I am trying to create a multi-layer drilldown graph using highcharter with dynamic data in shiny. I am able to accomplish this using just R code with a set input but when I put it in a shiny application and try to have it subset the data dynamically, it fails.
Below is the code that that works in R (only drilling down from Farm to Sheep):
library(shinyjs)
library(tidyr)
library(data.table)
library(highcharter)
library(dplyr)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
input <- "Farm"
input2 <- "Sheep"
#First Tier
datSum <- dat %>%
group_by(x) %>%
summarize(Quantity = sum(a)
)
datSum <- arrange(datSum,desc(Quantity))
Lvl1dfStatus <- tibble(name = datSum$x, y = datSum$Quantity, drilldown = tolower(name))
#Second Tier
datSum2 <- dat[dat$x == input,]
datSum2 <- datSum2 %>%
group_by(y) %>%
summarize(Quantity = sum(a)
)
datSum2 <- arrange(datSum2,desc(Quantity))
Lvl2dfStatus <- tibble(name = datSum2$y,y = datSum2$Quantity, drilldown = tolower(name))
#Third Tier
datSum2 <- dat[dat$x == input,]
datSum3 <- datSum2[datSum2$y == input2,]
datSum3 <- datSum3 %>%
group_by(z) %>%
summarize(Quantity = sum(a)
)
datSum3 <- arrange(datSum3,desc(Quantity))
Lvl3dfStatus <- tibble(name = datSum3$z,y = datSum3$Quantity)
#Graph
ClickedTest <- JS("function(event) {Shiny.onInputChange('ClickedInput', event.point.name);}")
highchart() %>%
hc_xAxis(type = "category") %>%
hc_add_series(Lvl1dfStatus, "column", hcaes(x = name, y = y), color = "#E4551F") %>%
hc_plotOptions(column = list(stacking = "normal",
events = list(click = ClickedTest))) %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = list(
list(id = tolower(input), type = "column", data = list_parse(Lvl2dfStatus)),
list(id = tolower(input2), type = "column", data = list_parse2(Lvl3dfStatus))
)
)
Below is the code that fails in Shiny when changing input to dynamic:
library (shinyjs)
library (tidyr)
library (data.table)
library (highcharter)
library (dplyr)
library (shinydashboard)
library (shiny)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
# input <- "Farm"
# input2 <- "Sheep"
header <- dashboardHeader()
body <- dashboardBody(
highchartOutput("Test"),
verbatimTextOutput("trial")
)
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output, session) {
Lvl1ClickHardCoded <- ""
output$Test <- renderHighchart({
#First Tier
datSum <- dat %>%
group_by(x) %>%
summarize(Quantity = sum(a)
)
datSum <- arrange(datSum,desc(Quantity))
Lvl1dfStatus <- tibble(name = datSum$x, y = datSum$Quantity, drilldown = tolower(name))
#Second Tier
rowcheck <- dat[dat$x == input$ClickedInput,]
if (nrow(rowcheck)!=0){
datSum2 <- dat[dat$x == input$ClickedInput,]
datSum2 <- datSum2 %>%
group_by(y) %>%
summarize(Quantity = sum(a)
)
datSum2 <- arrange(datSum2,desc(Quantity))
Lvl2dfStatus <- tibble(name = datSum2$y,y = datSum2$Quantity, drilldown = tolower(name))
Lvl1ClickHardCoded <<- input$ClickedInput
Lvl1id <<- tolower(input$ClickedInput)
}
else{
Lvl2dfStatus <- data.table(Group.1=numeric(), x=numeric())
Lvl2dfStatus <- tibble(name = Lvl2dfStatus$Group.1,y = Lvl2dfStatus$x)
Lvl1id <- ""
}
#Third Tier
rowcheck <- dat[dat$x == Lvl1ClickHardCoded,]
rowcheck <- rowcheck[rowcheck$y == input$ClickedInput,]
if (nrow(rowcheck)!=0){
datSum2 <- dat[dat$x == Lvl1ClickHardCoded,]
datSum3 <- datSum2[datSum2$y == input$ClickedInput,]
datSum3 <- datSum3 %>%
