Calculate income and wealth shares in R - r

I have a simple question, but I am confused with how deciles, quantiles, percentiles are defined.
My purpose is to compute various income and wealth shares. That is the share of x% per cent of the population from total income or wealth.
So, say that one wants to compute how much wealth the top 10% own.
How I can do this on R? Are my below calculation correct?
MWE
w<-rgamma(10000, 3, scale = 1/3)
per <- quantile(w, c(0.1, 0.9))
top_1_percent <- (per[2]/sum(w))*100
bottom_90_percent <-per[1]/sum(w))*100

The top 10% should be:
sum(w[w > per[2]])/sum(w)
Alternately:
sum(tail(sort(w), .1 * length(w))) / sum(w)
The bottom 90% is 1 - top 10%.

If I understand the question correctly, the following will do it.
set.seed(1234) # Make the results reproducible
w <- rgamma(10000, 3, scale = 1/3)
per <- quantile(w, c(0.1, 0.9))
Now get an index i1 on the top 10% and sum their wealth.
i1 <- w >= per[2]
sum(w[i1])
#[1] 2196.856
And the same for the bottom 10%, with index i2.
i2 <- w <= per[1]
sum(w[i2])
#[1] 254.6375
Note that I am using >= and <=. See the help page ?quantile to see the types of quantile computations R can do. This is given by argument type.
Edit.
To compute proportions and percentages of wealth of the top 10% and bottom 10%, divide by the total wealth and multiply by 100.
top10 <- sum(w[i1])/sum(w)
top10
#[1] 0.221291
100*top10
#[1] 22.1291
bottom10 <- sum(w[i2])/sum(w)
bottom10
#[1] 0.02564983
100*bottom10
#[1] 2.564983

Related

Find local minimum in a vector with r

Taking the ideas from the following links:
the local minimum between the two peaks
How to explain ...
I look for the local minimum or minimums, avoiding the use of functions already created for this purpose [max / min locale or global].
Our progress:
#DATA
simulate <- function(lambda=0.3, mu=c(0, 4), sd=c(1, 1), n.obs=10^5) {
x1 <- rnorm(n.obs, mu[1], sd[1])
x2 <- rnorm(n.obs, mu[2], sd[2])
return(ifelse(runif(n.obs) < lambda, x1, x2))
}
data <- simulate()
hist(data)
d <- density(data)
#
#https://stackoverflow.com/a/25276661/8409550
##Since the x-values are equally spaced, we can estimate dy using diff(d$y)
d$x[which.min(abs(diff(d$y)))]
#With our data we did not obtain the expected value
#
d$x[which(diff(sign(diff(d$y)))>0)+1]#pit
d$x[which(diff(sign(diff(d$y)))<0)+1]#peak
#we check
#1
optimize(approxfun(d$x,d$y),interval=c(0,4))$minimum
optimize(approxfun(d$x,d$y),interval=c(0,4),maximum = TRUE)$maximum
#2
tp <- pastecs::turnpoints(d$y)
summary(tp)
ind <- (1:length(d$y))[extract(tp, no.tp = FALSE, peak = TRUE, pit = TRUE)]
d$x[ind[2]]
d$x[ind[1]]
d$x[ind[3]]
My questions and request for help:
Why did the command lines fail:
d$x[which.min(abs(diff(d$y)))]
It is possible to eliminate the need to add one to the index in the command lines:
d$x[which(diff(sign(diff(d$y)))>0)+1]#pit
d$x[which(diff(sign(diff(d$y)))<0)+1]#peak
How to get the optimize function to return the two expected maximum values?
Question 1
The answer to the first question is straighforward. The line d$x[which.min(abs(diff(d$y)))] asks for the x value at which there was the smallest change in y between two consecutive points. The answer is that this happened at the extreme right of the plot where the density curve is essentially flat:
which.min(abs(diff(d$y)))
#> [1] 511
length(abs(diff(d$y)))
#> [1] 511
This is not only smaller than the difference at your local maxima /minima points; it is orders of magnitude smaller. Let's zoom in to the peak value of d$y, including only the peak and the point on each side:
which.max(d$y)
#> [1] 324
plot(d$x[323:325], d$y[323:325])
We can see that the smallest difference is around 0.00005, or 5^-5, between two consecutive points. Now look at the end of the plot where it is flattest:
plot(d$x[510:512], d$y[510:512])
The difference is about 1^-7, which is why this is the flattest point.
Question 2
The answer to your second question is "no, not really". You are taking a double diff, which is two elements shorter than x, and if x is n elements long, a double diff will correspond to elements 2 to (n - 1) in x. You can remove the +1 from the index, but you will have an off-by-one error if you do that. If you really wanted to, you could concatenate dummy zeros at each stage of the diff, like this:
d$x[which(c(0, diff(sign(diff(c(d$y, 0))))) > 0)]
which gives the same result, but this is longer, harder to read and harder to justify, so why would you?
Question 3
The answer to the third question is that you could use the "pit" as the dividing point between the minimum and maximum value of d$x to find the two "peaks". If you really want a single call to get both at once, you could do it inside an sapply:
pit <- optimize(approxfun(d$x,d$y),interval=c(0,4))$minimum
peaks <- sapply(1:2, function(i) {
optimize(approxfun(d$x, d$y),
interval = c(min(d$x), pit, max(d$x))[i:(i + 1)],
maximum = TRUE)$maximum
})
pit
#> [1] 1.691798
peaks
#> [1] -0.02249845 3.99552521

