What exactly does this calculation mean? - math

I'm new to GLSL and learning from the tutorial here.
(It's using ShaderToy)
https://gamedevelopment.tutsplus.com/tutorials/a-beginners-guide-to-coding-graphics-shaders--cms-23313
My question is why you can set x coordinates to 0-1 by dividing the fragCoord's x coordinates by the iResolution(screensize).
It might be just a math question, but I'm confused what exactly the "iResolution.x" indicates or what kind of calculation is made here. (Is it a vector division? )
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
vec2 xy = fragCoord.xy; //We obtain our coordinates for the current pixel
xy.x = xy.x / iResolution.x; //We divide the coordinates by the screen size
xy.y = xy.y / iResolution.y;
// Now x is 0 for the leftmost pixel, and 1 for the rightmost pixel
vec4 solidRed = vec4(0,0.0,0.0,1.0); //This is actually black right now
if(xy.x > 0.5){
solidRed.r = 1.0; //Set its red component to 1.0
}
fragColor = solidRed;
}

The other answers are correct. fragCoord is the pixel currently being drawn, iResolution is the size of the screen so
xy.x = xy.x / iResolution.x; //We divide the coordinates by the screen size
xy.y = xy.y / iResolution.y
Gives normalized values where xy.x goes from 0 to 1 across and xy.y goes from 0 to 1 up the screen which seems to be exactly what the comments say
It's important to note though that iResolution and fragCoord are user variables. In this case I'm guessing you're getting this GLSL from Shadertoy. Those variables are not part of WebGL or GLSL, they are defined by Shadertoy and so their values and meaning are defined by shadertoy.
Note that if you are new to GLSL and WebGL you might want to consider some webgl tutorials. Also see this answer about shadertoy

iResolution.x is the width of your screen in pixels. Dividing the pixel x location by the total width transforms the location into a fraction of the screen width. So, if your screen is 1000 pixels wide, and your current position is x=500, xy.x = xy.x / iResolution.x; will convert xy.x to 0.500.

Related

Calcluation of viewport coordinates

I read an article about normalized device coordinates (on the german DGL wiki) and the following example is provided:
"Let's consider that we had a Viewport with dimensions 1024 pixel(width) and 768 pixel height. A point P with absolute, not normalized, coordinates P(350/210) would be in normalized coordinates P(-0,32/-0,59).These coordinates can now be projected on a Viewport (800x600) just by multiplying the normalized device coordinates (similar to vector scaling) with the size of the viewport. In this case the result would be P(273/164).
Somehow I can't understand how one can get to the result provided (I mean 273/164 and -0,32/-0,59 ...could somebody explain to me how to calculate the coordinates?
P.S. : This is the article - https://wiki.delphigl.com/index.php/Normalisierte_Ger%C3%A4tekoordinate
Thank you!
That article is definitely lacking description. I can get you part of the way there; maybe someone with more math can help finish.
According to this answer, the formula to convert non-normalized coords to normalized coords is:
(where Cx/y = Coordinate X/Y; Sx/y = Screen X/Y; and Nx/y = Normalized X/Y).
Plugging the example's numbers in:
Nx = (350/1024) * 2 - 1 = -0.31640625
Ny = 1 - (210/768) * 2 = 0.453125
...or (-.36, 0.45).
Reversing this to get the new coords:
Cx = (1 + -0.31640625) / 2 * 800 = 273.4375
Cy = (1 - 0.453125) / 2 * 600 = 164.0625
Note that the Y value doesn't match. This is probably because my calculation doesn't account for the aspect ratio, and it should be since these screens have a .75 aspect ratio, while NDC's is 1. This SO answer may help too.

