For a project I am using multiple numericInput fields in shiny to enter certain amounts. The app user should be able to add new amounts if needed and type in any kind of numeric value, either via the arrows or manually. However, when adding new fields and trying to add amounts manually the input seems to "jump" and sometimes the whole app crashes.
I thought about using textInput fields instead of numericInput but this does not seem to work either.
This is a MWE of the code I am using. Once you add a couple of amount fields via the plus-button and enter values manually, it starts jumping/not working.
ui <- fluidPage(#....design etc.,
mainPanel(
uiOutput("inputwidgets"),
actionButton(inputId = "number",
label = icon(name = "plus",
lib = "font-awesome")),
actionButton(inputId = "delete_number",
label = icon(name = "minus",
lib = "font-awesome")),
actionButton("update", "Calculate")
)
)
server <- function(input, output) {
reac <- reactiveValues()
observeEvent(c(input$number,input$delete_number), {
# you need to add 1 to not start with 0
add <- input$number+1
# restriction for delete_number > number
delete <- if(input$delete_number > input$number) add else input$delete_number
calc <- add - delete
reac$calc <- if(calc > 0) 1:calc else 1
})
# By clicking the actionButton "number" an additional row appears
observe({
req(reac$calc)
output$inputwidgets = renderUI({
input_list <- lapply(reac$calc, function(i) {
amount <- input[[paste0("amount",i)]]
# for each dynamically generated input, give a different name
fluidRow(
column(2,
# Input: Specify the amount ----
numericInput(
paste0("amount",i),
label="Amount",
#step = 1000,
value = if(!is.null(amount)) amount else 0
)
)
)
})
do.call(tagList, input_list)
})
})
}
# Create Shiny app ----
shinyApp(ui = ui, server = server)
This issue is really annoying and disturbs the whole user experience.
Would be grateful about any kind of help with this.
I am trying to dynamically populate the values of the selectInput from the data file uploaded by the user. The selectInput must contain only numeric columns.
Here is my code snippet for server.R
...
idx <- sapply(data.file, is.numeric)
numeric_columns <- data.file[, idx]
factor_columns <- data.file[, !idx]
updateSelectInput(session, "bar_x", "Select1", choices = names(numeric_columns))
updateSelectInput(session, "bar_y", "Select2", choices = names(factor_columns))
...
Corresponding ui.r
...
selectInput("bar_x", "Select1", choices = NULL),
selectInput("bar_y", "Select2", choices = NULL)
...
The code works fine as long as there are more than one values in any dropdown. However, it fails as soon as it encounters only one value to be displayed in the selectInput.
How can I handle this specific condition, given that the data is uploaded and it cannot be controlled if there is just one column as numeric?
It appears that in 2019, this issue still exists. The issue that I have seen is that when there is only one option in the dropdown, the name of the column is displayed instead of the one option.
This appears to only be a graphical problem, as querying the value for the selectInput element returns the correct underlying data.
I was unable to figure out why this problem exists, but an easy way around this bug is to simply change the name of the column so that it looks like the first element in the list.
library(shiny)
ui <- fluidPage(
selectInput("siExample",
label = "Example Choices",
choices = list("Loading...")),
)
server <- function(input, output, session) {
# load some choices into a single column data frame
sampleSet <- data.frame(Example = c("test value"))
# rename the set if there is only one value
if (length(sampleSet$Example) == 1) {
# This should only be done on a copy of your original data,
# you don't want to accidentally mutate your original data set
names(sampleSet) <- c(sampleSet$Example[1])
}
# populate the dropdown with the sampleSet
updateSelectInput(session,
"siExample",
choices = sampleSet)
}
shinyApp(ui = ui, server = server)
Info: Code was adapted by OP to make error reproducible.
To solve your issue use val2 <- val[,idx, drop = FALSE]
You dropped the column names by subsetting the data.frame().