R: Sample a matrix for cells close to a specified position

I'm trying to find sites to collect snails by using a semi-random selection method. I have set a 10km2 grid around the region I want to collect snails from, which is broken into 10,000 10m2 cells. I want to randomly this grid in R to select 200 field sites.
Randomly sampling a matrix in R is easy enough;
dat <- matrix(1:10000, nrow = 100)
sample(dat, size = 200)
However, I want to bias the sampling to pick cells closer to a single position (representing sites closer to the research station). It's easier to explain this with an image;
The yellow cell with a cross represents the position I want to sample around. The grey shading is the probability of picking a cell in the sample function, with darker cells being more likely to be sampled.
I know I can specify sampling probabilities using the prob argument in sample, but I don't know how to create a 2D probability matrix. Any help would be appreciated, I don't want to do this by hand.
I'm going to do this for a 9 x 6 grid (54 cells), just so it's easier to see what's going on, and sample only 5 of these 54 cells. You can modify this to a 100 x 100 grid where you sample 200 from 10,000 cells.
# Number of rows and columns of the grid (modify these as required)
nx <- 9 # rows
ny <- 6 # columns
# Create coordinate matrix
x <- rep(1:nx, each=ny);x
y <- rep(1:ny, nx);y
xy <- cbind(x, y); xy
# Where is the station? (edit: not snails nest)
Station <- rbind(c(x=3, y=2)) # Change as required
# Determine distance from each grid location to the station
library(SpatialTools)
D <- dist2(xy, Station)
From the help page of dist2
dist2 takes the matrices of coordinates coords1 and coords2 and
returns the inter-Euclidean distances between coordinates.
We can visualize this using the image function.
XY <- (matrix(D, nr=nx, byrow=TRUE))
image(XY) # axes are scaled to 0-1
# Create a scaling function - scales x to lie in [0-1)
scale_prop <- function(x, m=0)
(x - min(x)) / (m + max(x) - min(x))
# Add the coordinates to the grid
text(x=scale_prop(xy[,1]), y=scale_prop(xy[,2]), labels=paste(xy[,1],xy[,2],sep=","))
Lighter tones indicate grids closer to the station at (3,2).
# Sampling probabilities will be proportional to the distance from the station, which are scaled to lie between [0 - 1). We don't want a 1 for the maximum distance (m=1).
prob <- 1 - scale_prop(D, m=1); range (prob)
# Sample from the grid using given probabilities
sam <- sample(1:nrow(xy), size = 5, prob=prob) # Change size as required.
xy[sam,] # Thse are your (**MY!**) 5 samples
x y
[1,] 4 4
[2,] 7 1
[3,] 3 2
[4,] 5 1
[5,] 5 3
To confirm the sample probabilities are correct, you can simulate many samples and see which coordinates were sampled the most.
snail.sam <- function(nsamples) {
sam <- sample(1:nrow(xy), size = nsamples, prob=prob)
apply(xy[sam,], 1, function(x) paste(x[1], x[2], sep=","))
}
SAMPLES <- replicate(10000, snail.sam(5))
tab <- table(SAMPLES)
cols <- colorRampPalette(c("lightblue", "darkblue"))(max(tab))
barplot(table(SAMPLES), horiz=TRUE, las=1, cex.names=0.5,
col=cols[tab])
If using a 100 x 100 grid and the station is located at coordinates (60,70), then the image would look like this, with the sampled grids shown as black dots:
There is a tendency for the points to be located close to the station, although the sampling variability may make this difficult to see. If you want to give even more weight to grids near the station, then you can rescale the probabilities, which I think is ok to do, to save costs on travelling, but these weights need to be incorporated into the analysis when estimating the number of snails in the whole region. Here I've cubed the probabilities just so you can see what happens.
sam <- sample(1:nrow(xy), size = 200, prob=prob^3)
The tendency for the points to be located near the station is now more obvious.
There may be a better way than this but a quick way to do it is to randomly sample on both x and y axis using a distribution (I used the normal - bell shaped distribution, but you can really use any). The trick is to make the mean of the distribution the position of the research station. You can change the bias towards the research station by changing the standard deviation of the distribution.
Then use the randomly selected positions as your x and y coordinates to select the positions.
dat <- matrix(1:10000, nrow = 100)
#randomly selected a position for the research station
rs <- c(80,30)
# you can change the sd to change the bias
x <- round(rnorm(400,mean = rs[1], sd = 10))
y <- round(rnorm(400, mean = rs[2], sd = 10))
position <- rep(NA, 200)
j = 1
i = 1
# as some of the numbers sampled can be outside of the area you want I oversampled # and then only selected the first 200 that were in the area of interest.
while (j <= 200) {
if(x[i] > 0 & x[i] < 100 & y[i] > 0 & y [i]< 100){
position[j] <- dat[x[i],y[i]]
j = j +1
}
i = i +1
}
plot the results:
plot(x,y, pch = 19)
points(x =80,y = 30, col = "red", pch = 19) # position of the station

