HighCharter HCAES method not producing any visualization in R Shiny Dashboard - r

Attempting to build off of Stack Exchange Question:
R Highcharter: tooltip customization
Have a R module (below). That ingests some data and provides the UI including highcharter visualizations.
consolidatedlogModuleUI <- function(id){
ns <- NS(id)
tagList(
fluidRow(
bs4Card(highchartOutput(ns("fundedbydayChart")),
width = 12,
collapsible = TRUE)
),
fluidRow(
bs4TabCard(title = "Consolidated Log",
elevation = 2,
width = 12,
bs4TabPanel(
tabName = "tab1",
active = TRUE,
DT::dataTableOutput(ns("consolidatedlogTable"))
),
bs4TabPanel(
tabName = "tab2",
active = FALSE,
DT::dataTableOutput(ns("daysummaryTable"))
)
)
)
)
}
#######
# Consolidated Log Server Module
#######
consolidatedlogModule <- function(input,output,session,data){
ns <- session$ns
data$HasGap <- ifelse(data$GAPGrossRevenue > 0, 1, 0)
data$HasESC <- ifelse(data$ESCGrossRevenue > 0, 1, 0)
consolidatedLogVariables <- c("AcctID", "FSR", "DocSentDate", "DocsToLenderDate",
"FundedDate", "HasGap", "HasESC", "LoanRevenue")
logSummary <- data %>%
group_by(FundedMonthGroup) %>%
summarise(TotalCount = n()
, TotalAmount = sum(LoanRevenue)
, TotalGAP = sum(HasGap)
, TotalESC = sum(HasESC))
daySummary <- data %>%
group_by(FundedDayGroup) %>%
summarise(TotalCount = n()
,TotalAmount = sum(LoanRevenue))
### Consolidated Log Table
output$consolidatedlogTable = DT::renderDataTable({
data[consolidatedLogVariables]
}, extensions = "Responsive", rownames = FALSE,
caption = "Current Consolidated Log",
filter = "bottom"
)
output$daysummaryTable = DT::renderDataTable({
daySummary
}, extensions = "Responsive", rownames = FALSE,
caption = "Current Consolidated Log",
filter = "bottom"
)
### Charts
#Fundedbyday Chart
output$fundedbydayChart = renderHighchart({
highchart() %>%
hc_add_theme(hc_theme_ffx()) %>%
hc_title(text = "Loans Funded By Day") %>%
hc_add_series(data = daySummary, mapping = hcaes(x=FundedDayGroup, y=TotalAmount), type = "column", name = "Daily Loan Revenue",
tooltip = list(pointFormat = "Daily Revenue ${point.TotalAmount} across {point.TotalCount} deals")) %>%
hc_tooltip(crosshairs = TRUE)
# highchart() %>%
# hc_add_theme(hc_theme_ffx()) %>%
# hc_title(text = "Loans Funded By Day") %>%
# hc_add_series(daySummary$TotalAmount, type = "column", name = "Daily Loan Revenue",
# tooltip = list(pointFormat = "Daily Revenue ${point.TotalAmount} across {point.TotalCount} deals")) %>%
# hc_tooltip()
#hchart(daySummary, "column", hcaes(daySummary$FundedDayGroup, daySummary$TotalAmount))
})
}
The highChart function that is commented out works correctly in displaying the columns wanted. The Axis is incorrect and the tooltips is unformatted but the data displays.
Using the Non-commented highchart with the HCAES call and other items, the plot is displayed without any data.
Below is code to reproduce the test data set for the daySummary, the dataframe in question.
FundedDayGroup <- as.Date(c('2019-02-01', '2019-02-4', '2019-02-05'))
TotalCount <- c(1,13,18)
TotalAmount <- c(0, 13166, 15625)
daySummary <- data.frame(FundedDayGroup, TotalCount, TotalAmount)

The issue ended up being Highcharter not interpreting the POSIXct format of the dates and needing to cast the date variable using as.Date. Additionally added some logic to handle the xAxis and setting the datetime. Code below
highchart() %>%
hc_add_theme(hc_theme_ffx()) %>%
hc_title(text = "Loans Funded By Day") %>%
hc_add_series(data = daySummary, mapping = hcaes(x=as.Date(FundedDayGroup), y=TotalAmount), type = "column", name = "Daily Loan Revenue",
tooltip = list(pointFormat = "Daily Revenue ${point.TotalAmount} across {point.TotalCount} deals")) %>%
hc_xAxis(type = "datetime", labels=list(rotation = -45, y = 40) ) %>%
hc_yAxis(title=list(text = "Revenue")) %>%
hc_tooltip(crosshairs = TRUE)

