdf <- c("normal", "lognormal", "Weibull")
K <- list(7:20, 7:20, 2:10)
for (i in 1:3) {
for (j in 1:3) {
for (k in 1:3) {
REBMIX[[i, j, k]] <- REBMIX(Dataset = "galaxy.txt",
Preprocessing = Preprocessing[k], D = 0.0025,
cmax = 12, InformationCriterion = InformationCriterion[j],
pdf = pdf[i], K = K[[k]])
if (is.null(Table))
Table <- REBMIX[[i, j, k]]$summary
else Table <- merge(Table, REBMIX[[i, j,k]]$summary, all = TRUE, sort = FALSE)
}
}
}
It is giving me error ERROR:
unused argument (InformationCriterion = InformationCriterion[j])
Plz help
I'm running R 3.0.2 (Windows) and the library rebmix defines a function REBMIX where InformationCriterion is not listed as a named argument, but Criterion.
Brief invoke REBMIX as :
REBMIX[[i, j, k]] <- REBMIX(Dataset = "galaxy.txt",
Preprocessing = Preprocessing[k], D = 0.0025,
cmax = 12, Criterion = InformationCriterion[j],
pdf = pdf[i], K = K[[k]])
It looks as though there have been substantial changes to the rebmix package since the example mentioned in the OP was created. Among the most noticable changes is the use of S4 classes.
There's also an updated demo in the rebmix package using the galaxy data (see demo("rebmix.galaxy"))
To get the above example to produce results (Note: I am not familiar with this package or the rebmix algorithm!!!):
Change the argument to Criterion as mentioned by #Giupo
Use the S4 slot access operator # instead of $
Don't name the results object REDMIX because that's already the function name
library(rebmix)
data("galaxy")
## Don't re-name the REBMIX object!
myREBMIX <- array(list(NULL), c(3, 3, 3))
Table <- NULL
Preprocessing <- c("histogram", "Parzen window", "k-nearest neighbour")
InformationCriterion <- c("AIC", "BIC", "CLC")
pdf <- c("normal", "lognormal", "Weibull")
K <- list(7:20, 7:20, 2:10)
for (i in 1:3) {
for (j in 1:3) {
for (k in 1:3) {
myREBMIX[[i, j, k]] <- REBMIX(Dataset = list(galaxy),
Preprocessing = Preprocessing[k], D = 0.0025,
cmax = 12, Criterion = InformationCriterion[j],
pdf = pdf[i], K = K[[k]])
if (is.null(Table)) {
Table <- myREBMIX[[i, j, k]]#summary
} else {
Table <- merge(Table, myREBMIX[[i, j,k]]#summary, all = TRUE, sort = FALSE)
}
}
}
}
I guess this is late. But I encountered a similar problem just a few minutes ago. And I realized the real scenario that you may face when you got this kind of error msg... It's just the version conflict.
You may use a different version of the R package from the tutorial, thus the argument names could be different between what you are running and what the real code use.
So please check the version first before you try to manually edit the file. Also, it happens that your old version package is still in the path and it overrides the new one. This was exactly what I had... since I manually installed the old and new version separately...