R - how to eliminate upper x% of a vector

I need to throw out the outliers of my variable.
I want to reduce the upper 10 percent of my variable.
Yet I have no clue how to find out which are my upper 10 %.
If I make a random cut at 30 I get the upper 3.45 %.
dat$T102_01[dat$T102_01 < 30]
Is there any way to tell r not to take the values < 30 but the first 90% of the values?
Since I don´t want to make a content based decision (anything above 30 is unrealistic) it would be better to take the upper 10% of all variables I have assesed.
I would be very thankful for any comments
Sorry I can´t add a picture of my plot. The distribution is skewed and most values are between 0-30, very view values are between 30-100
I would use the quantile function as follows:
x <- rnorm(50)
p90 <- quantile(x = x,probs = .9)
want <- x[x<p90]
You can do this by doing a sort and find the value 90% of the way through it:
vec <- rnorm(1000)
cut <- sort( vec )[ round( length( vec ) * 0.9 ) ]
vec <- vec[ vec < cut ]
So we sort the vector, and take the value at the point 90% of the way through the vector as a cut point. We then use the cut point to take only the bottom 90% of the main vector.

Boxplot main rectangles delimiter which percentage of data points?

I used the command:
boxplot(V15~Class,data=trainData, main="V15 value depending on Class", xlab="Class", ylab="V15")
I would like to understand which is the percentage of points in the rectangle(s)?
I mean: if I take all the samples inside the main rectangle, what percentage of the total count of samples will it be?
I found the documentation, but cannot figure out this answer.
The help text for boxplot, which you refer to, suggest that you should "See Also boxplot.stats which does the computation". From the "Details" section:
The two ‘hinges’ are versions of the first and third quartile, i.e., close to quantile(x, c(1,3)/4).
The hinges equal the quartiles for odd n (where n <- length(x)) and differ for even n.
Whereas the quartiles only equal observations for n %% 4 == 1 (n = 1 mod 4),
the hinges do so additionally for n %% 4 == 2 (n = 2 mod 4), and are in the middle of two observations otherwise.
So yes, basically the middle 50% of the values fall inside the box, but the details of the calculation depend on the nature of the data.