Related

Confused with Shiny Modules and renderUI

I am trying to plot a dygraph in my Shiny App but I can't seem to get the output working. I would like to do it using modules.
Comprar = purchase and Alquiler = Rental.
I randomly create some price data and some dates
Generate some summary statistics for the average price and number of observations in the data comprar_stats and alquiler_stats
I store some metrics in a list that I would like to call throughout the App.
Then in ui_dygraph I try to generate the dropdown module for each option on my data comprar_main, alquiler_main and price_to_rent. I am able to generate a dropdown but not an output of the dygraph...
How I can I obtain the output of the dygraph? - This code is a mix of some Shiny code I took from the Appsilon "Enterprice Shiny" App - I would like to try and modularise my Apps.
Expected Output: Obtain the dygraph outputs depending on the dropdown.
Shiny App:
library(bslib)
library(shiny)
library(tidyverse)
library(dygraphs)
library(zoo)
################################################################################
startDate <- as.Date("2023-01-01")
endDate <- as.Date("2023-06-01")
dates <- rep(dates, each = 10)
propertyPrices <- round(rnorm(length(dates), mean = 100000, sd = 20000), 2)
comprar_main <- data.frame(collectionDate = dates, price = propertyPrices)
propertyRentals <- round(rnorm(length(dates), mean = 1000, sd = 200), 2)
alquiler_main <- data.frame(collectionDate = dates, price = propertyRentals)
################################################################################
################################################################################
comprar_stats = comprar_main %>%
filter(collectionDate > as.Date("2022-09-27")) %>% # accidently have rental data before this date
filter(price < 1000000) %>%
filter(price > 100000) %>%
group_by(collectionDate) %>%
summarise(
mean_price = mean(price),
mean_price = round(mean_price, 0),
propertiesListed = n()
) %>%
ungroup() %>%
mutate(
rolling_average = rollapply(mean_price, fill=NA, width = 14, mean, align = "right"),
rolling_average = round(rolling_average, 0)
) %>%
add_column(
type = "comprar_main"
)
alquiler_stats = alquiler_main %>%
filter(collectionDate > as.Date("2022-09-27")) %>%
filter(price < 2500) %>%
filter(price > 200) %>%
group_by(collectionDate) %>%
summarise(
mean_price = mean(price),
mean_price = round(mean_price, 0),
propertiesListed = n()
) %>%
ungroup() %>%
mutate(
rolling_average = rollapply(mean_price, fill=NA, width = 14, mean, align = "right"),
rolling_average = round(rolling_average, 0)
) %>%
add_column(
type = "alquiler_main"
)
stats = bind_rows(comprar_stats, alquiler_stats)
stats_price_to_rent = full_join(comprar_stats, alquiler_stats, by = "collectionDate") %>%
mutate(
mean_price = mean_price.x / (mean_price.y * 12), # annualise the rent
mean_price = round(mean_price),
rolling_average = rollapply(mean_price, fill=NA, width = 14, mean, align = "right"),
rolling_average = round(rolling_average, 0),
propertiesListed = propertiesListed.y / propertiesListed.x,
propertiesListed = round(propertiesListed, 2)
) %>%
add_column(type = "price_to_rent_main") %>%
select(c(collectionDate, mean_price, propertiesListed, rolling_average, type))
################################################################################
metrics_list <- list(
comprar_main = list(
id = "comprar_main",
title = "Comprar (All Spain)",
currency = "€",
category = "comprar",
legend = "Purchase Spain",
legend2 = "# of properties"
),
alquiler_main = list(
id = "alquiler_main",
title = "Alquiler (All Spain)",
currency = "€",
category = "alquiler",
legend = "Rental Spain",
legend2 = "# of properties"
),
price_to_rent_main = list(
id = "price_to_rent_main",
title = "Price to Rent (All Spain)",
currency = "€",
category = "misc",
legend = "Price To Rent",
legend2 = "# of rentals / # of purchases",
caption = "Some info here"
)
)
################################################################################
################################################################################
########################### User interfaces ####################################
ui_dygraph <- function(id) {
ns <- NS(id)
# Add all available metrics to dygraph chart
choices <- names(metrics_list)
tagList(
tags$div(
class = "panel-header",
selectInput(
ns("metric"), "Select metric for the time chart",
choices,
width = NULL,
selectize = TRUE,
selected = choices[[1]]
)
),
tags$div(
class = "chart-time-container",
dygraphOutput(ns("dygraph"), height = "240px")
)
)
}
################################################################################
ui <- navbarPage(
fluidPage(
theme = bs_theme(bootswatch = "minty"),
title = "hi",
ui_dygraph("dygraph"),
renderUI(output$dygraph)
