Problems to run stm for topic modelling with one single covariate - r

I'm trying to run LDA topic modelling analysis with stm but I have problems with my meta data, it seems to work fine but I have a covariate (Age) that is not being read as shown in this example.
I have some tweets (docu column in excel file) with an Age covariate (Young,Old) values..
Here is my data
http://www.mediafire.com/file/5eb9qe6gbg22o9i/dada.xlsx/file
library(stm)
library(readxl)
library(quanteda)
library(stringr)
library(tm)
data <- read_xlsx("C:/dada.xlsx")
#Remove URL's
data$docu <- str_replace_all(data$docu, "https://t.co/[a-z,A-Z,0-9]*","")
data$docu <- gsub("#\\w+", " ", data$docu) # Remove user names (all proper names if you're wise!)
data$docu <- iconv(data$docu, to = "ASCII", sub = " ") # Convert to basic ASCII text to avoid silly characters
data$docu <- gsub("#\\w+", " ", data$docu)
data$docu <- gsub("http.+ |http.+$", " ", data$docu) # Remove links
data$docu <- gsub("[[:punct:]]", " ", data$docu) # Remove punctuation)
data$docu<- gsub("[\r\n]", "", data$docu)
data$docu <- tolower(data$docu)
#Remove Stopwords. "SMART" is in reference to english stopwords from the SMART information retrieval system and stopwords from other European Languages.
data$docu <- tm::removeWords(x = data$docu, c(stopwords(kind = "SMART")))
data$docu <- gsub(" +", " ", data$docu) # General spaces (should just do all whitespaces no?)
myCorpus <- corpus(data$docu)
docvars(myCorpus, "Age") <- as.factor(data$Age)
processed <- textProcessor(data$docu, metadata = data)
out <- prepDocuments(processed$documents, processed$vocab, processed$meta, lower.thresh = 2)
out$documents
out$meta
levels(out$meta)
First_STM <- stm(documents = out$documents, vocab = out$vocab,
K = 4, prevalence =~ Age ,
max.em.its = 25, data = out$meta,
init.type = "LDA", verbose = FALSE)
As shown in the code I tried to define Age as factor, I think that is not needed because running textProcessor might be enough.. but nevertheless when I run
levels(out$meta) I get NULL value so when I then run stm to get the actual topics I get memory allocation error..

You set your metavariable of Age as factor in this line
docvars(myCorpus, "Age") <- as.factor(data$Age)
But you don't use myCorpus further. In the next steps you use your dataframe data for preprocessing. Try to define Age in the dataframe as factor:
data$Age <- factor(data$Age)
and then use it just before here
processed <- textProcessor(data$docu, metadata = data)
out <- prepDocuments(processed$documents, processed$vocab, processed$meta, lower.thresh = 2)
You can then look at the levels like this:
levels(out$meta$Age)
I could not reproduce your memory allocation error though. The stm works fine on my machine (Win 10 Pro, 8GB Ram).

Related

Error in aggregate.data.frame(as.data.frame(x), ...) : arguments must have same length

Hi I'm working with the last example in this tutorial: Topics proportions over time.
https://tm4ss.github.io/docs/Tutorial_6_Topic_Models.html
I run it for my data with this code
library(readxl)
library(tm)
# Import text data
tweets <- read_xlsx("C:/R/data.xlsx")
textdata <- tweets$text
#Load in the library 'stringr' so we can use the str_replace_all function.
library('stringr')
#Remove URL's
textdata <- str_replace_all(textdata, "https://t.co/[a-z,A-Z,0-9]*","")
textdata <- gsub("#\\w+", " ", textdata) # Remove user names (all proper names if you're wise!)
textdata <- iconv(textdata, to = "ASCII", sub = " ") # Convert to basic ASCII text to avoid silly characters
textdata <- gsub("#\\w+", " ", textdata)
textdata <- gsub("http.+ |http.+$", " ", textdata) # Remove links
textdata <- gsub("[[:punct:]]", " ", textdata) # Remove punctuation
#Change all the text to lower case
textdata <- tolower(textdata)
#Remove Stopwords. "SMART" is in reference to english stopwords from the SMART information retrieval system and stopwords from other European Languages.
textdata <- tm::removeWords(x = textdata, c(stopwords(kind = "SMART")))
textdata <- gsub(" +", " ", textdata) # General spaces (should just do all whitespaces no?)
