I am having trouble when initializing a shiny app in R. I would like eventReactive to trigger from any of several events, which are chained by reactive expressions. The app mostly works as intended, but does not display upon initialization and instead requires user to select an actionButton before results are displayed. Why is this?
I read documentation for eventReactive, played with ignoreNULL and ignoreInit settings, and done many online searches.
Example below.
require(shiny)
require(ggplot2)
ui <- fluidPage(
titlePanel("Car Weight"),
br(),
uiOutput(outputId = "cylinders"),
sidebarLayout(
mainPanel(
# plotOutput(outputId = "trend"),
# plotOutput(outputId = "hist"),
tableOutput("table"),
uiOutput(outputId = "dataFilter"),
actionButton(inputId = "update1", label = "Apply Filters"),
width = 9
),
sidebarPanel(
actionButton(inputId = "update2", label = "Apply Filters"),
uiOutput(outputId = "modelFilter"),
actionButton(inputId = "update3", label = "Apply Filters"),
width = 3
)
)
)
server <- function(input, output) {
# Read data. Real code will pull from database.
df <- mtcars
df$model <- row.names(df)
# Get cylinders
output$cylinders <- renderUI(
selectInput(
inputId = "cyl",
label = "Select Cylinders",
choices = c("", as.character(unique(df$cyl)))
)
)
# Subset data by cyl.
df2 <-
reactive(droplevels(df[df$cyl == input$cyl, ]))
# Filter data.
df3 <-
eventReactive({
##############################################################
# Help needed:
# Why does this block not update upon change in 'input$cyl'?
##############################################################
input$update1
input$update2
input$update3
input$cyl
},
{
req(input$modelFilter)
modelFilterDf <-
data.frame(model = input$modelFilter)
df3a <-
merge(df2(), modelFilterDf, by = "model")
df3a[df3a$wt >= input$dataFilter[1] &
df3a$wt <= input$dataFilter[2],]
},
ignoreNULL = FALSE,
ignoreInit = FALSE)
# Plot table.
output$table <- renderTable(df3())
# Filter by data value.
output$dataFilter <-
renderUI({
req(df2()$wt[1])
sliderInput(
inputId = "dataFilter",
label = "Filter by Weight (1000 lbs)",
min = floor(min(df2()$wt, na.rm = TRUE)),
max = ceiling(max(df2()$wt, na.rm = TRUE)),
value = c(
min(df2()$wt, na.rm = TRUE),
max(df2()$wt, na.rm = TRUE)
),
step = round(
max(df2()$wt, na.rm = TRUE) - min(df2()$wt, na.rm = TRUE)
) / 100,
round = round(log((
max(df2()$wt, na.rm = TRUE) - min(df2()$wt, na.rm = TRUE)
) / 100))
)
})
# Filter by lot / wafer.
output$modelFilter <- renderUI({
req(input$cyl)
checkboxGroupInput(
inputId = "modelFilter",
label = "Filter by Model",
choices = as.character(unique(df2()$model)),
selected = as.character(unique(df2()$model))
)
})
}
# Run shiny.
shinyApp(ui = ui, server = server)
I found a solution. Perhaps not the most elegant, but it works.
The problem was that input$modelFilter and input$modelFilter were one update behind df2. This did not matter when the user selected input$update, since df2 did not update, and only posed a problem during a newly created df2, since the filter would not match the data.
To resolve this, I added values <- reactiveValues(update = 0) which will increase by +1 every time df3 is created, and will reset back to 0 when a new df2 is created. If values$update > 0 then the data is filtered, otherwise, the unfiltered data is returned.
Possibly useful link: How can I set up triggers or execution order for eventReactive or ObserveEvent?
require(shiny)
require(ggplot2)
ui <- fluidPage(
titlePanel("Car Weight"),
br(),
uiOutput(outputId = "cylinders"),
sidebarLayout(
mainPanel(
tableOutput("table"),
uiOutput(outputId = "dataFilter"),
actionButton(inputId = "update1", label = "Apply Filters"),
width = 9
),
sidebarPanel(
actionButton(inputId = "update2", label = "Apply Filters"),
uiOutput(outputId = "modelFilter"),
actionButton(inputId = "update3", label = "Apply Filters"),
width = 3
)
)
)