group_by(z) %>%
summarize(Quantity = sum(a)
)
datSum3 <- arrange(datSum3,desc(Quantity))
Lvl3dfStatus <- tibble(name = datSum3$z,y = datSum3$Quantity)
Lvl2id <<- tolower(input$ClickedInput)
}
else{
Lvl3dfStatus <- data.table(Group.1=numeric(), x=numeric())
Lvl3dfStatus <- tibble(name = Lvl3dfStatus$Group.1,y = Lvl3dfStatus$x)
Lvl2id <- ""
}
#Graph
ClickedTest <- JS("function(event) {Shiny.onInputChange('ClickedInput', event.point.name);}")
highchart() %>%
hc_xAxis(type = "category") %>%
hc_add_series(Lvl1dfStatus, "column", hcaes(x = name, y = y), color = "#E4551F") %>%
hc_plotOptions(column = list(stacking = "normal",
events = list(click = ClickedTest))) %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = list(
list(id = Lvl1id, type = "column", data = list_parse(Lvl2dfStatus)),
list(id = Lvl2id, type = "column", data = list_parse2(Lvl3dfStatus))
)
)
})
output$trial <- renderText({input$ClickedInput})
}
shinyApp(ui, server)
Your approach was kind of mislead by the click function. It is totally unnecessary, since (as can be seen in the non-shiny example) Highcharts has its own mechanisms to detect series clicks and can find and render drilldowns on its own.
You trying to catch the click event made the Highcharts chart building function re-render every time (resetting any drilldown) so you could not see any drilldown events at all.
The solution is to just copy your working Highcharts example into the renderHighchart function. You will immediately see that the "Farm" and "Sheep" dropdowns work.
I suppose that you were confusing yourself by using the terms "input" for the sublevel names as they are no input at all (in the shiny sense). What you have to do to get the drilldown working properly is to predefine the drilldown sets when you create the Highcharts chart. So you tell the Plugin in advance what drilldowns will be used and Highchart drills down only based on the IDs you specify.
I edited your code such that all the possible drilldowns are created in a loop and everything is working:
library (shinyjs)
library (tidyr)
library (data.table)
library (highcharter)
library (dplyr)
library (shinydashboard)
library (shiny)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
header <- dashboardHeader()
body <- dashboardBody(
highchartOutput("Working"),
verbatimTextOutput("trial")
)
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output, session) {
output$Working <- renderHighchart({
#First Tier #Copied
datSum <- dat %>%
group_by(x) %>%
summarize(Quantity = sum(a)
)
datSum <- arrange(datSum,desc(Quantity))
Lvl1dfStatus <- tibble(name = datSum$x, y = datSum$Quantity, drilldown = tolower(name))
#Second Tier # Generalized to not use one single input
# Note: I am creating a list of Drilldown Definitions here.
Level_2_Drilldowns <- lapply(unique(dat$x), function(x_level) {
# x_level is what you called 'input' earlier.
datSum2 <- dat[dat$x == x_level,]
datSum2 <- datSum2 %>%
group_by(y) %>%
summarize(Quantity = sum(a)
)
datSum2 <- arrange(datSum2,desc(Quantity))
# Note: The "drilldown" variable has to be unique, this is why we use level 1 plus level 2 names.
Lvl2dfStatus <- tibble(name = datSum2$y,y = datSum2$Quantity, drilldown = tolower(paste(x_level, name, sep = "_")))
list(id = tolower(x_level), type = "column", data = list_parse(Lvl2dfStatus))
})