# Convert to tm corpus and use its API for some additional fun
corpus <- Corpus(VectorSource(textdata)) # Create corpus object
#Make a Document Term Matrix
dtm <- DocumentTermMatrix(corpus)
ui = unique(dtm$i)
dtm.new = dtm[ui,]
#Fixes this error: "Each row of the input matrix needs to contain at least one non-zero entry" See: https://stackoverflow.com/questions/13944252/remove-empty-documents-from-documenttermmatrix-in-r-topicmodels
#rowTotals <- apply(datatm , 1, sum) #Find the sum of words in each Document
#dtm.new <- datatm[rowTotals> 0, ]
library("ldatuning")
library("topicmodels")
k <- 7
ldaTopics <- LDA(dtm.new, method = "Gibbs", control=list(alpha = 0.1, seed = 77), k = k)
#####################################################
#topics by year
tmResult <- posterior(ldaTopics)
tmResult
theta <- tmResult$topics
dim(theta)
library(ggplot2)
terms(ldaTopics, 7)
tweets$decade <- paste0(substr(tweets$date2, 0, 3), "0")
topic_proportion_per_decade <- aggregate(theta, by = list(decade = tweets$decade), mean)
top5termsPerTopic <- terms(topicModel, 7)
topicNames <- apply(top5termsPerTopic, 2, paste, collapse=" ")
# set topic names to aggregated columns
colnames(topic_proportion_per_decade)[2:(K+1)] <- topicNames
# reshape data frame
vizDataFrame <- melt(topic_proportion_per_decade, id.vars = "decade")
# plot topic proportions per deacde as bar plot
require(pals)
ggplot(vizDataFrame, aes(x=decade, y=value, fill=variable)) +
geom_bar(stat = "identity") + ylab("proportion") +
scale_fill_manual(values = paste0(alphabet(20), "FF"), name = "decade") +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
Here is the excel file to the input data
https://www.mediafire.com/file/4w2hkgzzzaaax88/data.xlsx/file
I got the error when I run the line with the aggregate function, I can't find out what is going on with the aggregate, I created the "decade" variable the same as in the tutoria, I show it and looks ok, the theta variable is also ok.. I changed several times the aggregate function according for example to this post
Error in aggregate.data.frame : arguments must have same length
But still have the same error.. please help
I am not sure what you want to achieve with the command
topic_proportion_per_decade <- aggregate(theta, by = list(decade = tweets$decade), mean)
As far as I see you produce only one decade with
tweets$decade <- paste0(substr(tweets$date2, 0, 3), "0")
table(tweets$decade)
2010
3481
With all the preprocessing from tweets to textdata you're producing a few empty lines. This is where your problem starts.
Textdata with its new empty lines is the basis of your corpus and your dtm. You get rid of them with the lines:
ui = unique(dtm$i)
dtm.new = dtm[ui,]
At the same time you're basically deleting the empty columns in the dtm, thereby changing the length of your object. This new dtm without the empty cells is
then your new basis for the topic model. This is coming back to haunt you, when you try to use aggregate() with two objects of different lengths: tweets$decade, which is still the old length of 3418 with theta, that is produced by the topic model, which in turn is based on dtm.new -- remember, the one with fewer rows.
What I would suggest is to, first, get an ID-column in tweets. Later on you can use the IDs to find out what texts later on get deleted by your preprocessing and match the length of tweet$decade and theta.
I rewrote your code -- try this out:
library(readxl)
library(tm)
# Import text data
tweets <- read_xlsx("data.xlsx")
## Include ID for later
tweets$ID <- 1:nrow(tweets)
textdata <- tweets$text
#Load in the library 'stringr' so we can use the str_replace_all function.
library('stringr')
#Remove URL's
textdata <- str_replace_all(textdata, "https://t.co/[a-z,A-Z,0-9]*","")
textdata <- gsub("#\\w+", " ", textdata) # Remove user names (all proper names if you're wise!)
textdata <- iconv(textdata, to = "ASCII", sub = " ") # Convert to basic ASCII text to avoid silly characters
textdata <- gsub("#\\w+", " ", textdata)
textdata <- gsub("http.+ |http.+$", " ", textdata) # Remove links
textdata <- gsub("[[:punct:]]", " ", textdata) # Remove punctuation
#Change all the text to lower case
textdata <- tolower(textdata)
#Remove Stopwords. "SMART" is in reference to english stopwords from the SMART information retrieval system and stopwords from other European Languages.
textdata <- tm::removeWords(x = textdata, c(stopwords(kind = "SMART")))
textdata <- gsub(" +", " ", textdata) # General spaces (should just do all whitespaces no?)