Detecting dips in a 2D plot

I need to automatically detect dips in a 2D plot, like the regions marked with red circles in the figure below. I'm only interested in the "main" dips, meaning the dips have to span a minimum length in the x axis. The number of dips is unknown, i.e., different plots will contain different numbers of dips. Any ideas?
Update:
As requested, here's the sample data, together with an attempt to smooth it using median filtering, as suggested by vines.
Looks like I need now a robust way to approximate the derivative at each point that would ignore the little blips that remain in the data. Is there any standard approach?
y <- c(0.9943,0.9917,0.9879,0.9831,0.9553,0.9316,0.9208,0.9119,0.8857,0.7951,0.7605,0.8074,0.7342,0.6374,0.6035,0.5331,0.4781,0.4825,0.4825,0.4879,0.5374,0.4600,0.3668,0.3456,0.4282,0.3578,0.3630,0.3399,0.3578,0.4116,0.3762,0.3668,0.4420,0.4749,0.4556,0.4458,0.5084,0.5043,0.5043,0.5331,0.4781,0.5623,0.6604,0.5900,0.5084,0.5802,0.5802,0.6174,0.6124,0.6374,0.6827,0.6906,0.7034,0.7418,0.7817,0.8311,0.8001,0.7912,0.7912,0.7540,0.7951,0.7817,0.7644,0.7912,0.8311,0.8311,0.7912,0.7688,0.7418,0.7232,0.7147,0.6906,0.6715,0.6681,0.6374,0.6516,0.6650,0.6604,0.6124,0.6334,0.6374,0.5514,0.5514,0.5412,0.5514,0.5374,0.5473,0.4825,0.5084,0.5126,0.5229,0.5126,0.5043,0.4379,0.4781,0.4600,0.4781,0.3806,0.4078,0.3096,0.3263,0.3399,0.3184,0.2820,0.2167,0.2122,0.2080,0.2558,0.2255,0.1921,0.1766,0.1732,0.1205,0.1732,0.0723,0.0701,0.0405,0.0643,0.0771,0.1018,0.0587,0.0884,0.0884,0.1240,0.1088,0.0554,0.0607,0.0441,0.0387,0.0490,0.0478,0.0231,0.0414,0.0297,0.0701,0.0502,0.0567,0.0405,0.0363,0.0464,0.0701,0.0832,0.0991,0.1322,0.1998,0.3146,0.3146,0.3184,0.3578,0.3311,0.3184,0.4203,0.3578,0.3578,0.3578,0.4282,0.5084,0.5802,0.5667,0.5473,0.5514,0.5331,0.4749,0.4037,0.4116,0.4203,0.3184,0.4037,0.4037,0.4282,0.4513,0.4749,0.4116,0.4825,0.4918,0.4879,0.4918,0.4825,0.4245,0.4333,0.4651,0.4879,0.5412,0.5802,0.5126,0.4458,0.5374,0.4600,0.4600,0.4600,0.4600,0.3992,0.4879,0.4282,0.4333,0.3668,0.3005,0.3096,0.3847,0.3939,0.3630,0.3359,0.2292,0.2292,0.2748,0.3399,0.2963,0.2963,0.2385,0.2531,0.1805,0.2531,0.2786,0.3456,0.3399,0.3491,0.4037,0.3885,0.3806,0.2748,0.2700,0.2657,0.2963,0.2865,0.2167,0.2080,0.1844,0.2041,0.1602,0.1416,0.2041,0.1958,0.1018,0.0744,0.0677,0.0909,0.0789,0.0723,0.0660,0.1322,0.1532,0.1060,0.1018,0.1060,0.1150,0.0789,0.1266,0.0965,0.1732,0.1766,0.1766,0.1805,0.2820,0.3096,0.2602,0.2080,0.2333,0.2385,0.2385,0.2432,0.1602,0.2122,0.2385,0.2333,0.2558,0.2432,0.2292,0.2209,0.2483,0.2531,0.2432,0.2432,0.2432,0.2432,0.3053,0.3630,0.3578,0.3630,0.3668,0.3263,0.3992,0.4037,0.4556,0.4703,0.5173,0.6219,0.6412,0.7275,0.6984,0.6756,0.7079,0.7192,0.7342,0.7458,0.7501,0.7540,0.7605,0.7605,0.7342,0.7912,0.7951,0.8036,0.8074,0.8074,0.8118,0.7951,0.8118,0.8242,0.8488,0.8650,0.8488,0.8311,0.8424,0.7912,0.7951,0.8001,0.8001,0.7458,0.7192,0.6984,0.6412,0.6516,0.5900,0.5802,0.5802,0.5762,0.5623,0.5374,0.4556,0.4556,0.4333,0.3762,0.3456,0.4037,0.3311,0.3263,0.3311,0.3717,0.3762,0.3717,0.3668,0.3491,0.4203,0.4037,0.4149,0.4037,0.3992,0.4078,0.4651,0.4967,0.5229,0.5802,0.5802,0.5846,0.6293,0.6412,0.6374,0.6604,0.7317,0.7034,0.7573,0.7573,0.7573,0.7772,0.7605,0.8036,0.7951,0.7817,0.7869,0.7724,0.7869,0.7869,0.7951,0.7644,0.7912,0.7275,0.7342,0.7275,0.6984,0.7342,0.7605,0.7418,0.7418,0.7275,0.7573,0.7724,0.8118,0.8521,0.8823,0.8984,0.9119,0.9316,0.9512)