)
)
server <- function(input, output, session, df) {
metric <- reactive({ metrics_list[[input$metric]] })
output$dygraph <- renderDygraph({
data = df
metric_suffix <- ifelse(!is.null(metric()$currency), glue::glue(" ({metric()$currency})"), "")
metric_legend <- paste0(metric()$legend, metric_suffix)
metric_legend2 <- paste0(metric()$legend2)
if(metric()$id == "comprar_main") {
dyAxisValueRange = c(220000, 310000)
dy2AxisValueRange = c(0, 15000)
} else if (metric()$id == "alquiler_main") {
dyAxisValueRange = c(0, 2700)
dy2AxisValueRange = c(0, 4000)
} else { # price_to_rent_main axis
dyAxisValueRange = c(15, 35)
dy2AxisValueRange = c(0, 3.5)
}
if (metric()$id == "comprar_main") {
data = stats
} else if (metric()$id == "alquiler_main") {
data = stats
} else {
data = stats_price_to_rent
}
data %>%
filter(type == metric()$id) %>%
select(-c(type)) %>%
column_to_rownames("collectionDate") %>%
as.xts() %>%
# as.xts(order.by = .$collectionDate)
dygraph(main = glue::glue("{metric()$title}")) %>%
dySeries("mean_price", label = metric_legend, drawPoints = FALSE, color = "#0099F9") %>%
dySeries("rolling_average", label = "Rolling Average (14 days)", drawPoints = FALSE, color = "#15354A") %>%
dyAxis("y", label = "Price", valueRange = dyAxisValueRange, independentTicks = TRUE,
valueFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}',
axisLabelFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}'
) %>%
dyAxis("y2", label = metric_legend2, valueRange = dy2AxisValueRange, independentTicks = TRUE,
valueFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}',
axisLabelFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}'
) %>%
dySeries("propertiesListed", label = metric_legend2, stepPlot = TRUE, fillGraph = TRUE, color = "#bdc2c6", axis=('y2')) %>%
dyOptions(
includeZero = FALSE,
axisLineColor = "#585858",
gridLineColor = "#bdc2c6",
axisLabelFontSize = 12,
axisLabelColor = "#585858",
disableZoom = TRUE
)
})
}
shinyApp(ui = ui, server = server)
As mentioned by #YBS in the comments the issue is that your digraph module misses a moduleServer. Moving you code from the main server to a module server will fix your issue:
library(xts)
library(bslib)
library(shiny)
library(tidyverse)
library(dygraphs)
ui_dygraph <- function(id) {
ns <- NS(id)
choices <- names(metrics_list)
tagList(
tags$div(
class = "panel-header",
selectInput(
ns("metric"), "Select metric for the time chart",
choices,
width = NULL,
selectize = TRUE,
selected = choices[[1]]
)
),
tags$div(
class = "chart-time-container",
dygraphOutput(ns("dygraph"), height = "240px")
)
)
}
server_dygraph <- function(id) {
moduleServer(id, function(input, output, session) {
metric <- reactive({
metrics_list[[input$metric]]
})
output$dygraph <- renderDygraph({
data <- df
metric_suffix <- ifelse(!is.null(metric()$currency), glue::glue(" ({metric()$currency})"), "")
metric_legend <- paste0(metric()$legend, metric_suffix)
metric_legend2 <- paste0(metric()$legend2)
if (metric()$id == "comprar_main") {
dyAxisValueRange <- c(220000, 310000)
dy2AxisValueRange <- c(0, 15000)
} else if (metric()$id == "alquiler_main") {
dyAxisValueRange <- c(0, 2700)
dy2AxisValueRange <- c(0, 4000)
} else {
dyAxisValueRange <- c(15, 35)
dy2AxisValueRange <- c(0, 3.5)
}
if (metric()$id == "comprar_main") {
data <- stats
} else if (metric()$id == "alquiler_main") {
data <- stats
} else {
data <- stats_price_to_rent
}
data %>%
filter(type == metric()$id) %>%
select(-c(type)) %>%
column_to_rownames("collectionDate") %>%
as.xts() %>%
dygraph(main = glue::glue("{metric()$title}")) %>%
dySeries("mean_price", label = metric_legend, drawPoints = FALSE, color = "#0099F9") %>%
dySeries("rolling_average", label = "Rolling Average (14 days)", drawPoints = FALSE, color = "#15354A") %>%
dyAxis("y",
label = "Price", valueRange = dyAxisValueRange, independentTicks = TRUE,
valueFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}',
axisLabelFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}'
) %>%
dyAxis("y2",
label = metric_legend2, valueRange = dy2AxisValueRange, independentTicks = TRUE,
valueFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}',
axisLabelFormatter = 'function(d){return d.toString().replace(/\\B(?=(\\d{3})+(?!\\d))/g, ",");}'
) %>%
dySeries("propertiesListed", label = metric_legend2, stepPlot = TRUE, fillGraph = TRUE, color = "#bdc2c6", axis = ("y2")) %>%
dyOptions(
includeZero = FALSE,
axisLineColor = "#585858",
gridLineColor = "#bdc2c6",
axisLabelFontSize = 12,
axisLabelColor = "#585858",
disableZoom = TRUE
)
})
})
}
ui <- navbarPage(
fluidPage(
theme = bs_theme(bootswatch = "minty"),
title = "hi",
ui_dygraph("dygraph")
)
)
server <- function(input, output, session, df) {
server_dygraph("dygraph")
}
shinyApp(ui = ui, server = server)

