Grouping columns and creating a list output - r

I am new to R. I have a R dataframe of following structure:
164_I_.CEL 164_II.CEL 183_I.CEL 183_II.CEL 2114_I.CEL
1 4496 5310 4492 4511 2872
2 181 280 137 101 91
3 4556 5104 4379 4608 2972
4 167 217 99 79 82
5 89 110 69 58 47
I want to group the columns which have "_I.CEL" in the column name.
I need a list output like NI, NI, I, NI, I
where NI means Not I.

A combination of ifelse and grepl looking for the required pattern in the column names.
ifelse(grepl("_I\\.CEL", names(df1)), "I", "NI")
#[1] "NI" "NI" "I" "NI" "I"
where df1 is your data frame.
Or use fixed = TRUE
ifelse(grepl("_I.CEL", names(df1), fixed = TRUE), "I", "NI")

Related

How to use extract on multiple columns and name output columns based on input column names

I have a data frame of blood pressure data of the following form:
bpdata <- data.frame(bp1 = c("120/89", "110/70", "121/78"), bp2 = c("130/69", "120/90", "125/72"), bp3 = c("115/90", "112/71", "135/80"))
I would like to use the following extract command, but globally, i.e. on all bp\d columns
extract(bp1, c("systolic_1","diastolic_1"),"(\\d+)/(\\d+)")
How can I capture the digit in the column selection and use it in the column output names? I can hack around this by creating a list of column names and then using one of the apply family, but it seems to me there ought to be a more elegant way to do this.
Any suggestions?
We could use read.csv on multiple columns in a loop (Map) with sep = "/" and cbind the list elements at the end with do.call
do.call(cbind, Map(function(x, y) read.csv(text= x, sep="/", header = FALSE,
col.names = paste0(c('systolic', 'diastolic'), y)),
unname(bpdata), seq_along(bpdata)))
# systolic1 diastolic1 systolic2 diastolic2 systolic3 diastolic3
#1 120 89 130 69 115 90
#2 110 70 120 90 112 71
#3 121 78 125 72 135 80
Or without a loop, paste the columns to a single string for each row and then use read.csv/read.table
read.csv(text = do.call(paste, c(bpdata, sep="/")),
sep="/", header = FALSE,
col.names = paste0(c('systolic', 'diastolic'),
rep(seq_along(bpdata), each = 2)))
# systolic1 diastolic1 systolic2 diastolic2 systolic3 diastolic3
#1 120 89 130 69 115 90
#2 110 70 120 90 112 71
#3 121 78 125 72 135 80
Or using tidyverse, similar option is to unite the column into a single one with /, then use either extract or separate to split the column into multiple columns
library(dplyr)
library(tidyr)
library(stringr)
bpdata %>%
unite(bpcols, everything(), sep="/") %>%
separate(bpcols, into = str_c(c('systolic', 'diastolic'),
rep(seq_along(bpdata), each = 2)), convert = TRUE)
# systolic1 diastolic1 systolic2 diastolic2 systolic3 diastolic3
#1 120 89 130 69 115 90
#2 110 70 120 90 112 71
#3 121 78 125 72 135 80