How to calculate the z-distance of a camera to view an image at 100% of its original scale in a 3D space

How can one calculate the camera distance from an object in 3D space (an image in this case) such that the image is at its original pixel width.
Am I right in assuming that this is possible given the aspect ratio of the camera, fov, and the original width/height of the image in pixels?
(In case it is relevant, I am using THREE.js in this particular instance).
Thanks to anyone who can help or lead me in the right direction!
Thanks everyone for all the input!
After doing some digging and then working out how this all fits into the exact problem I was trying to solve with THREE.js, this was the answer I came up with in JavaScript as the target Z distance for displaying things at their original scale:
var vFOV = this.camera.fov * (Math.PI / 180), // convert VERTICAL fov to radians
var targetZ = window.innerHeight / (2 * Math.tan(vFOV / 2) );
I was trying to figure out which one to mark as the answer but I kind of combined all of them into this solution.
Trigonometrically:
A line segment of length l at a right angle to the view plane and at a distance of n perpendicular to it will subtend arctan(l/n) degrees on the camera. You can arrive at that result by simple trigonometry.
Hence if your field of view in direction of the line is q, amounting to p pixels, you'll end up occupying p*arctan(l/n)/q pixels.
So, using y as the output number of pixels:
y = p*arctan(l/n)/q
y*q/p = arctan(l/n)
l/tan(y*q/p) = n
Linear algebra:
In a camera with a field-of-view of 90 degrees and a viewport of 2w pixels wide, the projection into screen space is equivalent to:
x' = w - w*x/z
When perpendicular, the length of a line on screen is the difference between two such xs so by normal associativity and commutivity rules:
l' = w - w*l/z
Hence:
w - l' = w*l/z
z = (w - l') / (w*l)
If your field of view is actually q degrees rather than 90 then you can use the cotangent to scale appropriately.
In your original question you said that you're using css3D. I suggest that you do the following:
Set up an orthographic camera with fov = 1..179 degrees, where left = screenWidth / 2, right = screenWidth / - 2, top = screenHeight / 2, bottom = screenHeight / - 2. Near and far planes do not affect CSS3D rendering as far as I can tell from experience.
camera = new THREE.OrthographicCamera(left, right, top, bottom, near, far);
camera.fov = 75;
now you need to calculate the distance between the camera and object in such way that when the object is projected using the camera with settings above, the object has 1:1 coordinate correspondence on screen. This can be done in following way:
var camscale = Math.tan(( camera.fov / 2 ) / 180 * Math.PI);
var camfix = screenHeight / 2 / camscale;
place your div to position: x, y, z
set the camera's position to 0, 0, z + camfix
This should give you 1:1 coordinate correspondence with rendered result and your pixel values in css / div styles. Remember that the origin is in center and the object's position is the center of the object so you need to do adjustments in order to achieve coordinate specs from top-left corner for example
object.x = ( screenWidth - objectWidth ) / 2 + positionLeft
object.y = ( screenHeight - objectHeight ) / 2 + positionTop
object.z = 0
I hope this helps, I was struggling with same thing (exact control of the css3d scene) but managed to figure out that the Orthographic camera + viewport size adjusted distance from object did the trick. Don't alter the camera rotation or its x and y coordinates, just fiddle with the z and you're safe.