To avoid this use drop = FALSE; see Keep column name when select one column from a data frame/matrix in R.
library(shiny)
# Define UI for application that draws a histogram
ui <- fluidPage(
# Sidebar with a slider input for number of bins
sidebarLayout(
sidebarPanel(
# drj's changes START block 1
#selectInput('states', 'Select states', choices = c(1,2,4))
selectInput('states', 'Select states', choices = NULL)
# drj's changes END block 1
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)
# Define server logic required to draw a histogram
server <- function(input, output, session) {
observe({
#drj's changes START block 2
#val <- c(1,2,3)
#names(val) <- c("a","b","c")
#updateSelectInput(session, 'states', 'Select states', choices = names(val[1]))
val <- as.data.frame(cbind(c("_1","_2","_3"), c(4, 4, 6)))
names(val) <- c("a","b")
val$b <- as.numeric(val$b)
idx <- sapply(val, is.numeric)
val2 <- val[,idx, drop = FALSE]
updateSelectInput(session, 'states', 'Select states', choices = names(val2))
#drj's changes END block 2
})
}
# Run the application
shinyApp(ui = ui, server = server)
I would like to figure out, which feature of my shiny app is used most...
What is the preferred way on doing this?
At the moment I parse the shiny server access.log and could find some links like
.../session/69d4f32b3abc77e71097ae4beefbd135/dataobj/lifecycle_table which indicates when a DT object called lifecycle_table is loaded. But I can only see this for these DT objects.
Are there better ways?
Would love to create this statistics per unique IP. Basically which tabs are clicked. I am not interested in the search strings etc.
Edit: For getting info about the clicked tabs have a look in: ?tabsetPanel
You see that you can specify an id for the panel.
So tabsetPanel(id="tabs",...) will enable you to track the selected tabpanel on the server side with input$tabs.
See an example below: (based on https://shiny.rstudio.com/articles/tabsets.html)
library(shiny)
ui <- shinyUI(pageWithSidebar(
# Application title
headerPanel("Tabsets"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the br()
# element to introduce extra vertical spacing
sidebarPanel(
radioButtons("dist", "Distribution type:",
list("Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm",
"Exponential" = "exp")),
br(),
sliderInput("n",
"Number of observations:",
value = 500,
min = 1,
max = 1000)
),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(
tabsetPanel(id = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Visited Tabs", tableOutput("table"))
)
)
))
# Define server logic for random distribution application
server <- shinyServer(function(input, output, session) {
global <- reactiveValues(visitedTabs = c())
# Reactive expression to generate the requested distribution. This is
# called whenever the inputs change. The renderers defined
# below then all use the value computed from this expression
data <- reactive({
dist <- switch(input$dist,
norm = rnorm,
unif = runif,
lnorm = rlnorm,
exp = rexp,
rnorm)
dist(input$n)
})
observe({
input$tabs
isolate({
userTabInfo <- paste0(" selected: ",input$tabs)
print(userTabInfo)
global$visitedTabs = c(global$visitedTabs, userTabInfo)
})
})
# Generate a plot of the data. Also uses the inputs to build the
# plot label. Note that the dependencies on both the inputs and
# the 'data' reactive expression are both tracked, and all expressions
# are called in the sequence implied by the dependency graph
output$plot <- renderPlot({
dist <- input$dist
n <- input$n
hist(data(),
main=paste('r', dist, '(', n, ')', sep=''))
})
# Generate a summary of the data
output$summary <- renderPrint({
str(session$userData)
# session$user
})
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(global$visitedTabs)
})
})
shinyApp(ui, server)
Concerning the IP: I know about 4-5 code snippets to get the IP and they all use JSS or XSS-style how you call it :) I agree it should be somehow possible, but since people already asked 3-4 years ago, I am not sure its really a matter of awareness from the shiny team. Hope the tab tracking helps anyway. If you like I can add the JS snippet to get the IP again.