# Convert to tm corpus and use its API for some additional fun
corpus <- Corpus(VectorSource(textdata)) # Create corpus object
#Make a Document Term Matrix
dtm <- DocumentTermMatrix(corpus)
ui = unique(dtm$i)
dtm.new = dtm[ui,]
#Fixes this error: "Each row of the input matrix needs to contain at least one non-zero entry" See: https://stackoverflow.com/questions/13944252/remove-empty-documents-from-documenttermmatrix-in-r-topicmodels
#rowTotals <- apply(datatm , 1, sum) #Find the sum of words in each Document
#dtm.new <- datatm[rowTotals> 0, ]
library("ldatuning")
library("topicmodels")
k <- 7
ldaTopics <- LDA(dtm.new, method = "Gibbs", control=list(alpha = 0.1, seed = 77), k = k)
#####################################################
#topics by year
tmResult <- posterior(ldaTopics)
tmResult
theta <- tmResult$topics
dim(theta)
library(ggplot2)
terms(ldaTopics, 7)
id <- data.frame(ID = dtm.new$dimnames$Docs)
colnames(id) <- "ID"
tweets$decade <- paste0(substr(tweets$date2, 0, 3), "0")
tweets_new <- merge(id, tweets, by.x="ID", by.y = "ID", all.x = T)
topic_proportion_per_decade <- aggregate(theta, by = list(decade = tweets_new$decade), mean)

R: tm package on German text

I want to perform Sentiment classification on German dataset, I am using the following code, which works fine with english text, but raising error in case of German text.
Here is my code for the following:
#loading required libraries
library(tm)
library(readxl)
library(data.table)
library(plyr)
library(dplyr)
library(zoo)
library(ggplot2)
library(ranger)
library(e1071)
df<- data.table(read_excel("data/German2datasets.xlsx", skip = 1))
# An abstract function to preprocess a text column
preprocess <- function(text_column)
{
# Use tm to get a doc matrix
corpus <- Corpus(VectorSource(text_column))
# all lower case
corpus <- tm_map(corpus, content_transformer(tolower))
# remove punctuation
corpus <- tm_map(corpus, content_transformer(removePunctuation))
# remove numbers
corpus <- tm_map(corpus, content_transformer(removeNumbers))
# remove stopwords
corpus <- tm_map(corpus, removeWords, stopwords("german"))
# stem document
corpus <- tm_map(corpus, stemDocument)
# strip white spaces (always at the end)
corpus <- tm_map(corpus, stripWhitespace)
# return
corpus
}
# Get preprocess training and test data
corpus <- preprocess(df$TEXT)
# Create a Document Term Matrix for train and test
# Just including bi and tri-grams
Sys.setenv(JAVA_HOME='D://Program Files/Java/jre1.8.0_112') # for 32-bit version
library(rJava)
library(RWeka)
# Bi-Trigram tokenizer function (you can always get longer n-grams)
bitrigramtokeniser <- function(x, n) {
RWeka:::NGramTokenizer(x, RWeka:::Weka_control(min = 2, max = 3))
}
"
Remove remove words <=2
TdIdf weighting
Infrequent (< than 1% of documents) and very frequent (> 80% of documents) terms not included
"
dtm <- DocumentTermMatrix(corpus, control=list(wordLengths=c(2, Inf),
tokenize = bitrigramtokeniser,
weighting = function(x) weightTfIdf(x, normalize = FALSE),
bounds=list(global=c(floor(length(corpus)*0.01), floor(length(corpus)*.8)))))
sent <- df$Sentiment
# Variable selection
# ~~~~~~~~~~~~~~~~~~~~
"
For dimension reduction.
The function calculates chi-square value for each phrase and keeps phrases with highest chi_square values
Ideally you want to put variable selection as part of cross-validation.
chisqTwo function takes:
document term matrix (dtm),
vector of labels (labels), and
number of n-grams you want to keep (n_out)
"
chisqTwo <- function(dtm, labels, n_out=2000){
mat <- as.matrix(dtm)
cat1 <- colSums(mat[labels==T,]) # total number of times phrase used in cat1
cat2 <- colSums(mat[labels==F,]) # total number of times phrase used in cat2
n_cat1 <- sum(mat[labels==T,]) - cat1 # total number of phrases in soft minus cat1
n_cat2 <- sum(mat[labels==F,]) - cat2 # total number of phrases in hard minus cat2
num <- (cat1*n_cat2 - cat2*n_cat1)^2
den <- (cat1 + cat2)*(cat1 + n_cat1)*(cat2 + n_cat2)*(n_cat1 + n_cat2)
chisq <- num/den
chi_order <- chisq[order(chisq)][1:n_out]
mat <- mat[, colnames(mat) %in% names(chi_order)]
}
n <- nrow(dtm)
shuffled <- dtm[sample(n),]
train_dtm <- shuffled[1:round(0.7 * n),]
test_dtm <- shuffled[(round(0.7 * n) + 1):n,]
"
With high dimensional data, test matrix may not have all the phrases training matrix has.