server <- function(input, output) {
# Read data. Real code will pull from database.
df <- mtcars
df$model <- row.names(df)
df <- df[order(df$model), c(12,1,2,3,4,5,6,7,8,9,10,11)]
# Get cylinders
output$cylinders <- renderUI({
selectInput(
inputId = "cyl",
label = "Select Cylinders",
choices = c("", as.character(unique(df$cyl)))
)})
# Check if data frame has been updated.
values <- reactiveValues(update = 0)
# Subset data by cyl.
df2 <-
reactive({
values$update <- 0
df2 <- droplevels(df[df$cyl == input$cyl,])})
# Filter data.
df3 <-
eventReactive({
input$update1
input$update2
input$update3
df2()
},
{
if (values$update > 0) {
req(input$modelFilter)
modelFilterDf <-
data.frame(model = input$modelFilter)
df3a <-
merge(df2(), modelFilterDf, by = "model")
df3a <- df3a[df3a$wt >= input$dataFilter[1] &
df3a$wt <= input$dataFilter[2], ]
} else {
df3a <- df2()
}
values$update <- values$update + 1
df3a
},
ignoreNULL = FALSE,
ignoreInit = TRUE)
# Plot table.
output$table <- renderTable(df3())
# Filter by data value.
output$dataFilter <-
renderUI({
req(df2()$wt[1])
sliderInput(
inputId = "dataFilter",
label = "Filter by Weight (1000 lbs)",
min = floor(min(df2()$wt, na.rm = TRUE)),
max = ceiling(max(df2()$wt, na.rm = TRUE)),
value = c(floor(min(df2()$wt, na.rm = TRUE)),
ceiling(max(df2()$wt, na.rm = TRUE))),
step = round(max(df2()$wt, na.rm = TRUE) - min(df2()$wt, na.rm = TRUE)) / 100,
round = round(log((
max(df2()$wt, na.rm = TRUE) - min(df2()$wt, na.rm = TRUE)
) / 100))
)
})
# Filter by lot / wafer.
output$modelFilter <- renderUI({
req(input$cyl)
checkboxGroupInput(
inputId = "modelFilter",
label = "Filter by Model",
choices = as.character(unique(df2()$model)),
selected = as.character(unique(df2()$model))
)
})
}
# Run shiny.
shinyApp(ui = ui, server = server)
Related
I'm trying to create a shiny app as a practice planner where users can select which drills they are going to do and how long they will do each drill and the app then shows them the total meters covered for the whole practice. Now I'm trying to calculate the total values of meters covered during a session based on the drills selected and the number of minutes selected for each drill. However my total is always equal to 0 even though it works for calculating each drill separately. Could someone help me figure out what I'm doing wrong please. Below is my code with sample data.
library(shiny)
library(dplyr)
# MyData <- read.csv("/Users/sonamoravcikova/Desktop/ShinyTest/ForShiny1.csv")
MyData <- structure(list(Drill = c("GP Warm Up", "5v2 Rondo", "11v11", "10v6 Drop
Behind Ball"), PlayerLoadPerMinute = c(7.72949670665213, 6.49382926701571,
9.67483408668731, 5.86770863636364), MetersPerMinute = c(69.9524820610687,
45.823744973822, 95.9405092879257, 58.185375), class = "data.frame", row.names
= c(NA, -4L)))
# Define UI ----
ui <- fluidPage(
titlePanel("Practice Planner"),
sidebarLayout(
sidebarPanel(
#Select number of drills
numericInput("num", h3("Number of Drills"), value = 1),
textOutput("MpM_Total")
),
mainPanel(
#Show boxes for the number of drill selected and select drill type
selectInput("DrillName1",
label = "Choose a Drill:",
choices = unique(MyData$Drill),
selected = NULL,
multiple = FALSE),
sliderInput("slider1",
label = h3("Slider"),
min = 0,
max = 60,
value = 0),
textOutput("MpM1"),
br(),
conditionalPanel(
condition = "input.num > '1'",
selectInput("DrillName2",
label = "Choose a Drill:",
choices = unique(MyData$Drill),
selected = NULL,
multiple = FALSE),
sliderInput("slider2",