#Third Tier # Generalized through all of level 2
# Note: Again creating a list of Drilldown Definitions here.
Level_3_Drilldowns <- lapply(unique(dat$x), function(x_level) {
datSum2 <- dat[dat$x == x_level,]
lapply(unique(datSum2$y), function(y_level) {
datSum3 <- datSum2[datSum2$y == y_level,]
datSum3 <- datSum3 %>%
group_by(z) %>%
summarize(Quantity = sum(a)
)
datSum3 <- arrange(datSum3,desc(Quantity))
Lvl3dfStatus <- tibble(name = datSum3$z,y = datSum3$Quantity)
# Note: The id must match the one we specified above as "drilldown"
list(id = tolower(paste(x_level, y_level, sep = "_")), type = "column", data = list_parse2(Lvl3dfStatus))
})
}) %>% unlist(recursive = FALSE)
highchart() %>%
hc_xAxis(type = "category") %>%
hc_add_series(Lvl1dfStatus, "column", hcaes(x = name, y = y), color = "#E4551F") %>%
hc_plotOptions(column = list(stacking = "normal")) %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = c(Level_2_Drilldowns, Level_3_Drilldowns)
)
})
output$trial <- renderText({input$ClickedInput})
}
shinyApp(ui, server)
If for any reason, you should not be satisfied with collecting all drilldowns beforehand, there is an api for adding drilldowns on the fly. Try searching for Highcharts and "addSeriesAsDrilldown". I am not sure, however, if this is accessible outside of JavaScript.
Related
I am trying to create an app that creates word frequency plot from text. The data I used is here: https://www.kaggle.com/datasets/bharadwaj6/kindle-reviews#:~:text=Never-,kindle_reviews,-.csv(701.88
Following is my shiny code:
library(shiny)
library(tidyverse)
library(tidytext)
# Source functions
source("wrd_freq_df.R")
source("bigrm_df.R")
# UI design ----
ui <- fluidPage(fluidRow(
column(
4,
fileInput("upload", NULL, accept = c(".csv", ".tsv")),
actionButton(
inputId = "submit",
label = "RUN",
class = "btn-primary"
),fluidRow(
column(4, numericInput(
"n",
"Top n words",
value = 5,
min = 1,
step = 1
)),
column(4, selectInput(
"myselect",
label = "Choose Words"
, choices = NULL
, multiple = TRUE
# , options = list(create = TRUE)
, selected = NULL
))),
plotOutput("wrd_frq_plot"),
tableOutput("head")
)
))
# SERVER ----
options(shiny.maxRequestSize = 60 * 1024 ^ 2)
server <- function(input, output, session) {
#upload csv data
data <- reactive({
req(input$upload)
ext <- tools::file_ext(input$upload$name)
switch(
ext,
csv = vroom::vroom(input$upload$datapath, delim = ","),
tsv = vroom::vroom(input$upload$datapath, delim = "\t"),
validate("Invalid file; Please upload a .csv or .tsv file")
)
})
#create different data subset to be used for plotting word_freq and bigrams
rv <- reactiveValues()
#run analysis on pressing run button
observeEvent(input$submit, {
rv$data_head <- data() %>%
mutate(ID = as.character(round(ID))) %>%
mutate(group = if_else(rating >= 4, "High", if_else(rating > 2, "Avg", "Low"))) %>%
select(ID, group, reviewText)
#get base analysis dataset
rv$word_freq <- wrd_freq_df(rv$data_head)
rv$bigrm_freq <- bigrm_freq_df(rv$data_head)
rv$bigrm_tf_idf <- bigrm_freq_tf_idf(rv$bigrm_freq)
#get all unique words from the document
rv$choices <- rv$word_freq %>%
select(word) %>%
unique() %>% unlist()
output$wrd_frq_plot <- renderPlot({
#ensure that if selectinput has no value then all words are used for analysis
if (is.null(input$myselect)) {
selected_choices = rv$choices
}
else{
selected_choices = input$myselect
}
updateSelectInput(session, "myselect", selected = selected_choices)
#get relevant document ID which contains chosen word for analysis