This function fixes that - so that test matrix has the same columns as training.
testmat takes column names of training matrix (train_mat_cols), and
test matrix (test_mat)
and outputs test_matrix with the same columns as training matrix
"
# Test matrix maker
testmat <- function(train_mat_cols, test_mat){
# train_mat_cols <- colnames(train_mat); test_mat <- as.matrix(test_dtm)
test_mat <- test_mat[, colnames(test_mat) %in% train_mat_cols]
miss_names <- train_mat_cols[!(train_mat_cols %in% colnames(test_mat))]
if(length(miss_names)!=0){
colClasses <- rep("numeric", length(miss_names))
df <- read.table(text = '', colClasses = colClasses, col.names = miss_names)
df[1:nrow(test_mat),] <- 0
test_mat <- cbind(test_mat, df)
}
as.matrix(test_mat)
}
# Train and test matrices
train_mat <- chisqTwo(train_dtm, train$Sentiment)
test_mat <- testmat(colnames(train_mat), as.matrix(test_dtm))
dim(train_mat)
dim(test_mat)
n <- nrow(df)
shuffled <- df[sample(n),]
train_data <- shuffled[1:round(0.7 * n),]
test_data <- shuffled[(round(0.7 * n) + 1):n,]
train_mat <- as.data.frame(as.matrix(train_mat))
colnames(train_mat) <- make.names(colnames(train_mat))
train_mat$Sentiment <- train_data$Sentiment
test_mat <- as.data.frame(as.matrix(test_mat))
colnames(test_mat) <- make.names(colnames(test_mat))
test_mat$Sentiment <- test_data$Sentiment
train_mat$Sentiment <- as.factor(train_mat$Sentiment)
test_mat$Sentiment <- as.factor(test_mat$Sentiment)
Then, I will apply caret ML algos on the same for prediction of the Sentiment on the train and test data created.
I am getting the following error at "preprocess" function.
> corpus <- preprocess(df$TEXT)
Show Traceback
Rerun with Debug
Error in FUN(content(x), ...) :
invalid input 'Ich bin seit Jahren zufrieden mit der Basler Versicherubg🌺' in 'utf8towcs'
Data - https://drive.google.com/open?id=1T_LpL2G8upztihAC2SQeVs4YCPH-yfOs
How about trying a different package to get to the pre-Weka etc stages? This is equivalent (and simpler imho):
library("quanteda")
library("readtext")
# reads in the spreadsheet and creates the corpus
germancorp <-
readtext("data/German2datasets.xlsx", text_field = "TEXT")) %>%
corpus()
# does all of the steps of your preprocess() function
dtm <- dfm(germancorp, ngrams = c(2, 3),
tolower = TRUE,
remove_punct = TRUE,
remove_numbers = TRUE,
remove = stopwords("german"),
stem = TRUE)
# remove words with only a single count
dtm <- dfm_trim(dtm, min_count = 2)
# form tf-idf weights - change the base argument from default 10 if you wish
dtm <- dfm_tfidf(dtm)
# if you really want a tm formatted DocumentTermMatrix
convert(dtm, to = "tm")
The quanteda package can do some of what you list as additional steps, although it is not clear exactly what you are doing. (Your question focused on the preprocess() failure so I answered that.)
if you haven´t found the reason yet:
invalid input in 'utf8towcs'
It is the encoding of the file (depending on your [virtual] environment and the current sys-options and of course on the the of saving the file to disk at the time of creation)
A workaround is like:
usableText=str_replace_all(tweets$text,"[^[:graph:]]", " ")
or
your_corpus<- tm_map(your_corpus,toSpace,"[^[:graph:]]")

A lemmatizing function using a hash dictionary does not work with tm package in R

I would like to lemmatize Polish text using a large external dictionary (format like in txt variable below). I am not lucky, to have an option Polish with popular text mining packages. The answer https://stackoverflow.com/a/45790325/3480717 by #DmitriySelivanov works well with simple vector of texts. (I have also removed Polish diacritics from both the dictionary and corpus.) The function works well with a vector of texts.