OpenGL Math - Projecting Screen space to World space coords

Time for a little bit of math for the end of the day..
I need to project 4 points of the window size:
<0,0> <1024,768>
Into a world space coordinates so it will form a quadrilateral shape that will later be used for terrain culling - without GluUnproject
For test only, I use mouse coordinates - and try to project them onto the world coords
RESOLVED
Here's how to do it exactly, step by step.
Obtain your mouse coordinates within the client area
Get your Projection matrix and View matrix if no Model matrix required.
Multiply Projection * View
Inverse the results of multiplication
Construct a vector4 consisting of
x = mouseposition.x within a range of window x
transform to values between -1 and 1
y = mouseposition.y within a range of window y
transform to values between -1 and 1
remember to invert mouseposition.y if needed
z = the depth value ( this can be obtained with glReadPixel)
you can manually go from -1 to 1 ( zNear, zFar )
w = 1.0
Multiply the vector by inversed matrix created before
Divide result vector by it's w component after matrix multiplication ( perspective division )
POINT mousePos;
GetCursorPos(&mousePos);
ScreenToClient( this->GetWindowHWND(), &mousePos );
CMatrix4x4 matProjection = m_pCamera->getViewMatrix() * m_pCamera->getProjectionMatrix() ;
CMatrix4x4 matInverse = matProjection.inverse();
float in[4];
float winZ = 1.0;
in[0]=(2.0f*((float)(mousePos.x-0)/(this->GetResolution().x-0)))-1.0f,
in[1]=1.0f-(2.0f*((float)(mousePos.y-0)/(this->GetResolution().y-0)));
in[2]=2.0* winZ -1.0;
in[3]=1.0;
CVector4 vIn = CVector4(in[0],in[1],in[2],in[3]);
pos = vIn * matInverse;
pos.w = 1.0 / pos.w;
pos.x *= pos.w;
pos.y *= pos.w;
pos.z *= pos.w;
sprintf(strTitle,"%f %f %f / %f,%f,%f ",m_pCamera->m_vPosition.x,m_pCamera->m_vPosition.y,m_pCamera->m_vPosition.z,pos.x,pos.y,pos.z);
SetWindowText(this->GetWindowHWND(),strTitle);
I had to make some adjustments to the answers provided here. But here's the code I ended up with (Note I'm using GLM, that could affect multiplication order). nearResult is the projected point on the near plane and farResult is the projected point on the far plane. I want to perform a ray cast to see what my mouse is hovering over so I convert them to a direction vector which will then originate from my camera's position.
vec3 getRayFromScreenSpace(const vec2 & pos)
{
mat4 invMat= inverse(m_glData.getPerspective()*m_glData.getView());
vec4 near = vec4((pos.x - Constants::m_halfScreenWidth) / Constants::m_halfScreenWidth, -1*(pos.y - Constants::m_halfScreenHeight) / Constants::m_halfScreenHeight, -1, 1.0);
vec4 far = vec4((pos.x - Constants::m_halfScreenWidth) / Constants::m_halfScreenWidth, -1*(pos.y - Constants::m_halfScreenHeight) / Constants::m_halfScreenHeight, 1, 1.0);
vec4 nearResult = invMat*near;
vec4 farResult = invMat*far;
nearResult /= nearResult.w;
farResult /= farResult.w;
vec3 dir = vec3(farResult - nearResult );
return normalize(dir);
}
Multiply all your matrices. Then invert the result. Point after projection are always in the -1,1. So the four corner screen points are -1,-1; -1,1; 1,-1;1,1. But you still need to choose th z value. If you are in OpenGL, z is between -1 and 1. For directx, the range is 0 to 1. Finally take your points and transform them with the matrix
If you have access to the glu libraries, use gluUnProject(winX, winY, winZ, model, projection, viewport, &objX, &objY, &objZ);
winX and winY will be the corners of your screen in pixels. winZ is a number in [0,1] which will specify where between zNear and zFar (clipping planes) the points should fall. objX-Z will hold the results. The middle variables are the relevant matrices. They can be queried if needed.