I understand that reactive values notifies any reactive functions that depend on that value as per the description here
based on this I wanted to make use of this property and create a for loop that assigns different values to my reactive values object, and in turn I am expecting another reactive function to re-execute itself as the reactive values are changing inside the for loop. Below is a simplified example of what i am trying to do:
This is the ui.R
library(shiny)
# Define UI
shinyUI(pageWithSidebar(
titlePanel("" ,"For loop with reactive values"),
# Application title
headerPanel(h5(textOutput("Dummy Example"))),
sidebarLayout(
#Sidebar
sidebarPanel(
textInput("URLtext", "Enter csv of urls", value = "", width = NULL, placeholder = "Input csv here"),
br()
),
# Main Panel
mainPanel(
h3(textOutput("caption"))
)
)
))
This is the server file:
library(shiny)
shinyServer(function(input, output) {
values = reactiveValues(a = character())
reactive({
url_df = read.table(input$URLtext)
for (i in 1:5){
values$a = as.character(url_df[i,1])
Sys.sleep(1)
}
})
output$caption <- renderText(values$a)
})
This does not give the expected result. Actually when I checked the content of values$a
it was null. Please help!
Rather than using a for loop, try using invalidateLater() with a step counter. Here's a working example that runs for me with an example csv found with a quick google search (first column is row index 1-100).
library(shiny)
# OP's ui code
ui <- pageWithSidebar(
titlePanel("" ,"For loop with reactive values"),
headerPanel(h5(textOutput("Dummy Example"))),
sidebarLayout(
sidebarPanel(
textInput("URLtext", "Enter csv of urls", value = "", width = NULL, placeholder = "Input csv here"),
br()
),
mainPanel(
h3(textOutput("caption"))
)
)
)
server <- function(input, output, session) {
# Index to count to count through rows
values = reactiveValues(idx = 0)
# Create a reactive data_frame to read in data from URL
url_df <- reactive({
url_df <- read.csv(input$URLtext)
})
# Reset counter (and url_df above) if the URL changes
observeEvent(input$URLtext, {values$idx = 0})
# Render output
output$caption <- renderText({
# If we have an input$URLtext
if (nchar(req(input$URLtext)) > 5) {
# Issue invalidation command and step values$idx
if (isolate(values$idx < nrow(url_df()))) {
invalidateLater(0, session)
isolate(values$idx <- values$idx + 1)
}
}
# Sleep 0.5-s, so OP can see what this is doing
Sys.sleep(0.5)
# Return row values$idx of column 1 of url_df
as.character(url_df()[values$idx, 1])
})
}
shinyApp(ui = ui, server = server)
The goal
I am working on a Shiny app that allows the user to upload their own data and focus on the entire data or a subset by providing data filtering widgets described by the below graph
The select input "Variable 1" will display all the column names of the data uploaded by the user and the selectize input "Value" will display all the unique values of the corresponding column selected in "Variable 1". Ideally, the user will be able to add as many such rows ("Variable X" + "Value") as possible by some sort of trigger, one possibility being clicking the "Add more" action button.
A possible solution
After looking up online, I've found one promising solution given by Nick Carchedi pasted below
ui.R
library(shiny)
shinyUI(pageWithSidebar(
# Application title
headerPanel("Dynamically append arbitrary number of inputs"),
# Sidebar with a slider input for number of bins
sidebarPanel(
uiOutput("allInputs"),
actionButton("appendInput", "Append Input")
),
# Show a plot of the generated distribution
mainPanel(
p("The crux of the problem is to dynamically add an arbitrary number of inputs
without resetting the values of existing inputs each time a new input is added.
For example, add a new input, set the new input's value to Option 2, then add
another input. Note that the value of the first input resets to Option 1."),
p("I suppose one hack would be to store the values of all existing inputs prior
to adding a new input. Then,", code("updateSelectInput()"), "could be used to
return inputs to their previously set values, but I'm wondering if there is a
more efficient method of doing this.")