Interactive heatmap in R using apexcharter fails at reactivity

at the moment I try to create an interactive heatmap in R with apexcharter. This works fine at manual chart creation but fails on interactive use within shiny.
library(shiny)
library(tidyverse)
library(apexcharter)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("Test Heatmap"),
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "heatmap_filter",
label = "heatmap filter",
choices = c(1999, 2008),
selected = 2008
)
),
mainPanel(
apexchartOutput("heatmap")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output) {
output$heatmap <- renderApexchart({
df <- mpg %>% filter(year == input$heatmap_filter) %>% mutate_if(is.character, as.factor) %>% group_by(manufacturer, class) %>% summarise(cnt = n()) %>% tidyr::complete(class, fill = list(cnt = 0))
q20 <- round(as.numeric(quantile(df %>% filter(cnt>0) %>% pull(cnt), probs = seq(0,1,0.2), na.rm = TRUE))[2],0)
q40 <- round(as.numeric(quantile(df %>% filter(cnt>0) %>% pull(cnt), probs = seq(0,1,0.2), na.rm = TRUE))[3],0)
q60 <- round(as.numeric(quantile(df %>% filter(cnt>0) %>% pull(cnt), probs = seq(0,1,0.2), na.rm = TRUE))[4],0)
q80 <- round(as.numeric(quantile(df %>% filter(cnt>0) %>% pull(cnt), probs = seq(0,1,0.2), na.rm = TRUE))[5],0)
apex(
data = df,
type = "heatmap",
mapping = aes(x = manufacturer, y = class, fill = cnt)
) %>%
ax_dataLabels(enabled = TRUE) %>%
ax_plotOptions(
heatmap = heatmap_opts(
enableShades = FALSE,
colorScale = list(
ranges = list(
list(from = 0, to = q20, color = "#106e45"), #grün
list(from = q20, to = q40, color = "#90dbba"), #leichtes grün
list(from = q40, to = q60, color = "#fff33b"), #gelb
list(from = q60, to = q80, color = "#f3903f"), # orange
list(from = q80, to = 20, color = "#e93e3a") #rot
)
)
)
) %>%
ax_title(
text = paste("Test interactive heatmap",
input$heatmap_filter
), align = "center"
)
})
}
# Run the application
shinyApp(ui = ui, server = server)
With the manual approach everthing works as expected. But when I change the input select only the values changes but not the heatmap quantil ranges and not the title input. Its seems like the input value is not pushing the changes to already calculated variables. I already tried to use an reactive df or reactive variables but so far nothing works.
I added a minimal example where you could change the year input and this should change the title and the color ranges.
Can you help me?
Thanks in advance.
Try setting auto_update to FALSE in the call to apex
apex(
data = df,
type = "heatmap",
auto_update = FALSE,
...