Unfortunately it does not work with the corpus format generated by tm. Let me paste Dmitriy's code:
library(hashmap)
library(data.table)
txt =
"Abadan Abadanem
Abadan Abadanie
Abadan Abadanowi
Abadan Abadanu
abadańczyk abadańczycy
abadańczyk abadańczykach
abadańczyk abadańczykami
"
dt = fread(txt, header = F, col.names = c("lemma", "word"))
lemma_hm = hashmap(dt$word, dt$lemma)
lemma_hm[["Abadanu"]]
#"Abadan"
lemma_tokenizer = function(x, lemma_hashmap,
tokenizer = text2vec::word_tokenizer) {
tokens_list = tokenizer(x)
for(i in seq_along(tokens_list)) {
tokens = tokens_list[[i]]
replacements = lemma_hashmap[[tokens]]
ind = !is.na(replacements)
tokens_list[[i]][ind] = replacements[ind]
}
tokens_list
}
texts = c("Abadanowi abadańczykach OutOfVocabulary",
"abadańczyk Abadan OutOfVocabulary")
lemma_tokenizer(texts, lemma_hm)
#[[1]]
#[1] "Abadan" "abadańczyk" "OutOfVocabulary"
#[[2]]
#[1] "abadańczyk" "Abadan" "OutOfVocabulary"
now I would like to apply it on tm corpus "docs" here is an example syntax I would use with tm package, on tm generated corpus.
docs <- tm_map(docs, function(x) lemma_tokenizer(x, lemma_hashmap="lemma_hm"))
another syntax that I tried:
LemmaTokenizer <- function(x) lemma_tokenizer(x, lemma_hashmap="lemma_hm")
docsTDM <-
DocumentTermMatrix(docs, control = list(wordLengths = c(4, 25), tokenize=LemmaTokenizer))
It throws at me an error:
Error in lemma_hashmap[[tokens]] :
attempt to select more than one element in vectorIndex
The function works with a vector of texts but it will not work with tm corpus. Thanks in advance for suggestions (even use of this function with other text mining package if it will not work with tm).
I see two problems here. 1) your custom function returns a list, while it should return a vector of strings; and 2) you are passing a wrong lemma_hashmap argument.
A quick workaround to fix the first problem is to use paste() and sapply() before returning the function result.
lemma_tokenizer = function(x, lemma_hashmap,
tokenizer = text2vec::word_tokenizer) {
tokens_list = tokenizer(x)
for(i in seq_along(tokens_list)) {
tokens = tokens_list[[i]]
replacements = lemma_hashmap[[tokens]]
ind = !is.na(replacements)
tokens_list[[i]][ind] = replacements[ind]
}
# paste together, return a vector
sapply(tokens_list, (function(i){paste(i, collapse = " ")}))
}
We can run the same example of your post.
texts = c("Abadanowi abadańczykach OutOfVocabulary",
"abadańczyk Abadan OutOfVocabulary")
lemma_tokenizer(texts, lemma_hm)
[1] "Abadan abadańczyk OutOfVocabulary" "abadańczyk Abadan OutOfVocabulary"
Now, we can use tm_map. Just make sure to use lemma_hm (i.e., the variable) and not "lemma_hm" (a string) as argument.
docs <- SimpleCorpus(VectorSource(texts))
out <- tm_map(docs, (function(x) {lemma_tokenizer(x, lemma_hashmap=lemma_hm)}))
out[[1]]$content
[1] "Abadan abadańczyk OutOfVocabulary"
For polish lemmatization please refer to this script
https://github.com/MarcinKosinski/trigeR5/blob/master/R/lematyzacja.R that uses this polmorfologik dictionary https://github.com/MarcinKosinski/trigeR5/tree/master/dicts (and also stop words are included there).
Try using quanteda's dictionary() function, after creating a dictionary mapping each variant as a dictionary value, to the lemma as a dictionary key. Below, it looks up your values and then pastes the tokens back into a text. (If you wanted tokens, you would not need the last paste() operation.