)
))
server.R
library(shiny)
shinyServer(function(input, output) {
# Initialize list of inputs
inputTagList <- tagList()
output$allInputs <- renderUI({
# Get value of button, which represents number of times pressed
# (i.e. number of inputs added)
i <- input$appendInput
# Return if button not pressed yet
if(is.null(i) || i < 1) return()
# Define unique input id and label
newInputId <- paste0("input", i)
newInputLabel <- paste("Input", i)
# Define new input
newInput <- selectInput(newInputId, newInputLabel,
c("Option 1", "Option 2", "Option 3"))
# Append new input to list of existing inputs
inputTagList <<- tagAppendChild(inputTagList, newInput)
# Return updated list of inputs
inputTagList
})
})
The downside
As pointed by Nick Carchedi himself, all the existing input widgets will undesirably get reset every time when a new one is added.
A promising solution for data subsetting/filtering in Shiny
As suggested by warmoverflow, the datatable function in DT package provides a nice way to filter the data in Shiny. See below a minimal example with data filtering enabled.
library(shiny)
shinyApp(
ui = fluidPage(DT::dataTableOutput('tbl')),
server = function(input, output) {
output$tbl = DT::renderDataTable(
iris, filter = 'top', options = list(autoWidth = TRUE)
)
}
)
If you are going to use it in your Shiny app, there are some important aspects that are worth noting.
Filtering box type
For numeric/date/time columns: range sliders are used to filter rows within ranges
For factor columns: selectize inputs are used to display all possible categories
For character columns: ordinary search boxes are used
How to obtain the filtered data
Suppose the table output id is tableId, use input$tableId_rows_all as the indices of rows on all pages (after the table is filtered by the search strings). Please note that input$tableId_rows_all returns the indices of rows on all pages for DT (>= 0.1.26). If you use the DT version by regular install.packages('DT'), only the indices of the current page are returned
To install DT (>= 0.1.26), refer to its GitHub page
Column width
If the data have many columns, column width and filter box width will be narrow, which makes it hard to see the text as report here
Still to be solved
Despite some known issues, datatable in DT package stands as a promising solution for data subsetting in Shiny. The question itself, i.e. how to dynamically append arbitrary number of input widgets in Shiny, nevertheless, is interesting and also challenging. Until people find a good way to solve it, I will leave this question open :)
Thank you!
are you looking for something like this?
library(shiny)
LHSchoices <- c("X1", "X2", "X3", "X4")
#------------------------------------------------------------------------------#
# MODULE UI ----
variablesUI <- function(id, number) {
ns <- NS(id)
tagList(
fluidRow(
column(6,
selectInput(ns("variable"),
paste0("Select Variable ", number),
choices = c("Choose" = "", LHSchoices)
)
),
column(6,
numericInput(ns("value.variable"),
label = paste0("Value ", number),
value = 0, min = 0
)
)
)
)
}
#------------------------------------------------------------------------------#
# MODULE SERVER ----
variables <- function(input, output, session, variable.number){
reactive({
req(input$variable, input$value.variable)
# Create Pair: variable and its value
df <- data.frame(
"variable.number" = variable.number,
"variable" = input$variable,
"value" = input$value.variable,
stringsAsFactors = FALSE
)
return(df)
})
}
#------------------------------------------------------------------------------#
# Shiny UI ----
ui <- fixedPage(
verbatimTextOutput("test1"),
tableOutput("test2"),
variablesUI("var1", 1),
h5(""),
actionButton("insertBtn", "Add another line")
)
# Shiny Server ----
server <- function(input, output) {
add.variable <- reactiveValues()
add.variable$df <- data.frame("variable.number" = numeric(0),
"variable" = character(0),
"value" = numeric(0),
stringsAsFactors = FALSE)
var1 <- callModule(variables, paste0("var", 1), 1)
observe(add.variable$df[1, ] <- var1())
observeEvent(input$insertBtn, {
btn <- sum(input$insertBtn, 1)
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(
variablesUI(paste0("var", btn), btn)
)
)
newline <- callModule(variables, paste0("var", btn), btn)
observeEvent(newline(), {
add.variable$df[btn, ] <- newline()
})
})
output$test1 <- renderPrint({
print(add.variable$df)
})
output$test2 <- renderTable({
add.variable$df
})
}
#------------------------------------------------------------------------------#
shinyApp(ui, server)
Now, I think that I understand better the problem.