How to filter Date (Year) in shiny based on sliderInput choice?

I am working with shiny and have a sliderInput() and selectInput() inside my ui.R file. I would like that based on the user choice of these both fields, to plot the selected data within hchart function. I am very close to solve the problem, but with my code, its just filtering the first number and the last number of the year and not everything between. I tried with the between function but it didnt work.
This is my ui.R code:
tabItem(tabName = "crimetypesbyyear",
fluidRow(
box(
title = "Date",
status = "primary",
solidHeader = TRUE,
width = 6,
sliderInput("ctypeDate", label = "Select Year", min = 2001, max = 2016, step = 1, sep = '', value = c(2001,2016))
),
box(
title = "Crime Type",
status = "primary",
solidHeader = TRUE,
width = 6,
height = 162,
selectInput("ctypeCrimeType", label= "Select Crime Type", choices = unique(cc$Primary.Type))
),
box(
title = "Plot",
status = "danger",
solidHeader = TRUE,
width = 12,
highchartOutput(outputId = "ctypeOutput")
),
And this is my server.R code:
output$ctypeOutput <- renderHighchart({
ctypeAnalysis <- cc[cc$Primary.Type == input$ctypeCrimeType,] %>% group_by(Year2) %>% summarise(Total = n()) %>% filter(Year2 %in% cbind(input$ctypeDate[1],input$ctypeDate[2]))
hchart(ctypeAnalysis %>% na.omit(), "column", hcaes(x = Year2, y = Total, color = Total)) %>%
hc_exporting(enabled = TRUE, filename = paste(input$ctypeCrimeType, "by_Year", sep = "_")) %>%
hc_title(text = paste("Crime Type by Year",input$ctypeCrimeType, sep = ": ")) %>%
hc_subtitle(text = "(2001 - 2016)") %>%
hc_xAxis(title = list(text = "Year")) %>%
hc_yAxis(title = list(text = "Crimes")) %>%
hc_colorAxis(stops = color_stops(n = 10, colors = c("#d98880", "#85c1e9", "#82e0aa"))) %>%
hc_add_theme(hc_theme_smpl()) %>%
hc_legend(enabled = FALSE)
})
So this line of code should be corrected: ctypeAnalysis <- cc[cc$Primary.Type == input$ctypeCrimeType,] %>% group_by(Year2) %>% summarise(Total = n()) %>% filter(Year2 %in% cbind(input$ctypeDate[1],input$ctypeDate[2])), somebody any idea?
Since Year 2 is formatted as a factor, you need to convert it back to numeric values. You can do this in the same step as the filtering function, like so:
... filter(as.numeric(levels(Year2))[Year2] >= input$ctypeDate[1] & as.numeric(levels(Year2))[Year2] <= input$ctypeDate[2])