word <- input$myselect
word_df_chose <- data.frame(word)
relvant_ID <- word_df_chose %>%
#THIS IS PROBABLY WHERE THINGS FAILS
inner_join(rv$word_freq) %>%
select(ID) %>%
unique() %>% unlist()
rv$word_freq %>%
filter(ID %in% relevant_ID) %>%
left_join(rv$data_head %>%
select(ID, group) %>%
unique()) %>%
#remove low tf_IDF words
filter(tf_idf > quantile(tf_idf, 0.25)) %>%
group_by(group, word) %>%
summarise(n_tot = sum(n)) %>% ungroup() %>%
group_by(group) %>%
slice_max(n_tot, n = input$n) %>%
ungroup() %>%
mutate(group = as.factor(group),
word = reorder_within(word, n_tot, group)) %>%
ggplot(aes(x = word, y = n_tot, fill = group)) + geom_col() + facet_wrap(group ~
., scales = "free") +
coord_flip() + scale_x_reordered()
})
})
}
#executes app
shinyApp(ui, server)
The functions sourced are as follows:
wrd_freq_df <- function(df){
df %>%
# mutate(ID = as.character(round(ID))) %>%
# mutate(group = if_else(rating >= 4, "High", if_else(rating > 2, "Avg", "Low"))) %>%
# select(ID, group, reviewText) %>%
#get word freq
unnest_tokens(output = word, input = reviewText) %>% ungroup() %>%
anti_join(stop_words) %>%
count(ID, word) %>% ungroup() %>%
group_by(ID) %>%
mutate(total = sum(n)) %>% ungroup() %>%
bind_tf_idf(word, ID, n) }
bigrm_freq_df <- function(df) {
df %>%
# mutate(ID = as.character(round(ID))) %>%
# mutate(group = if_else(rating >= 4, "High", if_else(rating > 2, "Avg", "Low"))) %>%
# select(ID, group, reviewText) %>%
unnest_tokens(bigram, reviewText, token = "ngrams", n = 2) %>%
separate(bigram,
c("word1", "word2"),
sep = " ",
remove = FALSE) %>%
filter(!word1 %in% stop_words$word) %>%
filter(!word2 %in% stop_words$word)
}
bigrm_freq_tf_idf <- function(df) {
df %>%
select(ID, bigram) %>%
#get tf_idf
count(ID, bigram) %>%
bind_tf_idf(bigram, ID, n) %>%
arrange(desc(tf_idf))
}
i get following error message:
Joining, by = "word"
Warning: Error in inner_join: by must be supplied when x and y have no common variables.
ℹ use by = character()` to perform a cross-join.
181:
Input to asJSON(keep_vec_names=TRUE) is a named vector. In a future version of jsonlite, this option will not be supported, and named vectors will be translated into arrays instead of objects. If you want JSON object output, please use a named list instead. See ?toJSON.
I assume that the error must be arising when
In the below reproducible example Code 1, the user stratifies data and selects which variable to stratify the data by, Value_1 or Value_2; and also selects to view the stratification as a table or as a plot. Code 1 works as intended, and the stratification range label is a static "Range" (as shown in the table left-most column header and in the plot x-axis label, and as shown in the images at the bottom).
I am making the range label dynamic (reactive), because in the fuller App this example derives from the user has many variables to choose from for stratification.
In Code 2 below showing an amplified custom function stratData(), I have succeeded in making the table left-most column header for stratification ranges reactive, but I haven't yet figured out how to make the plot x-axis label for stratification ranges similarly reactive. Just replace the stratData() in Code 1 with the stratData() in Code 2 (and comment-out the plot code under renderPlot() to avoid seeing the error) to see how this is working (or not).
How could the plot x-axis label reflect the same reactivity as the table left-most column header?