yy <- runmed(y, 41)
plot(y, type="l", ylim=c(0,1), ylab="", xlab="", lwd=0.5)
points(yy, col="blue", type="l", lwd=2)
EDITED : function strips the regions to contain nothing but the lowest part, if wanted.
Actually, Using the mean is easier than using the median. This allows you to find regions where the real values are continuously below the mean. The median is not smooth enough for an easy application.
One example function to do this would be :
FindLowRegion <- function(x,n=length(x)/4,tol=length(x)/20,p=0.5){
nx <- length(x)
n <- 2*(n %/% 2) + 1
# smooth out based on means
sx <- rowMeans(embed(c(rep(NA,n/2),x,rep(NA,n/2)),n),na.rm=T)
# find which series are far from the mean
rlesx <- rle((sx-x)>0)
# construct start and end of regions
int <- embed(cumsum(c(1,rlesx$lengths)),2)
# which regions fulfill requirements
id <- rlesx$value & rlesx$length > tol
# Cut regions to be in general smaller than median
regions <-
apply(int[id,],1,function(i){
i <- min(i):max(i)
tmp <- x[i]
id <- which(tmp < quantile(tmp,p))
id <- min(id):max(id)
i[id]
})
# return
unlist(regions)
}
where
n determines how much values are used to calculate the running mean,
tol determines how many consecutive values should be lower than the running mean to talk about a low region, and
p determines the cutoff used (as a quantile) for stripping the regions to their lowest part. When p=1, the complete lower region is shown.
Function is tweaked to work on data as you presented, but the numbers might need to be adjusted a bit to work with other data.
This function returns a set of indices, which allows you to find the low regions. Illustrated with your y vector :
Lows <- FindLowRegion(y)
newx <- seq_along(y)
newy <- ifelse(newx %in% Lows,y,NA)
plot(y, col="blue", type="l", lwd=2)
lines(newx,newy,col="red",lwd="3")
Gives :
You have to smooth the graph in some way. Median filtration is quite useful for that purpose (see http://en.wikipedia.org/wiki/Median_filter). After smoothing, you will simply have to search for the minima, just as usual (i.e. search for the points where the 1st derivative switches from negative to positive).
A simpler answer (which also does not require smoothing) could be provided by adapting the maxdrawdown() function from the tseries. A drawdown is commonly defined as the retreat from the most-recent maximum; here we want the opposite. Such a function could then be used in a sliding window over the data, or over segmented data.
maxdrawdown <- function(x) {
if(NCOL(x) > 1)
stop("x is not a vector or univariate time series")
if(any(is.na(x)))
stop("NAs in x")
cmaxx <- cummax(x)-x
mdd <- max(cmaxx)
to <- which(mdd == cmaxx)
from <- double(NROW(to))
for (i in 1:NROW(to))
from[i] <- max(which(cmaxx[1:to[i]] == 0))
return(list(maxdrawdown = mdd, from = from, to = to))
}
So instead of using cummax(), one would have to switch to cummin() etc.
My first thought was something much cruder than filtering. Why not look for the big drops followed by long enough stable periods?
span.b <- 20
threshold.b <- 0.2
dy.b <- c(rep(NA, span.b), diff(y, lag = span.b))
span.f <- 10
threshold.f <- 0.05
dy.f <- c(diff(y, lag = span.f), rep(NA, span.f))
down <- which(dy.b < -1 * threshold.b & abs(dy.f) < threshold.f)
abline(v = down)
The plot shows that it's not perfect, but it doesn't discard the outliers (I guess it depends on your take on the data).

Resources