Radius of projected Sphere

i want to refine a previous question:
How do i project a sphere onto the screen?
(2) gives a simple solution:
approximate radius on screen[CLIP SPACE] = world radius * cot(fov / 2) / Z
with:
fov = field of view angle
Z = z distance from camera to sphere
result is in clipspace, multiply by viewport size to get size in pixels
Now my problem is that i don't have the FOV. Only the view and projection matrices are known. (And the viewport size if that does help)
Anyone knows how to extract the FOV from the projection matrix?
Update:
This approximation works better in my case:
float radius = glm::atan(radius/distance);
radius *= glm::max(viewPort.width, viewPort.height) / glm::radians(fov);
I'm a bit late to this party. But I came across this thread when I was looking into the same problem. I spent a day looking into this and worked though some excellent articles I found here:
http://www.antongerdelan.net/opengl/virtualcamera.html
I ended up starting with the projection matrix and working backwards. I got the same formula you mention in your post above. ( where cot(x) = 1/tan(x) )
radius_pixels = (radius_worldspace / {tan(fovy/2) * D}) * (screen_height_pixels / 2)
(where D is the distance from camera to the target's bounding sphere)
I'm using this approach to determine the radius of an imaginary trackball that I use to rotate my object.
Btw Florian, you can extract the fovy from the Projection matrix as follows:
If you take the Sy component from the Projection matrix as shown here:
Sx 0 0 0
0 Sy 0 0
0 0 Sz Pz
0 0 -1 0
where Sy = near / range
and where range = tan(fovy/2) x near
(you can find these definitions at the page I linked above)
if you substitute range in the Sy eqn above you get:
Sy = 1 / tan(fovy/2) = cot(fovy/2)
rearranging:
tan(fovy/2) = 1 / Sy
taking arctan (the inverse of tan) of both sides we get:
fovy/2 = arctan(1/Sy)
so,
fovy = 2 x arctan(1/Sy)
Not sure if you still care - its been a while! - but maybe this will help someone else.
Update: see below.
Since you have the view and projection matrices, here's one way to do it, though it's probably not the shortest:
transform the sphere's center into view space using the view matrix: call the result point C
transform a point on the surface of the sphere, e.g. C+(r, 0, 0) in world coordinates where r is the sphere's world radius, into view space; call the result point S
compute rv = distance from C to S (in view space)
let point S1 in view coordinates be C + (rv, 0, 0) - i.e. another point on the surface of the sphere in view space, for which the line C -> S1 is perpendicular to the "look" vector
project C and S1 into screen coords using the projection matrix as Cs and S1s
compute screen radius = distance between Cs and S1s
But yeah, like Brandorf said, if you can preserve the camera variables, like FOVy, it would be a lot easier. :-)
Update:
Here's a more efficient variant on the above: make an inverse of the projection matrix. Use it to transform the viewport edges back into view space. Then you won't have to project every box into screen coordinates.
Even better, do the same with the view matrix and transform the camera frustum back into world space. That would be more efficient for comparing many boxes against; but harder to figure out the math.
The answer posted at your link radiusClipSpace = radius * cot(fov / 2) / Z, where fov is the angle of the field of view, and Z is the z-distance to the sphere, definitely works. However, keep in mind that radiusClipSpace must be multiplied by the viewport's width to get a pixel measure. The value measured in radiusClipSpace will be a value between 0 and 1 if the object fits on the screen.
An alternative solution may be to use the solid angle of the sphere. The solid angle subtended by a sphere in a sky is basically the area it covers when projected to the unit sphere.
The formulae are given at this link but roughly what I'm doing is:
if( (!radius && !distance) || fabsf(radius) > fabsf(distance) )
; // NAN conditions. do something special.
theta=arcsin( radius/distance )
sphereSolidAngle = ( 1 - cosf( theta ) ) ; // not multiplying by 2PI since below ratio used only
frustumSolidAngle = ( 1 - cosf( fovy / 2 ) ) / M_PI ; // I cheated here. I assumed
// the solid angle of a frustum is (conical), then divided by PI
// to turn it into a square (area unit square=area unit circle/PI)
numPxCovered = 768.f*768.f * sphereSolidAngle / frustumSolidAngle ; // 768x768 screen
radiusEstimate = sqrtf( numPxCovered/M_PI ) ; // area=pi*r*r
This works out to roughly the same numbers as radius * cot(fov / 2) / Z. If you only want an estimate of the area covered by the sphere's projection in px, this may be an easy way to go.
I'm not sure if a better estimate of the solid angle of the frustum could be found easily. This method involves more comps than radius * cot(fov / 2) / Z.
The FOV is not directly stored in the projection matrix, but rather used when you call gluPerspective to build the resulting matrix.
The best approach would be to simply keep all of your camera variables in their own class, such as a frustum class, whose member variables are used when you call gluPerspective or similar.
It may be possible to get the FOVy back out of the matrix, but the math required eludes me.

Given an angle and dimensions, find a coordinate along the perimeter of a rectangle