txt <-
"Abadan Abadanem
Abadan Abadanie
Abadan Abadanowi
Abadan Abadanu
abadańczyk abadańczycy
abadańczyk abadańczykach
abadańczyk abadańczykami"
list_temp <- strsplit(readLines(textConnection(txt)), "\\s+")
list_temp2 <- lapply(list_temp, "[", 2)
names(list_temp2) <- sapply(list_temp, "[", 1)
library("quanteda")
polish_lemma_dict <- dictionary(list_temp2)
# Dictionary object with 7 key entries.
# - Abadan:
# - abadanem
# - Abadan:
# - abadanie
# - Abadan:
# - abadanowi
# - Abadan:
# - abadanu
# - abadańczyk:
# - abadańczycy
# - abadańczyk:
# - abadańczykach
# - abadańczyk:
# - abadańczykami
texts <- c("Abadanowi abadańczykach OutOfVocabulary",
"abadańczyk Abadan OutOfVocabulary")
The texts can now be converted into tokens, and use quanteda's tokens_lookup() function to replace the dictionary values (inflected words) with the dictionary keys (lemmas). In the last step, I've pasted the tokens back together, which you can skip if you want tokens and not a full text.
require(magrittr)
texts %>%
tokens() %>%
tokens_lookup(dictionary = polish_lemma_dict, exclusive = FALSE, capkeys = FALSE) %>%
as.character() %>%
paste(collapse = " ")
# [1] "Abadan abadańczyk OutOfVocabulary abadańczyk Abadan OutOfVocabulary"
Here is the complete imperfect code I used the answer in. Credits to many people, I described all sources on the bottom. It is very rough, I realise, but it catches mise for me, ie. I can use txt lemmes dictionary and my stopwords to classify Polish texts. Thanks to Damiano Fantini, Dmitriy Selivanov and many others.
#----1. Set up. ----
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
library(readtext)
library(tm)
library(proxy)
library(stringi)
library(stringr)
library(hashmap)
library(data.table)
library(text2vec)
# For reading n-grams
library(RWeka) #(*)
BigramTokenizer <-
function(x) NGramTokenizer(x, Weka_control(min = 1, max = 3)) #(*)
#----2. Read data. ----
stopwordsPL <- as.vector(str_split(readLines("polish.stopwords.text",encoding = "UTF-8"), pattern = " ",simplify = T))
docs <- VCorpus(DirSource(pattern="txt"))
titles <- rownames(summary(docs))
docs <- tm_map(docs, removeWords, words=stopwordsPL)
docs <- tm_map(docs, tolower)
docs <- tm_map(docs, function(x) stri_trans_general(x, "Latin-ASCII"))
docs <- tm_map(docs, removeNumbers)
docs <- tm_map(docs, removePunctuation)
docs <- tm_map(docs, stripWhitespace)
# for English texts it would be simpler
# docs <- tm_map(docs, removeWords, stopwords("english")) #can add other words to remove
# docs <- tm_map(docs, stemDocument, "english")
#====3. Lemmatize ====
# # Dictionary from http://www.lexiconista.com/datasets/lemmatization/
# lemmadict_file = "lemmatization-pl.text"
# dt = fread(file= lemmadict_file, header = F, col.names = c("lemma", "word"), data.table=T, encoding="UTF-8")
# # I threw away Polish letters, maybe changing locales may help.
# dt$lemma <- stri_trans_general(dt$lemma, "Latin-ASCII;lower")
# dt$word <- stri_trans_general(dt$word, "Latin-ASCII;lower")
# dt <- unique(dt)
#
# # Creating hash dictionary
# lemma_hm = hashmap(dt$word, dt$lemma)
#
# # Test if it works
# lemma_hm[["mnozyl"]]
# # [1] "mnozyc"
#
# save_hashmap(lemma_hm, file="lemma_hm", overwrite = TRUE, compress = TRUE)
lemma_hm <- load_hashmap(file="lemma_hm")
lemma_tokenizer = function(x, lemma_hashmap,
tokenizer = text2vec::word_tokenizer) {
tokens_list = tokenizer(x)
for(i in seq_along(tokens_list)) {
tokens = tokens_list[[i]]
replacements = lemma_hashmap[[tokens]]
ind = !is.na(replacements)
tokens_list[[i]][ind] = replacements[ind]
}
# paste together, return a vector
sapply(tokens_list, (function(i){paste(i, collapse = " ")}))
}
docs <- tm_map(docs, (function(x) {lemma_tokenizer(x, lemma_hashmap=lemma_hm)}))
docs <- tm_map(docs, PlainTextDocument)
#====4. Create document term matrix====
docsTDM <-
DocumentTermMatrix(docs, control = list(wordLengths = c(5, 25),tokenize = BigramTokenizer)) # tokenize=LemmaTokenizer, tokenize = BigramTokenizer (*)