R Highcharter: tooltip customization

I created a chart using highcharter in a shiny dashboard and I am trying to customize the tooltip. The chart is combined line and scatter plot. I would like it to do the following:
1) Have a single box for hover information (it currently has one for the line and one for scatter)
2) Be able to use different column of information that is not used in the series x or y values
I would like the tooltip to display the following information (whether I hover over the scatter point or line) for each particular x-axis value.
Overall
Mean: 2 [Mean: data$avghours]
Dog: 1 [data$animal: data$hours]
Below is the example code I've written that demonstrates my problem:
library (shiny)
library (shinydashboard)
library (highcharter)
header <- dashboardHeader(title = "Example")
body <- dashboardBody(
fluidRow(
box(title = "example", status = "primary", solidHeader = TRUE,
highchartOutput("chart")
)
)
)
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output) {
date <- c(1,2,3,4,5,6,7,8,9,10)
hours <- c(1,5,4,1,6,5,7,5,4,3)
avghours <- c(2,2,2,3,3,3,2,2,2,2)
animal <- c("dog","cat","cat","cat","cat","cat","cat","cat","dog","dog")
data <- data.frame(date,hours,avghours,animal)
output$chart <- renderHighchart({
highchart() %>%
hc_add_series(name = "Shipments", data=data$hours, type = "scatter", color = "#2670FF", marker = list(radius = 2), alpha = 0.5) %>%
hc_add_series(name = "Rolling Mean", data=data$avghours, color = "#FF7900") %>%
hc_yAxis(min = 0, title = list(text = "Hours")) %>%
hc_tooltip(crosshairs = TRUE)
})
}
shinyApp(ui, server)
Firt of all, you need to add all the data instead give only the vector (the vector DON´T have all the information to the tooltip you want).
To do this you need change the data argument using the data.frame with the hcaes helper function in the mapping argument to define which variable use in every axis:
highchart() %>%
hc_add_series(data = data, mapping = hcaes(x=date, y=hours), name = "Shipments", type = "scatter", color = "#2670FF", marker = list(radius = 2), alpha = 0.5) %>%
hc_add_series(data = data, hcaes(date, avghours), name = "Rolling Mean", type = "line", color = "#FF7900") %>%
hc_yAxis(min = 0, title = list(text = "Hours")) %>%
hc_tooltip(crosshairs = TRUE)
Then you can use the tooltip argument in every hc_add_series to define the tooltip in each series:
highchart() %>%
hc_add_series(data = data, hcaes(date, hours), name = "Shipments", type = "scatter",
tooltip = list(pointFormat = "tooltip with 2 values {point.animal}: {point.hours}")) %>%
hc_add_series(data = data, hcaes(date, avghours), name = "Rolling Mean", type = "line",
tooltip = list(pointFormat = "Avg hour text! {point.avghours}")) %>%
hc_yAxis(min = 0, title = list(text = "Hours")) %>%
hc_tooltip(crosshairs = TRUE)

Rda objects and reactivity in Shiny, R

I have a graph that should be updated by a dateInput in shiny. However, my app requires data to be loaded at the start. This messes with reactivity, and ensures that my graph cannot be updated, here is my script that works:
ui <- fluidPage(
#For Date of Update, days of unemployment
dateInput("updatedate", "Select Date", value = "2015-06-01", min = "2015-05-20", max = "2015-07-13", format = "yyyy-mm-dd", startview = "month", weekstart = 0, language = "en"),
ggvisOutput("duration")
)
server <- function(input, output) {
Durationdata<-reactive({
selectedupdate<-with(zoomlastupdate, zoomlastupdate[(Lastupdate == as.Date(input$updatedate, '%Y-%m-%d')),])
selectedupdate<-with(selectedupdate, selectedupdate[(Unemployed == 1),])
selectedupdate<-na.omit(selectedupdate)
count1<- selectedupdate[,1:2]
tabcount1<- data.frame(Duration=count(count1, 'spell')[,1], Unemployed=count(count1, 'spell')[,2])
tabcount1
})
all_values <- function(x) {
if(is.null(x)) return(NULL)
paste0(c("Duration","Unemployed"), ": ", format(x)[c(1,3)], collapse = "<br />")
}
add_title <- function(vis, ..., x_lab = "X units",y_lab="Y units", title = "Plot Title")
{
add_axis(vis, "x", title = x_lab) %>%
add_axis("x", orient = "top", ticks = 0, title = title,
properties = axis_props(
axis = list(stroke = "white"),
labels = list(fontSize = 0)
), ...) %>% add_axis("y", title=y_lab)
}
Durationdata %>% ggvis(x=~Duration, y =~Unemployed, fill := "#fff8dc") %>% layer_bars(width=0.5) %>% add_tooltip(all_values, "hover") %>% add_title(title = "Unemployment Duration", x_lab="Duration of Unemployment (Months)", y_lab="Number of Unemployed Persons") %>% set_options(width = 1000, height = 600, keep_aspect = NULL, resizable = TRUE) %>% bind_shiny("duration")
}
when I put the following code on top of it:
load("lastupdateemp.Rda")
load("zoomlastupdate.Rda")
load("lastupdateworkexp.Rda")
The reactive graph fails to update with the data input. How do I overcome this issue?

Resources