Suppose the user selects the datasets::airquality dataset (here, I'm showing only the first 10 rows):
The field 'Select Variable 1' shows all the possible variables based on the column names of said dataset:
Then, the user selects the condition and the value to filter the dataset by:
Then, we want to add a second filter (still maintaining the first one):
Finally, we get the dataset filtered by the two conditions:
If we want to add a third filter:
You can keep adding filters until you run out of data.
You can also change the conditions to accommodate factors or character variables. All you need to do is change the selectInput and numericInput to whatever you want.
If this is what you want, I've solved it using modules and by creating a reactiveValue (tmpFilters) that contains all selections (variable + condition + value). From it, I created a list with all filters (tmpList) and from it I created the proper filter (tmpListFilters) to use with subset.
This works because the final dataset is "constantly" being subset by this reactiveValue (the tmpFilters). At the beginning, tmpFilters is empty, so we get the original dataset. Whenever the user adds the first filter (and other filters after that), this reactiveValue gets updated and so does the dataset.
Here's the code for it:
library(shiny)
# > MODULE #####################################################################
## |__ MODULE UI ===============================================================
variablesUI <- function(id, number, LHSchoices) {
ns <- NS(id)
tagList(
fluidRow(
column(
width = 4,
selectInput(
inputId = ns("variable"),
label = paste0("Select Variable ", number),
choices = c("Choose" = "", LHSchoices)
)
),
column(
width = 4,
selectInput(
inputId = ns("condition"),
label = paste0("Select condition ", number),
choices = c("Choose" = "", c("==", "!=", ">", ">=", "<", "<="))
)
),
column(
width = 4,
numericInput(
inputId = ns("value.variable"),
label = paste0("Value ", number),
value = NA,
min = 0
)
)
)
)
}
## |__ MODULE SERVER ===========================================================
filter <- function(input, output, session){
reactive({
req(input$variable, input$condition, input$value.variable)
fullFilter <- paste0(
input$variable,
input$condition,
input$value.variable
)
return(fullFilter)
})
}
# Shiny ########################################################################
## |__ UI ======================================================================
ui <- fixedPage(
fixedRow(
column(
width = 5,
selectInput(
inputId = "userDataset",
label = paste0("Select dataset"),
choices = c("Choose" = "", ls("package:datasets"))
),
h5(""),
actionButton("insertBtn", "Add another filter")
),
column(
width = 7,
tableOutput("finalTable")
)
)
)
## |__ Server ==================================================================
server <- function(input, output) {
### \__ Get dataset from user selection ------------------------------------
originalDF <- reactive({
req(input$userDataset)
tmpData <- eval(parse(text = paste0("datasets::", input$userDataset)))
if (!class(tmpData) == "data.frame") {
stop("Please select a dataset of class data.frame")
}
tmpData
})
### \__ Get the column names -----------------------------------------------
columnNames <- reactive({
req(input$userDataset)
tmpData <- eval(parse(text = paste0("datasets::", input$userDataset)))
names(tmpData)
})
### \__ Create Reactive Filter ---------------------------------------------
tmpFilters <- reactiveValues()
### \__ First UI Element ---------------------------------------------------
### Add first UI element with column names
observeEvent(input$userDataset, {
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(variablesUI(paste0("var", 1), 1, columnNames()))
)
})
### Update Reactive Filter with first filter
filter01 <- callModule(filter, paste0("var", 1))
observe(tmpFilters[['1']] <- filter01())
### \__ Other UI Elements --------------------------------------------------
### Add other UI elements with column names and update the filter
observeEvent(input$insertBtn, {
btn <- sum(input$insertBtn, 1)
insertUI(
selector = "h5",
where = "beforeEnd",
ui = tagList(variablesUI(paste0("var", btn), btn, columnNames()))
)
newFilter <- callModule(filter, paste0("var", btn))
observeEvent(newFilter(), {
tmpFilters[[paste0("'", btn, "'")]] <- newFilter()
})
})
### \__ Dataset with Filtered Results --------------------------------------
resultsFiltered <- reactive({
req(filter01())
tmpDF <- originalDF()
tmpList <- reactiveValuesToList(tmpFilters)
if (length(tmpList) > 1) {
tmpListFilters <- paste(tmpList, "", collapse = "& ")
} else {
tmpListFilters <- unlist(tmpList)
}
tmpResult <- subset(tmpDF, eval(parse(text = tmpListFilters)))
tmpResult
})
### \__ Print the Dataset with Filtered Results ----------------------------
output$finalTable <- renderTable({
req(input$userDataset)
if (is.null(tmpFilters[['1']])) {
head(originalDF(), 10)
} else {
head(resultsFiltered(), 10)
}
})
}
#------------------------------------------------------------------------------#
shinyApp(ui, server)
# End
If you are looking for a data subsetting/filtering in Shiny Module :
filterData from package shinytools can do the work. It returns an expression as a call but it can also return the data (if your dataset is not too big).
