How to convert header into data raw in R? - r

I am importing data from multiple sheet Excel workbook using rio package in R. The code is super simple below:
library(rio)
my <- import_list("test.xls")
This is a list of data-frames. The problem is that the first row automatically becomes a header while I do not have any headers and it's just a data. In the description of package I didn't find the way to read worksheet with
header = FLASE
So, how can I convert this header to data row?

Assuming you can't import your data properly using that function (and I strongly recommend that you read the documentation for that function throughly, as the argument you're looking for is very likely to exist - it likely just has a different name than in read.table) you can access the "header" using colnames, then just rbind it on top of your data:
df2 <- rbind(colnames(mtcars), mtcars)
head(df2)
mpg cyl disp hp drat wt qsec vs am gear carb
1 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
Then you can assign new column names with colnames(df2) <- ...:
# Assign numbers as column names
colnames(df2) <- paste0('V', seq_len(ncol(df2)))
head(df2)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
1 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2

Related

RStudio: colnames() function not showing name of very first column

When I run colnames(), it never shows the name of this first column.
For example, after wasting a lot of time researching online, I discovered the name of the first column in mtcars is das_Auto.
Why doesn't this name show when I run this code?
[colnames(mtcars)][1]
What's the easiest way to determine the name of the first column in a data set?
This is because the first 'column' of mtcars is not actually a column but an index. If you want to convert it to a column you can run the below:
df <- cbind(das_Auto = rownames(mtcars), mtcars)
rownames(df) <- 1:nrow(mtcars)
head(df)
das_Auto mpg cyl disp hp drat wt qsec vs am gear carb
1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Specifying where columns should be placed in r

When I create a new variable, is there a way to specify in the function where to place it?
Right now, it adds it to the end of the dataframe, but for ease of viewing in Excel for example, I'd like to place a new calculated column beside the columns I used for the calculation.
Here's an example of code:
rawdata2 <- (rawdata1 %>% unite(location, locations1,locations2, locations3,
na.rm = TRUE, remove=TRUE)
%>% select(-location7, -location16)
%>% unite(Sector, Sectors, na.rm=TRUE, remove=TRUE)
%>% unite(TypeofSpace, TypesofSpace, type.of.spaceOther, na.rm=TRUE,
remove=TRUE)
)
You can rearrange the columns in your data frame. It looks like you are using dplyr::select in your example.
library(dplyr)
head(mtcars)
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
# Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
mtcars2 <- mtcars %>%
select(mpg, carb, everything()) ## moves carb up behind mpg
head(mtcars2)
# mpg carb cyl disp hp drat wt qsec vs am gear
# Mazda RX4 21.0 4 6 160 110 3.90 2.620 16.46 0 1 4
# Mazda RX4 Wag 21.0 4 6 160 110 3.90 2.875 17.02 0 1 4
# Datsun 710 22.8 1 4 108 93 3.85 2.320 18.61 1 1 4
# Hornet 4 Drive 21.4 1 6 258 110 3.08 3.215 19.44 1 0 3
# Hornet Sportabout 18.7 2 8 360 175 3.15 3.440 17.02 0 0 3
# Valiant 18.1 1 6 225 105 2.76 3.460 20.22 1 0 3
You can do the same thing with base subsetting, for example with a data frame with 11 columns you can move the 11th behind the second by
mtcars3 <- mtcars[,c(1,11,2:10)]
identical(mtcars2, mtcars3)
# [1] TRUE
I ended up using relocate, documentation here: dplyr.tidyverse.org/reference/relocate.html

Create subset of data.frame based on complete observations in 7 variables? [duplicate]

This question already has answers here:
Remove rows with all or some NAs (missing values) in data.frame
(18 answers)
Closed 2 years ago.
I have a data.frame with 571 observations of 156 variables. I am interested in keeping all 156 variables; however, I only need complete observations for 7 of these variables.
By using:
> nrow(na.omit(subset(finaldata, select = c("h_egfr_cystc96", "child_age96", "smoke_inside2T", "SES_3cat2T", "X_ZBFA96", "log2Tblood", "sexo_h00"))))
I learn that there are 453 observations that have complete information for these 7 variables.
How can I create a new data.frame that will have 453 observations of 156 variables, with complete information for my 7 variables of interest?
I suspect that complete.cases will be useful, but I am not sure how to apply it here.
Any ideas? Thank you in advance for the help!
Use complete.cases on just the columns of interest, but use its return value (a vector of logical) on the original frame.
mt <- mtcars[1:5,]
mt
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
mt$cyl[3] <- mt$disp[2] <- NA
mt[complete.cases(mt[,c("mpg","cyl")]),]
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 NA 110 3.90 2.875 17.02 0 1 4 4
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Because I looked for complete cases in just "mpg" and "cyl", then the NA in "disp" didn't remove that row.

Check conditions in multiple columns and rows

When we look at the mtcars dataset in R:
head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
I want to select the Mazda models with 6 cylinders (cyl is 6) and see which of those cars has the most horse power hp. Or, alternatively, I want to see which Merc model with 4 cylinders has the highest hp.
How can I do that? Do I subset? Or maybe grep?
You want to check two conditions: The model name of the car and the cylinder numbers, right?
You can subset the data to the rows that satisfy your (double) condition and then see which of the remaining rows has the highest values for the column hp
bestcar <- function(carname, cyl_nr){
inds <- (grepl(carname, rownames(mtcars)) & mtcars$cyl == cyl_nr)
subdf <- mtcars[inds, ]
rownames(subdf)[which.max(subdf$hp)]
}
bestcar("Mazda", 6)
# "Mazda RX4"
bestcar("Merc", 4)
# "Merc 230"

Get data frame from character variable

I pass data frame name as string into a function. How do I get content of referenced data frame from the string? Suppose I have string 'mtcars' and I want to print data frame mtcars:
printdf <- function(dataframe) {
print(dataframe)
}
printdf('mtcars');
I think you'll need a get in there if the input is a string. Also, depending on your usage of the function, the explicit print might not be necessary:
printdf <- function(dataframe) {
get(dataframe)
# print(get(dataframe))
}
head(printdf("mtcars"))
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
# Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Resources