I'm writing a script where icons rotate around a given pivot (or origin). I've been able to make this work for rotating the icons around an ellipse but I also want to have them move around the perimeter of a rectangle of a certain width, height and origin.
I'm doing it this way because my current code stores all the coords in an array with each angle integer as the key, and reusing this code would be much easier to work with.
If someone could give me an example of a 100x150 rectangle, that would be great.
EDIT: to clarify, by rotating around I mean moving around the perimeter (or orbiting) of a shape.
You know the size of the rectangle and you need to split up the whole angle interval into four different, so you know if a ray from the center of the rectangle intersects right, top, left or bottom of the rectangle.
If the angle is: -atan(d/w) < alfa < atan(d/w) the ray intersects the right side of the rectangle. Then since you know that the x-displacement from the center of the rectangle to the right side is d/2, the displacement dy divided by d/2 is tan(alfa), so
dy = d/2 * tan(alfa)
You would handle this similarily with the other three angle intervals.
Ok, here goes. You have a rect with width w and depth d. In the middle you have the center point, cp. I assume you want to calculate P, for different values of the angle alfa.
I divided the rectangle in four different areas, or angle intervals (1 to 4). The interval I mentioned above is the first one to the right. I hope this makes sense to you.
First you need to calculate the angle intervals, these are determined completely by w and d. Depending on what value alfa has, calculate P accordingly, i.e. if the "ray" from CP to P intersects the upper, lower, right or left sides of the rectangle.
Cheers
This was made for and verified to work on the Pebble smartwatch, but modified to be pseudocode:
struct GPoint {
int x;
int y;
}
// Return point on rectangle edge. Rectangle is centered on (0,0) and has a width of w and height of h
GPoint getPointOnRect(int angle, int w, int h) {
var sine = sin(angle), cosine = cos(angle); // Calculate once and store, to make quicker and cleaner
var dy = sin>0 ? h/2 : h/-2; // Distance to top or bottom edge (from center)
var dx = cos>0 ? w/2 : w/-2; // Distance to left or right edge (from center)
if(abs(dx*sine) < abs(dy*cosine)) { // if (distance to vertical line) < (distance to horizontal line)
dy = (dx * sine) / cosine; // calculate distance to vertical line
} else { // else: (distance to top or bottom edge) < (distance to left or right edge)
dx = (dy * cosine) / sine; // move to top or bottom line
}
return GPoint(dx, dy); // Return point on rectangle edge
}
Use:
rectangle_width = 100;
rectangle_height = 150;
rectangle_center_x = 300;
rectangle_center_y = 300;
draw_rect(rectangle_center_x - (rectangle_width/2), rectangle_center_y - (rectangle_center_h/2), rectangle_width, rectangle_height);
GPoint point = getPointOnRect(angle, rectangle_width, rectangle_height);
point.x += rectangle_center_x;
point.y += rectangle_center_y;
draw_line(rectangle_center_x, rectangle_center_y, point.x, point.y);
One simple way to do this using an angle as a parameter is to simply clip the X and Y values using the bounds of the rectangle. In other words, calculate position as though the icon will rotate around a circular or elliptical path, then apply this:
(Assuming axis-aligned rectangle centered at (0,0), with X-axis length of XAxis and Y-axis length of YAxis):
if (X > XAxis/2)
X = XAxis/2;
if (X < 0 - XAxis/2)
X = 0 - XAxis/2;
if (Y > YAxis/2)
Y = YAxis/2;
if (Y < 0 - YAxis/2)
Y = 0 - YAxis/2;
The problem with this approach is that the angle will not be entirely accurate and the speed along the perimeter of the rectangle will not be constant. Modelling an ellipse that osculates the rectangle at its corners can minimize the effect, but if you are looking for a smooth, constant-speed "orbit," this method will not be adequate.
If think you mean rotate like the earth rotates around the sun (not the self-rotation... so your question is about how to slide along the edges of a rectangle?)
If so, you can give this a try:
# pseudo coode
for i = 0 to 499
if i < 100: x++
else if i < 250: y--
else if i < 350: x--
else y++
drawTheIcon(x, y)
Update: (please see comment below)
to use an angle, one line will be
y / x = tan(th) # th is the angle
the other lines are simple since they are just horizontal or vertical. so for example, it is x = 50 and you can put that into the line above to get the y. do that for the intersection of the horizontal line and vertical line (for example, angle is 60 degree and it shoot "NorthEast"... now you have two points. Then the point that is closest to the origin is the one that hits the rectangle first).
Use a 2D transformation matrix. Many languages (e.g. Java) support this natively (look up AffineTransformation); otherwise, write out a routine to do rotation yourself, once, debug it well, and use it forever. I must have five of them written in different languages.
Once you can do the rotation simply, find the location on the rectangle by doing line-line intersection. Find the center of the orbited icon by intersecting two lines:
A ray from your center of rotation at the angle you desire
One of the four sides, bounded by what angle you want (the four quadrants).
Draw yourself a sketch on a piece of paper with a rectangle and a centre of rotation. First translate the rectangle to centre at the origin of your coordinate system (remember the translation parameters, you'll need to reverse the translation later). Rotate the rectangle so that its sides are parallel to the coordinate axes (same reason).
Now you have a triangle with known angle at the origin, the opposite side is of known length (half of the length of one side of the rectangle), and you can now:
-- solve the triangle
-- undo the rotation
-- undo the translation

Resources