label = h3("Slider"),
min = 0,
max = 60,
value = 0),
textOutput("MpM2")),
br(),
conditionalPanel(
condition = "input.num > '2'",
selectInput("DrillName3",
label = "Choose a Drill:",
choices = unique(MyData$Drill),
selected = NULL,
multiple = FALSE),
sliderInput("slider3",
label = h3("Slider"),
min = 0,
max = 60,
value = 0),
textOutput("MpM3"))
)
)
)
# Define server logic ----
server <- function(input, output, session) {
#Calculate number of meters covered
lapply(1:10, function(x) {
MetersPerMin <- reactive({
chosendrill <- input[[paste0("DrillName",x)]]
MpM <- MyData %>%
distinct(MetersPerMinute, .keep_all = T)
MpM_text <- (MpM$MetersPerMinute[MpM$Drill == chosendrill]) * (input[[paste0("slider",x)]])
})
output[[paste0("MpM", x)]] <- renderText({
paste0("Meters covered: ", MetersPerMin())
})
MpM_Sum <- reactive({
sum(MetersPerMin())
})
output$MpM_Total <- renderText({
paste("Total Meters Covered", MpM_Sum())
})
})
}
# Create Shiny app ----
shinyApp(ui = ui, server = server)
library(shiny)
library(dplyr)
MyData <- data.frame(Drill = c('GP Warm Up', '5v2 Rondo', '11v11', '10v6 Drop Behind Ball'),
PlayerLoadPerMinute = c(7.72949670665213, 6.49382926701571, 9.67483408668731, 5.86770863636364),
MetersPerMinute = c(69.9524820610687, 45.823744973822, 95.9405092879257, 58.185375))
MpM <- MyData %>%
distinct(MetersPerMinute, .keep_all = T)
# Define UI ----
ui <- fluidPage(
titlePanel('Practice Planner'),
sidebarLayout(
sidebarPanel(
#Select number of drills
numericInput('num', h3('Number of Drills'), value = 1),
textOutput('MpM_Total')
),
mainPanel(
#Show boxes for the number of drill selected and select drill type
selectInput('DrillName1',
label = 'Choose a Drill:',
choices = unique(MyData$Drill),
selected = NULL,
multiple = FALSE),
sliderInput('slider1',
label = h3('Slider'),
min = 0,
max = 60,
value = 0),
textOutput('MpM1'),
br(),
conditionalPanel(
condition = 'input.num > "1"',
selectInput('DrillName2',
label = 'Choose a Drill:',
choices = unique(MyData$Drill),
selected = NULL,
multiple = FALSE),
sliderInput('slider2',
label = h3('Slider'),
min = 0,
max = 60,
value = 0),
textOutput('MpM2')
),
br(),
conditionalPanel(
condition = 'input.num > "2"',
selectInput('DrillName3',
label = 'Choose a Drill:',
choices = unique(MyData$Drill),
selected = NULL,
multiple = FALSE),
sliderInput('slider3',
label = h3('Slider'),
min = 0,
max = 60,
value = 0),
textOutput('MpM3')
)
)
)
)
# Define server logic ----
server <- function(input, output, session) {
MetersPerMin <- reactive({
idx <- input$num
if (idx < 1) {
idx <- 1
} else if (idx > 3) {
idx <- 3
}
mpms <- sapply(1:idx, function(x) {
chosendrill <- input[[ paste0('DrillName', x) ]]
mpm <- (MpM$MetersPerMinute[ MpM$Drill == chosendrill ]) * (input[[ paste0('slider', x) ]])
output[[ paste0('MpM', x) ]] <- renderText(paste0('Meters covered: ', mpm))
mpm
})
mpms
})
output$MpM_Total <- renderText({
paste('Total Meters Covered', sum(MetersPerMin()))
})
}
# Create Shiny app ----
shinyApp(ui = ui, server = server)
The following app generates a dynamic UI based on the number of variables selected. A problem is that when the number of variables selected is odd, the app generates an extra UI that is not tied to any of the variables previously selected. I've tried include if statements within the fluidRow creation statement, essentially checking if there is a remainder and if so, I've tried to tell the app to insert a blank space, but this doesn't do the trick. Does anyone have any suggestions on how to fix the issue?