Code 1:
library(ggplot2)
library(shiny)
library(tidyverse)
library(shinyWidgets)
ui <-
fluidPage(
uiOutput("strat_values"),
radioButtons(
inputId = 'stratsView',
label = NULL,
choices = list("Table view" = 1,"Plot view" = 2),
selected = 1,
inline = TRUE
),
conditionalPanel(condition = "input.stratsView == 1",h5(strong("Stratified data:")), tableOutput("stratData")),
conditionalPanel(condition = "input.stratsView == 2",h5(strong("Stratified data:")), plotOutput("stratPlot"))
)
server <- function(input, output, session) {
dat <- reactive({
data.frame(
ID = c(1,1,2,2,2,2,3,3,3,3),
Period = c("2020-03", "2020-04", "2020-01", "2020-02", "2020-03", "2020-04", "2020-01", "2020-02", "2020-03", "2020-04"),
Values_1 = c(-6, 26, 36, 46, 56, 86, 100, 10, 20, 30),
Values_2 = c(-3, 13, 18, 23, 28, 43, 50, 5, 10, 15)
)
})
output$strat_values <- renderUI({
selectInput("strat_values",
"Variable to range-spread (col 1):",
choices = c("Values_1","Values_2"),
selected = c("Values_1"))
})
stratData <- function(){
req(input$strat_values)
filter_exp1 <- parse(text=paste0("Period", "==", "'","2020-04", "'"))
dat_1 <- reactive({dat() %>% filter(eval(filter_exp1))})
breaks <- seq(min(dat_1()[[input$strat_values]]), max(dat_1()[[input$strat_values]]), length.out = 6)
tmp <- dat() %>%
filter(eval(filter_exp1)) %>%
mutate(Range = cut(!!sym(input$strat_values), breaks=breaks, include.lowest=TRUE, right = TRUE, dig.lab = 5)) %>%
group_by(Range)
tmp <- tmp %>%
summarise(Count = n(),Values = sum(!!sym("Values_2"))) %>%
complete(Range, fill = list(Count = 0,Values = 0)) %>%
ungroup %>%
mutate(Count_pct = Count/sum(Count)*100, Values_pct = Values/sum(Values)*100) %>%
dplyr::select(everything(), Count, Count_pct, Values, Values_pct) %>%
bind_rows(summarise_all(., ~(if(is.numeric(.)) sum(.) else "Total")))
Count <- tmp %>% pull(Count)
Range <- tmp %>% pull(Range)
list(data = tmp,
Range = Range[-length(Range)],
Count = as.data.frame(Count[-length(Count)]))
}
output$stratData <- renderTable({stratData()$data})
output$stratPlot <- renderPlot({
x <- factor(stratData()$Range, levels = c(stratData()$Range))
y <- as.matrix(stratData()$Count)
ggplot(stratData()$Count,aes(x,y)) +
geom_bar(stat="identity") +
labs(x = "Ranges") +
geom_text(aes(y = y + sign(y)/4,label = y))
})
}
shinyApp(ui, server)
Code 2:
stratData <- function(){
req(input$strat_values)
filter_exp1 <- parse(text=paste0("Period", "==", "'","2020-04", "'"))
dat_1 <- reactive({dat() %>% filter(eval(filter_exp1))})
breaks <- seq(min(dat_1()[[input$strat_values]]), max(dat_1()[[input$strat_values]]), length.out = 6)
tmp <- dat() %>%
filter(eval(filter_exp1)) %>%
mutate(sumvar = cut(!!sym(input$strat_values), breaks=breaks, include.lowest=TRUE, right = TRUE, dig.lab = 5)) %>%
group_by(sumvar)
tmp <- tmp %>%
summarise(Count = n(),Values = sum(!!sym("Values_2"))) %>%
complete(sumvar, fill = list(Count = 0,Values = 0)) %>%
ungroup %>%
mutate(Count_pct = Count/sum(Count)*100, Values_pct = Values/sum(Values)*100) %>%
dplyr::select(everything(), Count, Count_pct, Values, Values_pct) %>%
bind_rows(summarise_all(., ~(if(is.numeric(.)) sum(.) else "Total")))
names(tmp)[1] <- paste(input$strat_values, " Range")
Count <- tmp %>% pull(Count)
# Range <- tmp %>% pull(Range)
list(data = tmp,
# Range = Range[-length(Range)],
Count = as.data.frame(Count[-length(Count)]))
}
Resolved code:
Now with OP code correction and reflecting Stefan's comment for plot axis label reactivity; posting revised stratData() custom function where only one line was fixed (commented below) and the renderPlot() function where Stefan's axis-label solution is also commented:
stratData <- function(){
req(input$strat_values)
filter_exp1 <- parse(text=paste0("Period", "==", "'","2020-04", "'"))
dat_1 <- reactive({dat() %>% filter(eval(filter_exp1))})
breaks <- seq(min(dat_1()[[input$strat_values]]), max(dat_1()[[input$strat_values]]), length.out = 6)
tmp <- dat() %>%
filter(eval(filter_exp1)) %>%
mutate(Range = cut(!!sym(input$strat_values), breaks=breaks, include.lowest=TRUE, right = TRUE, dig.lab = 5)) %>%
group_by(Range)
tmp <- tmp %>%
summarise(Count = n(),Values = sum(!!sym("Values_2"))) %>%
complete(Range, fill = list(Count = 0,Values = 0)) %>%
ungroup %>%
mutate(Count_pct = Count/sum(Count)*100, Values_pct = Values/sum(Values)*100) %>%
dplyr::select(everything(), Count, Count_pct, Values, Values_pct) %>%
bind_rows(summarise_all(., ~(if(is.numeric(.)) sum(.) else "Total")))
names(tmp)[1] <- paste(input$strat_values, " Ranges")
Count <- tmp %>% pull(Count)
Range <- tmp %>% pull(var = 1) # var = 1 pulls left-most column from tmp dataframe
list(data = tmp,
Range = Range[-length(Range)],
Count = as.data.frame(Count[-length(Count)]))
}
output$stratPlot <- renderPlot({
x <- factor(stratData()$Range, levels = c(stratData()$Range))
y <- as.matrix(stratData()$Count)
ggplot(stratData()$Count,aes(x,y)) +
geom_bar(stat="identity") +
labs(x = paste(input$strat_values, " Ranges")) + # < Added line this per Stefan comment
geom_text(aes(y = y + sign(y)/4,label = y),
position = position_nudge(y = 0),
size = 5)
})
If I run the following code, everything runs fine:
library(dplyr)
library(tidyr)
library(shiny)
id <- 1:100
gender <- sample(c('M','F'), 100, replace=TRUE)
age <- sample(18:22, 100, replace=TRUE)
ethnicity <- sample(c('W','B','H','A','O'), 100, replace = TRUE)
grade <- sample(LETTERS[1:4], 100, replace=TRUE)
df <- cbind(id,gender,age,ethnicity,grade) %>% as.data.frame()
list1 <- list("id"="id","gender"="gender","age"="age","ethnicity"="ethnicity","grade"="grade")
list2 <- list("id"="id","gender"="gender","age"="age","ethnicity"="ethnicity","grade"="grade")
ui <-fluidPage(
selectInput("picker1", "PICKER 1", choices = list1, selected = "gender"),
selectInput("picker2", "PICKER 2", choices = list2, selected = "grade"),
tableOutput("crosstabs")
)
server <- function(input,output,session){
output$crosstabs <- renderTable({
t<-df %>% select_all() %>% select(-id) %>%
pivot_longer(cols = input$picker1) %>%
count(name,value, grade) %>% pivot_wider(names_from = grade, values_from = n)
t
})
}
shinyApp(ui,server)
But when I update output$crosstabs to include input$picker2, it returns an error. I'm rather confused, as I'm using the same structure, but simply with grade swapped out for input$picker2:
output$crosstabs <- renderTable({
t<-df %>% select_all() %>% select(-id) %>%
pivot_longer(cols = input$picker1) %>%
count(name,value, input$picker2) %>% pivot_wider(names_from = input$picker2, values_from = n)
t
})
What exactly is happening here?
It is a string and the count expects a unquoted column name, we can convert it to symbol and evaluate (!!)
server <- function(input,output,session){
output$crosstabs <- renderTable({
df %>%
select_all() %>%
select(-id) %>%
pivot_longer(cols = input$picker1) %>%
count(name,value, !!rlang::sym(input$picker2)) %>%
pivot_wider(names_from = input$picker2, values_from = n)
})
}
-testing
I have a set of code that loops through all possible scenarios that I use for a drilldown feature in my shiny application. However, the Level_3_Drilldowns isn't working as expected as I am not getting my defined tibble names.