docsTDM$dimnames
#====5. Remove sparse and common words====
docsTDM <- removeSparseTerms(docsTDM, .90)
# https://stackoverflow.com/questions/25905144/removing-overly-common-words-occur-in-more-than-80-of-the-documents-in-r
removeCommonTerms <- function (x, pct)
{
stopifnot(inherits(x, c("DocumentTermMatrix", "TermDocumentMatrix")),
is.numeric(pct), pct > 0, pct < 1)
m <- if (inherits(x, "DocumentTermMatrix"))
t(x)
else x
t <- table(m$i) < m$ncol * (pct)
termIndex <- as.numeric(names(t[t]))
if (inherits(x, "DocumentTermMatrix"))
x[, termIndex]
else x[termIndex, ]
}
docsTDM <-
removeCommonTerms(docsTDM, .8) #remove terms that are in >=80% of the documents
docsTDM$dimnames
#====6. Cluster data (hclust). ====
docsdissim <- dist(as.matrix(docsTDM), method = "cosine")
docsdissim2 <- as.matrix(docsdissim)
dim(docsdissim2)
rownames(docsdissim2) <- titles
colnames(docsdissim2) <- titles
h <- hclust(docsdissim, method = "ward.D2")
plot(h, labels = titles, sub = "")
# Library hclust with p-values (pvclust)
library(pvclust)
h_pv <- pvclust(docsdissim2, method.hclust = "ward.D2", method.dist ="correlation")
plot(h_pv)
data.frame(cutree(tree = h_pv$hclust, k = 4))
# pvclust provides two types of p-values: AU (Approximately Unbiased) p-value and BP (Bootstrap Probability) value.
# AU p-value, which is computed by multiscale bootstrap resampling, is a better approximation to unbiased p-value
# than BP value computed by normal bootstrap resampling.
# AU p-value > 0.95 we can assume the clusters exist and may stably be
# observed if we increase the number of observations.
# (http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust/)
#==== Literature:====
# Original article:
# http://www.rexamine.com/2014/06/text-mining-in-r-automatic-categorization-of-wikipedia-articles/
# Updates to make it work after some functions became obsolete:
# https://stackoverflow.com/questions/34423823/r-automatic-categorization-of-wikipedia-articles
# https://stackoverflow.com/questions/34372166/error-using-termdocumentmatrix-and-dist-functions-in-r
#
# Based on that:
# http://brazenly.blogspot.co.uk/2015/02/r-categorization-clustering-of.html
#
# Sparse terms:
# https://stackoverflow.com/questions/28763389/how-does-the-removesparseterms-in-r-work
# Lemmatizing function:
# https://stackoverflow.com/questions/46122591/a-lemmatizing-function-using-a-hash-dictionary-does-not-work-with-tm-package-in
# https://stackoverflow.com/questions/45762559/lemmatization-using-txt-file-with-lemmes-in-r/45790325#45790325

Text mining with R: use of sub

I am on a project with R and I am starting to get my hands dirty with it.
In the first part I try to clean the data of vector msg. But later when I build the termdocumentmatrix, these characters still appear.
I would like to remove words with less than 4 letters and remove punctuation
gsub("\\b\\w{1,4}\\b ", " ", pclbyshares$msg)
gsub("[[:punct:]]", "", pclbyshares$msg)
corpus <- Corpus(VectorSource(pclbyshares$msg))
TermDocumentMatrix(corpus)
tdm <- TermDocumentMatrix(corpus)
findFreqTerms(tdm, lowfreq=120, highfreq=Inf)
You haven't stored your first two lines of code as variables to use later. So, in your third line, where you create your corpus variable, you are using the unmodified msg data. Give this a try:
msg_clean <- gsub("\\b\\w{1,4}\\b ", " ", pclbyshares$msg)
msg_clean <- gsub("[[:punct:]]", "", msg_clean)
corpus <- Corpus(VectorSource(msg_clean))
TermDocumentMatrix(corpus)
tdm <- TermDocumentMatrix(corpus)
findFreqTerms(tdm, lowfreq = 120, highfreq = Inf)

Empty term document matrix

I seem to run into a problem whenever I try to inspect my freq. words and associations.
When I make the tdm I get this info:
TermDocumentMatrix
I can see I have plenty of terms to use, in plenty of documents.
However!
When I try to inspect the content of "tdm", I get this info:
Inspecting the TDM
Howcome the tdm all of a sudden is empty?