## libraries
library(tidyverse)
library(shiny)
ui <- fluidPage(
selectInput(inputId = "var",
label = "vars:",
choices = colnames(mtcars),
multiple = TRUE),
uiOutput("dynUI")
)
server <- function(input, output, session) {
output$dynUI <- renderUI({
row_idx <- length(input$var) %>% seq_len
row_idx <- row_idx[row_idx %% 2 == 1]
row_idx %>%
map(~fluidRow(column(width = 2,
selectizeInput(inputId = paste0("var", .x),
label = paste(input$var[.x], "var:"),
choices = c("this", "that"),
multiple = FALSE)),
column(width = 2,
selectizeInput(inputId = paste0("var", .x + 1),
label = paste(input$var[.x + 1], "var:"),
choices = c("this", "that"),
multiple = FALSE))))
})
}
shinyApp(ui, server)
You can detect the odd variable using is.na(input$var[.x + 1]) then span it on 4 columns as in :
row_idx %>%
map( ~ {
if (!is.na(input$var[.x + 1]))
fluidRow(column(
width = 2,
selectizeInput(
inputId = paste0("var", .x),
label = paste(input$var[.x], "var:"),
choices = c("this", "that"),
multiple = FALSE
)
),
column(
width = 2,
selectizeInput(
inputId = paste0("var", .x + 1),
label = paste(input$var[.x + 1], "var:"),
choices = c("this", "that"),
multiple = FALSE
)
))
else
fluidRow(column(
width = 4,
selectizeInput(
inputId = paste0("var", .x),
label = paste(input$var[.x], "var:"),
choices = c("this", "that"),
multiple = FALSE
)
))
})
What about something like the following?
library(tidyverse)
library(shiny)
column2 = function(x, input) {
column(
width = 2,
selectizeInput(
inputId = paste0("var", x),
label = paste(input$var[x], "var:"),
choices = c("this", "that"),
multiple = FALSE
)
)
}
ui <- fluidPage(
selectInput(inputId = "var",
label = "vars:",
choices = colnames(mtcars),
multiple = TRUE),
uiOutput("dynUI")
)
server <- function(input, output, session) {
output$dynUI <- renderUI({
row_idx <- length(input$var) %>% seq_len
row_idx <- split(row_idx, (seq(row_idx) - 1) %/% 2)
map(row_idx, function(x, input) fluidRow(map(x, column2, input = input)), input = input)
})
}
shinyApp(ui, server)
EDIT:
I want to create a tabsetPanel that displays a selection of dataframes based on a selectizeInput, while also allowing for permanent edits of the data. I use editable DataTables to render the dataframes but couldn't find a way to save the edits. This example code illustrates my problem:
library(shiny)
library(shinyWidgets)
library(shinyjs)
library(DT)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectizeInput(inputId = "dataframes", label = "select dataframes",
choices = c("iris", "mtcars", "DNase", "ChickWeight"), multiple = TRUE, options = list(create = T))
),
mainPanel(
uiOutput("dataframes_rendered")
)
)
)
server <- function(input, output) {
output$dataframes_rendered = renderUI({
# create one tab per df
tabs = lapply(input$dataframes, function(df){
output[[df]] = DT::renderDT(get(df), editable = T, rownames = F, options = list(dom = "t"))
tabPanel(title = df, value = NULL, dataTableOutput(outputId = df), br())
})
# create tabsetPanel
do.call(tabsetPanel, c(tabs, id = "df_tabset"))
})
}
shinyApp(ui = ui, server = server)
I understand why the edits are not saved in my example (the dataframes are re-rendered with every change in the selectizeInput) but, so far, everything I tried to to save the edits and re-render the editeed tables did not work.