str_match based on vector with count issue

I havent got a reprex but my data are stored in a csv file
https://transcode.geo.data.gouv.fr/services/5e2a1fbefa4268bc25628f27/feature-types/drac:site?format=CSV&projection=WGS84
library(readr)
bzh_sites <- read_csv("site.csv")
I want to count row based on characters matching (column NATURE)
pattern<-c("allée|aqueduc|architecture|atelier|bas|carrière|caveau|chapelle|château|chemin|cimetière|coffre|dépôt|dolmen|eau|église|enceinte|enclos|éperon|espace|exploitation|fanum|ferme|funéraire|groupe|habitat|maison|manoir|menhir|monastère|motte|nécropole|occupation|organisation|parcellaire|pêcherie|prieuré|production|rue|sépulture|stèle|thermes|traitement|tumulus|villa")
test2 <- bzh_sites %>%
drop_na(NATURE) %>%
group_by(NATURE = str_match( NATURE, pattern )) %>%
summarise(n = n())
gives me :
NATURE n
1 allée 176
2 aqueduc 73
3 architecture 68
4 atelier 200
AND another test with the same data (NATURE)
pattern <- c("allée|aqueduc|architecture|atelier")
test2 <- bzh_sites %>%
drop_na(NATURE) %>%
group_by(NATURE = str_match( NATURE, pattern )) %>%
summarise(n = n())
gives me :
NATURE n
1 allée 178
2 aqueduc 74
3 architecture 79
4 atelier 248
I have no idea about the différences of count.
I tried to find out where the discrepancy is for first group i.e "allée". This is what I found :
library(stringr)
pattern1<-c("allée|aqueduc|architecture|atelier|bas|carrière|caveau|chapelle|château|chemin|cimetière|coffre|dépôt|dolmen|eau|église|enceinte|enclos|éperon|espace|exploitation|fanum|ferme|funéraire|groupe|habitat|maison|manoir|menhir|monastère|motte|nécropole|occupation|organisation|parcellaire|pêcherie|prieuré|production|rue|sépulture|stèle|thermes|traitement|tumulus|villa")
#Get indices where 'allée' is found using pattern1
ind1 <- which(str_match(bzh_sites$NATURE, pattern1 )[, 1] == 'allée')
pattern2 <- c("allée|aqueduc|architecture|atelier")
#Get indices where 'allée' is found using pattern1
ind2 <- which(str_match(bzh_sites$NATURE, pattern2)[, 1] == 'allée')
#Indices which are present in ind2 but absent in ind1
setdiff(ind2, ind1)
#[1] 3093 10400
#Get corresponding text
temp <- bzh_sites$NATURE[setdiff(ind2, ind1)]
temp
#[1] "dolmen allée couverte" "coffre funéraire allée couverte"
What happens when we use pattern1 and pattern2 on temp
str_match(temp, pattern1)
# [,1]
#[1,] "dolmen"
#[2,] "coffre"
str_match(temp, pattern2)
# [,1]
#[1,] "allée"
#[2,] "allée"
As we can see using pattern1 certain values are classified in another group since they occur first in the string hence we have a mismatch.
A similar explanation can be given for mismatches in other groups.
str_match only returns first match, to get all the matches in pattern we can use str_match_all
table(unlist(str_match_all(bzh_sites$NATURE, pattern1)))
# allée aqueduc architecture atelier bas
# 178 76 79 252 62
# carrière caveau chapelle château chemin
# 46 35 226 205 350
# cimetière coffre dépôt dolmen eau
# 275 155 450 542 114
# église enceinte enclos éperon space
# 360 655 338 114 102
#exploitation fanum ferme funéraire groups
# 1856 38 196 1256 295
# habitat maison manoir menhir monastère
# 1154 65 161 1036 31
# motte nécropole occupation organisation parcellaire
# 566 312 5152 50 492
# pêcherie prieuré production rue sépulture
# 69 66 334 44 152
# stèle thermes traitement tumulus villa
# 651 50 119 1232 225

Convert list of lists to single dataframe with first column filled by first value (for each list) in R

I have a list of lists, like so:
x <-list()
x[[1]] <- c('97', '342', '333')
x[[2]] <- c('97','555','556','742','888')
x[[3]] <- c ('100', '442', '443', '444', '445','446')
The first number in each list (97, 97, 100) refers to a node in a tree and the following numbers refer to traits associated with that node.
My goal is to create a dataframe that looks like this:
df= data.frame(node = c('97','97','97','97','97','97','100','100','100','100','100'),
trait = c('342','333','555','556','742','888','442','443','444','445','446'))
where each trait has its corresponding node.
I think the first thing I need to do is convert the list of lists into a single dataframe. I've tried doing so using:
do.call(rbind,x)
but that repeats the values in x[[1]] and x[[2]] to match the length of x[[3]]. I've also tried using:
dt_list <- map(x, as.data.table)
dt <- rbindlist(dt_list, fill = TRUE, idcol = T)
Which I think gets me closer, but I'm still unsure of how to assign the first node value to the corresponding trait values. I know this is probably a simple task but it's stumping me today!
Maybe you can try the code below
h <- sapply(x, `[`,1)
d <- lapply(x, `[`,-1)
df <- data.frame(node = rep(h,lengths(d)), trait = unlist(d))
such that
> df
node trait
1 97 342
2 97 333
3 97 555
4 97 556
5 97 742
6 97 888
7 100 442
8 100 443
9 100 444
10 100 445
11 100 446
You can create a data frame with the first value from the vector in column 'node' and the rest of the values in column 'trait'. This strategy can be applied to all entries in the list using the map_df() function from purrr package, giving the output you describe.
library(purrr)
library(dplyr)
x %>%
map_df(., function(vec) data.frame(node = vec[1],
trait = vec[-1],
stringsAsFactors = F))
An option with base R is
stack(setNames(lapply(x, `[`, -1), sapply(x, `[`, 1)))[2:1]
# ind values
#1 97 342
#2 97 333
#3 97 555
#4 97 556
#5 97 742
#6 97 888
#7 100 442
#8 100 443
#9 100 444
#10 100 445
#11 100 446
Another solution
library(tidyverse)
library(purrr)
node <- map(x, ~rep(.x[1], length(.x)-1)) %>% flatten_chr()
trait <- map(x, ~.x[2:length(.x)]) %>% flatten_chr()
out <- tibble(node, trait)
node trait
<chr> <chr>
1 97 342
2 97 333
3 97 555
4 97 556
5 97 742
6 97 888
7 100 442
8 100 443
9 100 444
10 100 445
11 100 446