Below is a single output for Level_2_Drilldowns which is producing what is expected:
[[3]]
[[3]]$id
[1] "ocean"
[[3]]$type
[1] "column"
[[3]]$data
[[3]]$data[[1]]
[[3]]$data[[1]]$name
[1] "Boat"
[[3]]$data[[1]]$y
[1] 2
[[3]]$data[[1]]$PerTotal
[1] 37
[[3]]$data[[1]]$drilldown
[1] "ocean_boat"
Here, I can see that name, y, and PerTotal are defined (I need to be able to reference them in my graph tooltip)
Below is a single output for Level_3_Drilldowns which is not producing what is expected:
[[5]]
[[5]]$id
[1] "ocean_boat"
[[5]]$type
[1] "column"
[[5]]$data
[[5]]$data[[1]]
[[5]]$data[[1]][[1]]
[1] "Fig"
[[5]]$data[[1]][[2]]
[1] 1
[[5]]$data[[1]][[3]]
[1] 37
[[5]]$data[[2]]
[[5]]$data[[2]][[1]]
[1] "Tony"
[[5]]$data[[2]][[2]]
[1] 1
[[5]]$data[[2]][[3]]
[1] 37
You can see that name, y and PerTotal are not defined.
Any ideas on why they are not being shown?
Below is the full code:
library (tidyr)
library (data.table)
library (highcharter)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
b <- c(3,5,1,3,8,5,3,9)
dat <- data.frame(x,y,z,a)
#First Tier #Copied
datSum <- dat %>%
group_by(x) %>%
summarize(Quantity = sum(a)
)
datSum <- arrange(datSum,desc(Quantity))
Lvl1dfStatus <- tibble(name = datSum$x, y = datSum$Quantity, drilldown = tolower(name))
Level_2_Drilldowns <- lapply(unique(dat$x), function(x_level) {
# x_level is what you called 'input' earlier.
datSum2 <- dat[dat$x == x_level,]
datSum2 <- datSum2 %>%
group_by(y) %>%
summarize(Quantity = sum(a),
PerTotal = sum(b)
)
datSum2 <- arrange(datSum2,desc(Quantity))
Lvl2dfStatus <- tibble(name = datSum2$y,y = datSum2$Quantity, PerTotal = datSum2$PerTotal, drilldown = tolower(paste(x_level, name, sep = "_")))
list(id = tolower(x_level), type = "column", data = list_parse(Lvl2dfStatus))
})
Level_3_Drilldowns <- lapply(unique(dat$x), function(x_level) {
datSum2 <- dat[dat$x == x_level,]
lapply(unique(datSum2$y), function(y_level) {
datSum3 <- datSum2[datSum2$y == y_level,]
datSum3 <- datSum3 %>%
group_by(z) %>%
summarize(Quantity = sum(a),
PerTotal = sum(b)
)
datSum3 <- arrange(datSum3,desc(Quantity))
Lvl3dfStatus <- tibble(name = datSum3$z,y = datSum3$Quantity, PerTotal = datSum3$PerTotal)
list(id = tolower(paste(x_level, y_level, sep = "_")), type = "column", data = list_parse2(Lvl3dfStatus))
})
}) %>% unlist(recursive = FALSE)
I'm receiving the following error when trying to run a Shiny App I'm building. The error is:
Listening on http://........
Error in eval(substitute(expr), envir, enclos) :
incorrect length (0), expecting: 202
I've been modeling the base of my app after the movie-explorer example App. The data is fed in via CSV and is a 202 lines long dataframe.
UPDATE
After running through debugger I've found that the actual expression that causes the error is found within the %>% function. The error occurs after the following two lines of code are executed:
env[["_lhs"]] <- eval(lhs, parent, parent)
result <- withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
At this point in the code the variable values are:
lhs = companies
parent = Environment
env = Environment
Obviously, the code is expecting my dataframe but is receiving an empty set. Reason is unknown.