Please try the below:
library(shiny)
library(shinyWidgets)
library(shinyjs)
library(DT)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectizeInput(inputId = "dataframes", label = "select dataframes",
choices = c("iris", "mtcars", "DNase", "ChickWeight"), multiple = TRUE, options = list(create = T))
),
mainPanel(
tabsetPanel(id = "df_tabset")
)
)
)
server <- function(input, output, session) {
tables <- reactiveValues(
iris = iris,
mtcars = mtcars,
DNase = DNase,
ChickWeight = ChickWeight,
df_tabset = NULL
)
observeEvent(input$dataframes, {
if (length(input$dataframes) > length(tables$df_tabset)) {
df = input$dataframes[! input$dataframes %in% tables$df_tabset]
output[[df]] = renderDT(tables[[df]], editable = T, rownames = F, options = list(dom = "t"))
appendTab(inputId = "df_tabset", select = TRUE,
tabPanel(title = df, value = df, DTOutput(outputId = df))
)
tables$df_tabset = input$dataframes
} else {
df = tables$df_tabset[! tables$df_tabset %in% input$dataframes]
removeTab(inputId = "df_tabset", target = df)
tables$df_tabset = input$dataframes
}
}, ignoreNULL = FALSE, ignoreInit = TRUE)
observeEvent(input$iris_cell_edit, {
tables$iris[input$iris_cell_edit$row, input$iris_cell_edit$col + 1] = input$iris_cell_edit$value
})
observeEvent(input$mtcars_cell_edit, {
tables$mtcars[input$mtcars_cell_edit$row, input$mtcars_cell_edit$col + 1] = input$mtcars_cell_edit$value
})
observeEvent(input$DNase_cell_edit, {
tables$DNase[input$DNase_cell_edit$row, input$DNase_cell_edit$col + 1] = input$DNase_cell_edit$value
})
observeEvent(input$ChickWeight_cell_edit, {
tables$ChickWeight[input$ChickWeight_cell_edit$row, input$ChickWeight_cell_edit$col + 1] = input$ChickWeight_cell_edit$value
})
}
shinyApp(ui = ui, server = server)
I also made a change to your code by adding and removing tabs rather than rerendering all of them each time.
The select = TRUE takes you to the added tab but this can be changed to the default of FALSE to remain on the current tab.
The main way of saving changes is to use reactives/reactiveValues. See DT Shiny and examples.
Update
Based on the comment below, I now create each observeEvent() as needed.
library(shiny)
library(shinyWidgets)
library(shinyjs)
library(DT)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectizeInput(inputId = "dataframes", label = "select dataframes",
choices = c("iris", "mtcars", "DNase", "ChickWeight"), multiple = TRUE, options = list(create = T))
),
mainPanel(
tabsetPanel(id = "df_tabset")
)
)
)
server <- function(input, output, session) {
tables <- reactiveValues(
iris = iris,
mtcars = mtcars,
DNase = DNase,
ChickWeight = ChickWeight,
df_tabset = NULL
)
observeEvent(input$dataframes, {
if (length(input$dataframes) > length(tables$df_tabset)) {
df = input$dataframes[! input$dataframes %in% tables$df_tabset]
output[[df]] = renderDT(tables[[df]], editable = T, rownames = F, options = list(dom = "t"))
appendTab(inputId = "df_tabset", select = TRUE,
tabPanel(title = df, value = df, DTOutput(outputId = df))
)
observeEvent(input[[paste0(df, '_cell_edit')]], {
tables[[df]][input[[paste0(df, '_cell_edit')]]$row, input[[paste0(df, '_cell_edit')]]$col + 1] = input[[paste0(df, '_cell_edit')]]$value
})
tables$df_tabset = input$dataframes
} else {
df = tables$df_tabset[! tables$df_tabset %in% input$dataframes]
removeTab(inputId = "df_tabset", target = df)
tables$df_tabset = input$dataframes
}
}, ignoreNULL = FALSE, ignoreInit = TRUE)
}
shinyApp(ui = ui, server = server)
UpdateSliderInput not working...
Hi All,
Seems like a challenge updating sliderInput. So i wanted to develop an application in a way so that filter can be applied dynamically wherein one of the variables needs to be provided with a slider.
Any help can be really appriciable.