Subset Columns based on partial matching of column names in the same data frame

I would like to understand how to subset multiple columns from same data frame by matching the first 5 letters of the column names with each other and if they are equal then subset it and store it in a new variable.
Here is a small explanation of my required output. It is described below,
Lets say the data frame is eatable
fruits_area fruits_production vegetable_area vegetable_production
12 100 26 324
33 250 40 580
66 510 43 581
eatable <- data.frame(c(12,33,660),c(100,250,510),c(26,40,43),c(324,580,581))
names(eatable) <- c("fruits_area", "fruits_production", "vegetables_area",
"vegetable_production")
I was trying to write a function which will match the strings in a loop and will store the subset columns after matching first 5 letters from the column names.
checkExpression <- function(dataset,str){
dataset[grepl((str),names(dataset),ignore.case = TRUE)]
}
checkExpression(eatable,"your_string")
The above function checks the string correctly but I am confused how to do matching among the column names in the dataset.
Edit:- I think regular expressions would work here.
You could try:
v <- unique(substr(names(eatable), 0, 5))
lapply(v, function(x) eatable[grepl(x, names(eatable))])
Or using map() + select_()
library(tidyverse)
map(v, ~select_(eatable, ~matches(.)))
Which gives:
#[[1]]
# fruits_area fruits_production
#1 12 100
#2 33 250
#3 660 510
#
#[[2]]
# vegetables_area vegetable_production
#1 26 324
#2 40 580
#3 43 581
Should you want to make it into a function:
checkExpression <- function(df, l = 5) {
v <- unique(substr(names(df), 0, l))
lapply(v, function(x) df[grepl(x, names(df))])
}
Then simply use:
checkExpression(eatable, 5)
I believe this may address your needs:
checkExpression <- function(dataset,str){
cols <- grepl(paste0("^",str),colnames(dataset),ignore.case = TRUE)
subset(dataset,select=colnames(dataset)[cols])
}
Note the addition of "^" to the pattern used in grepl.
Using your data:
checkExpression(eatable,"fruit")
## fruits_area fruits_production
##1 12 100
##2 33 250
##3 660 510
checkExpression(eatable,"veget")
## vegetables_area vegetable_production
##1 26 324
##2 40 580
##3 43 581
Your function does exactly what you want but there was a small error:
checkExpression <- function(dataset,str){
dataset[grepl((str),names(dataset),ignore.case = TRUE)]
}
Change the name of the object from which your subsetting from obje to dataset.
checkExpression(eatable,"fr")
# fruits_area fruits_production
#1 12 100
#2 33 250
#3 660 510
checkExpression(eatable,"veg")
# vegetables_area vegetable_production
#1 26 324
#2 40 580
#3 43 581

Sorting data.frame in r [duplicate]

I am new to R, and want to sort a data frame called "weights". Here are the details:
>str(weights)
'data.frame': 57 obs. of 1 variable:
$ attr_importance: num 0.04963 0.09069 0.09819 0.00712 0.12543 ...
> names(weights)
[1] "attr_importance"
> dim(weights)
[1] 57 1
> head(weights)
attr_importance
make 0.049630556
address 0.090686474
all 0.098185517
num3d 0.007122618
our 0.125433292
over 0.075182467
I want to sort by decreasing order of attr_importance BUT I want to preserve the corresponding row names also.
I tried:
> weights[order(-weights$attr_importance),]
but it gives me a "numeric" back.
I want a data frame back - which is sorted by attr_importance and has CORRESPONDING row names intact. How can I do this?
Thanks in advance.
Since your data.frame only has one column, you need to set drop=FALSE to prevent the dimensions from being dropped:
weights[order(-weights$attr_importance),,drop=FALSE]
# attr_importance
# our 0.125433292
# all 0.098185517
# address 0.090686474
# over 0.075182467
# make 0.049630556
# num3d 0.007122618
Here is the big comparison on data.frame sorting:
How to sort a dataframe by column(s)?
Using my now-preferred solution arrange:
dd <- data.frame(b = factor(c("Hi", "Med", "Hi", "Low"),
levels = c("Low", "Med", "Hi"), ordered = TRUE),
x = c("A", "D", "A", "C"), y = c(8, 3, 9, 9),
z = c(1, 1, 1, 2))
library(plyr)
arrange(dd,desc(z),b)
b x y z
1 Low C 9 2
2 Med D 3 1
3 Hi A 8 1
4 Hi A 9 1
rankdata.txt
regno name total maths science social cat
1 SUKUMARAN 400 78 89 73 S
2 SHYAMALA 432 65 79 87 S
3 MANOJ 500 90 129 78 C
4 MILYPAULOSE 383 59 88 65 G
5 ANSAL 278 39 77 60 O
6 HAZEENA 273 45 55 56 O
7 MANJUSHA 374 50 99 52 C
8 BILBU 408 81 97 72 S
9 JOSEPHROBIN 374 57 85 68 G
10 SHINY 381 70 79 70 S
z <- data.frame(rankdata)
z[with(z, order(-total+ maths)),] #order function maths group selection
z
z[with(z, order(name)),] # sort on name
z

Resources