END UPDATE
SPECIFIC QUESTION: What am I doing wrong and how do I fix it?
my server.R file looks like:
library(shiny)
library(dplyr)
library(ggvis)
all_dat = read.csv("data/company_data.csv")
shinyServer(function(input, output, session) {
companies <- reactive({
# Filter the clicks, views, opens
clicks <- input$Clicks
pageviews <- input$Pageviews
opens <- input$Opens
engage_value <- input$Engage_Value
viewspermsg <- input$views_per_msg
clickspermsg <- input$clicks_per_msg
openspermsg <- input$opens_per_msg
# Apply Filters
d <- all_dat %>%
filter(
Clicks >= clicks,
Pageviews >= pageviews,
Opens >= opens,
Engage_Value >= engage_value,
views_per_msg >= viewspermsg,
clicks_per_msg >= clickspermsg,
opens_per_msg >= openspermsg
) %>%
arrange(Clicks)
# Optional: filter by Dive
if (input$Dive != "All") {
size <- paste0("%", input$Dive, "%")
d <- d %>% filter(Dive %like% dive)
}
# Optional: filter by Dive Family
if (input$Family != "All") {
family <- paste0("%", input$Family, "%")
d <- d %>% filter(Family %like% family)
}
# Optional: filter by Industry
if (input$Industry != "All") {
industry <- paste0("%", input$Industry, "%")
d <- d %>% filter(Industry %like% industry)
}
# Optional: filter by Dive Family
if (input$Size != "All") {
size <- paste0("%", input$Size, "%")
d <- d %>% filter(Size %like% size)
}
d <- as.data.frame(d)
d$Has_International <- character(nrow(d))
d$Has_International[d$Oscars == 0] <- "No"
d$Has_International[d$Oscars >= 1] <- "Yes"
#I don't know if I need this.
d
})
company_tooltip <- function(x) {
if (is.null(x)) return(NULL)
if (is.null(x$Unnamed..0)) return(NULL)
all_dat <- isolate(companies())
company <- all_dat[all_dat$Unnamed..0 == x$Unnamed..0, ]
paste0("<b>", company$Company, "</b><br>",
company$Industry, "<br>",
company$Size, " employees", "<br>",
company$Company_Type, "<br>",
round(company$Percent_New, digits=2), " % New Readers"
)
}
#reactive labels and graph aspects
vis <- reactive({
# Labels for axes
xvar_name <- names(axis_vars)[axis_vars == input$xvar]
yvar_name <- names(axis_vars)[axis_vars == input$yvar]
# Normally we could do something like props(x = ~BoxOffice, y = ~Reviews),
# but since the inputs are strings, we need to do a little more work.
xvar <- prop("x", as.symbol(input$xvar))
yvar <- prop("y", as.symbol(input$yvar))
companies %>%
ggvis(x = xvar, y = yvar) %>%
layer_points(size := 50, size.hover := 200,
fillOpacity := 0.2, fillOpacity.hover := 0.5,
stroke = ~Has_International, key := ~Unnamed..0) %>%
add_tooltip(company_tooltip, "hover") %>%
add_axis("x", title = xvar_name) %>%
add_axis("y", title = yvar_name) %>%
add_legend("stroke", title = "International Presence", values = c("Yes", "No")) %>%
scale_nominal("stroke", domain = c("Yes", "No"),
range = c("orange", "#aaa")) %>%
set_options(width = 500, height = 500)
})
vis %>% bind_shiny("plot1")
})
Solution: In the code where filters are setup, reference all lowercase variable names (input$dive), not the uppercase variable name as it originally appears in the initial data frame (input$Dive). So change input$Dive to input$dive.
The wrong way
# Optional: filter by Dive
if (input$Dive != "All") {
size <- paste0("%", input$Dive, "%")
d <- d %>% filter(Dive %like% dive)
}
The right way.
# Optional: filter by Dive
if (input$dive != "All") {
size <- paste0("%", input$dive, "%")
d <- d %>% filter(Dive %like% dive)
}