library(shiny)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
fluidRow(
column(6, actionButton('addFilter', 'Add filter')),
offset = 6
),
tags$hr(),
tags$div(id = 'placeholderAddRemFilt'),
tags$div(id = 'placeholderFilter'),
tags$div(id = 'placeholderFilter')
# width = 4 # sidebar
),
mainPanel(
tableOutput("data")
)
)
)
server <- function(input, output,session) {
filter <- character(0)
makeReactiveBinding("aggregFilterObserver")
aggregFilterObserver <- list()
observeEvent(input$addFilter, {
add <- input$addFilter
filterId <- paste0('Filter_', add)
colfilterId <- paste0('Col_Filter_', add)
rowfilterId <- paste0('Row_Filter_', add)
removeFilterId <- paste0('Remove_Filter_', add)
headers <- names(mtcars)
insertUI(
selector = '#placeholderFilter',
# ui = tags$div(id = filterId,
# actionButton(removeFilterId, label = "Remove filter", style = "float: right;"),
# selectInput(colfilterId, label = "Some Filter", choices = as.list(headers), selected = 1),
# sliderInput(rowfilterId, label = "Select variable values",
# min = 1, max = 2, value = 1:4)
# )
ui = tags$div(column(9,id = filterId,
actionButton(removeFilterId, label = "Remove filter", style = "float: right;"),
selectInput(colfilterId, label = "Some Filter", choices = headers, selected = NULL),
conditionalPanel(condition = paste0("input.",colfilterId," != 'mpg'"),
checkboxGroupInput(rowfilterId, label = "Select variable values",
choices = NULL, selected = NULL, width = 4000)),
conditionalPanel(condition = paste0("input.",colfilterId," == 'mpg'"),
sliderInput(rowfilterId,
label = 'select values',
min = 1,#min(datafile$Age),
max = 10,#max(datafile$Age),
value = 1:5))#c(min(datafile$Age),max(datafile$Age))))
)
)
)
observeEvent(input[[colfilterId]], {
col <- input[[colfilterId]]
values <- as.list(unique(mtcars[col]))[[1]]
print(values)
print(paste0("example",as.list(unique(mtcars[col]))))
#
# updateCheckboxGroupInput(session, rowfilterId , label = "Select variable values",
# choices = values, selected = values, inline = TRUE)
#
updateSliderInput(session, rowfilterId , min = min(values), max = max(values), value = c(min(values),max(values)))
updateCheckboxGroupInput(session, rowfilterId , label = "Select variable values",
choices = values, selected = values, inline = TRUE)
aggregFilterObserver[[filterId]]$col <<- col
aggregFilterObserver[[filterId]]$rows <<- NULL
})
observeEvent(input[[rowfilterId]], {
rows <- input[[rowfilterId]]
aggregFilterObserver[[filterId]]$rows <<- rows
})
observeEvent(input[[removeFilterId]], {
removeUI(selector = paste0('#', filterId))
aggregFilterObserver[[filterId]] <<- NULL
})
})
output$data <- renderTable({
dataSet <- mtcars
invisible(lapply(aggregFilterObserver, function(filter){
dataSet <<- dataSet[which((dataSet[[filter$col]] %in% filter$rows)), ]
}))
dataSet
})
}
shinyApp(ui = ui, server = server)
Mpg values are not being updated, Is this due to conditionalPanel because of which the sliderInput is not being updated?
Everything seems to be perfect apart from the inputid you are using for 2 input types.
I just created one more variable for Sliderinput which will create dynamic input id.
library(shiny)
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
fluidRow(
column(6, actionButton('addFilter', 'Add filter')),
offset = 6
),
tags$hr(),
tags$div(id = 'placeholderAddRemFilt'),
tags$div(id = 'placeholderFilter'),
width = 4 # sidebar
),
mainPanel(
tableOutput("data")
)
)
)
server <- function(input, output,session) {
filter <- character(0)
makeReactiveBinding("aggregFilterObserver")
aggregFilterObserver <- list()
observeEvent(input$addFilter, {
add <- input$addFilter
filterId <- paste0('Filter_', add)
colfilterId <- paste0('Col_Filter_', add)
rowfilterId <- paste0('Row_Filter_', add)
rowfilterId_num <- paste0('Row_Filter_num_', add)
removeFilterId <- paste0('Remove_Filter_', add)
headers <- names(mtcars)
insertUI(
selector = '#placeholderFilter',
ui = tags$div(id = filterId,
actionButton(removeFilterId, label = "Remove filter", style = "float: right;"),
selectInput(colfilterId, label = "Some Filter", choices = as.list(headers), selected = 1),
sliderInput(rowfilterId_num, label = "Select variable values",
min = 1, max = 2, value = 1:4)
)
)
observeEvent(input[[colfilterId]], {
print(rowfilterId)
print(paste0(input[[colfilterId]]))
col <- input[[colfilterId]]
values <- as.list(unique(mtcars[col]))[[1]]
print(values)
print(paste0("example",as.list(unique(mtcars[col]))))
updateCheckboxGroupInput(session, rowfilterId , label = "Select variable values",
choices = values, selected = values, inline = TRUE)
updateSliderInput(session, rowfilterId_num , label = "Select variable",min = min(values), max = max(values), value = c(min(values),max(values)))
aggregFilterObserver[[filterId]]$col <<- col
aggregFilterObserver[[filterId]]$rows <<- NULL
})
observeEvent(input[[rowfilterId]], {
rows <- input[[rowfilterId]]
aggregFilterObserver[[filterId]]$rows <<- rows
})
observeEvent(input[[removeFilterId]], {
removeUI(selector = paste0('#', filterId))
aggregFilterObserver[[filterId]] <<- NULL
})
})
output$data <- renderTable({
dataSet <- mtcars
invisible(lapply(aggregFilterObserver, function(filter){
dataSet <<- dataSet[which((dataSet[[filter$col]] %in% filter$rows)), ]
}))
dataSet
})
}
shinyApp(ui = ui, server = server)
just check and let me know that this is what you wanted to achieve. let me know incase any thing else is required.