Hope someone can help
tweets <- userTimeline("RDataMining", n = 1000)
(n.tweet <- length(tweets))
tweets[1:3]
#convert tweets to a data frame
tweets.df <- twListToDF(tweets)
dim(tweets.df)
##Text cleaning
library(tm)
#build a corpus and specify the source to be a character vector
myCorpus <- Corpus(VectorSource(tweets.df$text))
#convert to lower case
myCorpus <- tm_map(myCorpus, content_transformer(tolower))
#remove URLs
removeURL <- function(x) gsub ("http[^[:space:]]*","",x)
myCorpus <- tm_map(myCorpus,content_transformer(removeURL))
#remove anything other than English letters or space
removeNumPunct <- function(x) gsub("[^[:alpha:][:space:]]*","",x)
myCorpus <- tm_map(myCorpus,content_transformer(removeNumPunct))
#remove stopwords + 2
myStopwords <- c(stopwords('english'),"available","via")
#remove "r" and "big" from stopwords
myStopwords <- setdiff(myStopwords, c("r","big"))
#remove stopwords from corpus
myCorpus <- tm_map(myCorpus,removeWords,myStopwords)
#remove extra whitespace
myCorpus <- tm_map(myCorpus, stripWhitespace)
#keep a copy of corpus to use later as a dictionary for stem completion
myCorpusCopy <- myCorpus
#stem words
library(SnowballC)
myCorpus <- tm_map(myCorpus,stemDocument)
stemCompletion2 <- function(x,dictionary) {
x <- unlist(strsplit(as.character(x),""))
#because stemCompletion completes an empty string to a word in dict. Remove empty string to avoid this
x <- x[x !=""]
x <- stemCompletion(x, dictionary = dictionary)
x <- paste (x,sep = "",collapse = "")
PlainTextDocument(stripWhitespace(x))
}
myCorpus <- lapply(myCorpus, stemCompletion2, dictionary = myCorpusCopy)
myCorpus <- Corpus(VectorSource(myCorpus))
#count freq of "mining"
miningCases <- lapply(myCorpusCopy,
function(x) {grep(as.character(x),pattern = "\\<mining")})
sum(unlist(miningCases))
#count freq of "miner"
miningCases <- lapply(myCorpusCopy,
function(x) {grep(as.character(x),pattern = "\\<miner")})
sum(unlist(miningCases))
#count freq of "r"
miningCases <- lapply(myCorpusCopy,
function(x) {grep(as.character(x),pattern = "\\<r")})
sum(unlist(miningCases))
#replace "miner" with "mining"
myCorpus <- tm_map(myCorpus,content_transformer(gsub),
pattern = "miner", replacement = "mining")
tdm <- TermDocumentMatrix(myCorpus, control = list(removePunctuation = TRUE,stopwords = TRUE))
tdm
##Freq words and associations
idx <- which(dimnames(tdm)$Terms == "r")
inspect(tdm[idx + (0:5), 101:110])
#inspect frequent words
(freq.terms <- findFreqTerms(tdm, lowfreq = 15))
term.freq <- rowSums(as.matrix(tdm))
term.freq <- subset(term.freq,term.freq >= 15)
df <- data.frame(term = names(term.freq), freq = term.freq)
I've been using the following Twitter query to test your code:
tweets = searchTwitter("r data mining", n=10)
and I think the problem is with your function stemCompletion2, which should look something like this:
stemCompletion2 <- function(x,dictionary) {
x <- unlist(strsplit(as.character(x)," "))
print("before:")
print(x)
#because stemCompletion completes an empty string to a word in dict. Remove empty string to avoid this
x <- x[x !=""]
x <- stemCompletion(x, dictionary = dictionary)
print("after:")
print(x)
x <- paste(x, sep = " ")
PlainTextDocument(stripWhitespace(x))
}
The modifications are as follows: before you had
x <- unlist(strsplit(as.character(x),""))
which was creating a list with all the characters of in each of the documents, and I've modified it to
x <- unlist(strsplit(as.character(x)," "))
to create a list of words. Similarly, when recomposing your documents, you where doing
x <- paste (x,sep = "",collapse = "")
which was creating the long strings you mention in your post, and I've modified it to:
x <- paste(x, sep = " ")
to recompose the words.
One example of the completions would be for my data:
[1] "before:"
[1] "rt" "ebookdealalert" "r" "datamin" "project" "learn" "data" "mine"
[9] "realworld" "project" "book" "solv" "predict" "model"
[1] "after:"
rt ebookdealalert r datamin project learn data mine
"rt" "ebookdealalerts" "r" "datamining" "projects" "learn" "data" ""
realworld project book solv predict model
"realworld" "projects" "book" "solve" "predictive" "modeling"
After that step, you may be able to work with TermDocumentMatrix as expected.
Hope it helps.

Resources