I'm building a R Shiny app with a dynamic datatable, using the DT package. Users are able to select two columns within a data.frame that contains more columns.
When users select a column, the datatable is updated and all filters/sorting are reset to default within the datatable object. How can I let the application remember filters and sorting when the given column is not replaced by the user?
Minimal working example below:
library(shiny)
library(DT)
library(data.table)
server <- function(input, output) {
df <- data.frame(
name = rep('a',20),
dimA = 1:20,
dimB = 21:40,
dimC = 41:60
)
observe({
columns <- c('name', input$dim1ID, input$dim2ID)
dfDt <- df[names(df) %in% columns]
output$dtDataTable = DT::renderDataTable(
server = FALSE,
expr = datatable(
dfDt,
filter = 'top',
rownames = FALSE,
selection = 'none',
options = list(sDom = '<"top">rt<"bottom">ip')
)
)
})
}
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
## Dimension 1
selectInput(
inputId = "dim1ID",
label = "Dimensie 1",
choices = c('dimA', 'dimB', 'dimC'),
selected = 'dimA'
),
## Dimension 2
selectInput(
inputId = "dim2ID",
label = "Dimensie 2",
choices = c('dimA', 'dimB', 'dimC'),
selected = 'dimB'
)
),
mainPanel(DT::dataTableOutput('dtDataTable'))
)
)
shinyApp(ui = ui, server = server)
This can be done using the DataTables Information, in particular the "state" information (input$tableId_state) which contains the order information of the current table, and input$tableId_search_columns which contains the filtering information by columns. If the columns are fixed (ie in the example above "Dimensie 1" and "Dimensie 2" would always be at the same place), it is much simpler to "remember" which one was ordered (unlike the original example where they are alphabetically reordered when the table is created). For instance based on the above example, the following will work if you sort the "A" column and change the right column from "B" to "C" and back:
library(shiny)
library(DT)
library(data.table)
server <- function(input, output) {
df <- data.frame(
name = rep('a',20),
dimA = 1:20,
dimB = 21:40,
dimC = 41:60
)
values <- reactiveValues(
prevDim1 = "",
prevDim2 = "",
options = list(sDom = '<"top">rt<"bottom">ip',
stateSave = TRUE,
order = list())
)
observeEvent(input$dtDataTable_state$order, {
values$options$order <- input$dtDataTable_state$order
})
observeEvent({
input$dim1ID
input$dim2ID
},{
columns <- c('name', input$dim1ID, input$dim2ID)
dfDt <- df[names(df) %in% columns]
if(length(values$options$order) != 0 && ((values$prevDim1 != input$dim1ID && values$options$order[[1]][[1]] == 1) | (values$prevDim2 != input$dim2ID && values$options$order[[1]][[1]] == 2)) ){
values$options$order = list()
}
values$prevDim1 <- input$dim1ID
values$prevDim2 <- input$dim2ID
output$dtDataTable = DT::renderDataTable(
server = FALSE,
expr = datatable(
dfDt,
filter = 'top',
rownames = FALSE,
selection = 'none',
options = values$options
)
)
})
}
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
## Dimension 1
selectInput(
inputId = "dim1ID",
label = "Dimensie 1",
choices = c('dimA', 'dimB', 'dimC'),
selected = 'dimA'
),
## Dimension 2
selectInput(
inputId = "dim2ID",
label = "Dimensie 2",
choices = c('dimA', 'dimB', 'dimC'),
selected = 'dimB'
)
),
mainPanel(DT::dataTableOutput('dtDataTable'))
)
)
shinyApp(ui = ui, server = server)