library(shiny)
# remotes::install_github("ardata-fr/shinytools")
library(shinytools)
ui <- fluidPage(
fluidRow(
column(
3,
filterDataUI(id = "ex"),
actionButton("AB", label = "Apply filters")
),
column(
3,
tags$strong("Expression"),
verbatimTextOutput("expression"),
tags$br(),
DT::dataTableOutput("DT")
)
)
)
server <- function(input, output) {
x <- reactive({iris})
res <- callModule(module = filterDataServer, id = "ex", x = x, return_data = FALSE)
output$expression <- renderPrint({
print(res$expr)
})
output$DT <- DT::renderDataTable({
datatable(data_filtered())
})
data_filtered <- eventReactive(input$AB, {
filters <- eval(expr = res$expr, envir = x())
x()[filters,]
})
}
shinyApp(ui, server)
You can also use lazyeval or rlang to evaluate the expression :
filters <- lazyeval::lazy_eval(res$expr, data = x())
filters <- rlang::eval_tidy(res$expr, data = x())
You need to check for existing input values and use them if available:
# Prevent dynamic inputs from resetting
newInputValue <- "Option 1"
if (newInputId %in% names(input)) {
newInputValue <- input[[newInputId]]
}
# Define new input
newInput <- selectInput(newInputId, newInputLabel, c("Option 1", "Option 2", "Option 3"), selected=newInputValue)
A working version of the gist (without the reset problem) can be found here: https://gist.github.com/motin/0d0ed0d98fb423dbcb95c2760cda3a30
Copied below:
ui.R
library(shiny)
shinyUI(pageWithSidebar(
# Application title
headerPanel("Dynamically append arbitrary number of inputs"),
# Sidebar with a slider input for number of bins
sidebarPanel(
uiOutput("allInputs"),
actionButton("appendInput", "Append Input")
),
# Show a plot of the generated distribution
mainPanel(
p("This shows how to add an arbitrary number of inputs
without resetting the values of existing inputs each time a new input is added.
For example, add a new input, set the new input's value to Option 2, then add
another input. Note that the value of the first input does not reset to Option 1.")
)
))
server.R
library(shiny)
shinyServer(function(input, output) {
output$allInputs <- renderUI({
# Get value of button, which represents number of times pressed (i.e. number of inputs added)
inputsToShow <- input$appendInput
# Return if button not pressed yet
if(is.null(inputsToShow) || inputsToShow < 1) return()
# Initialize list of inputs
inputTagList <- tagList()
# Populate the list of inputs
lapply(1:inputsToShow,function(i){
# Define unique input id and label
newInputId <- paste0("input", i)
newInputLabel <- paste("Input", i)
# Prevent dynamic inputs from resetting
newInputValue <- "Option 1"
if (newInputId %in% names(input)) {
newInputValue <- input[[newInputId]]
}
# Define new input
newInput <- selectInput(newInputId, newInputLabel, c("Option 1", "Option 2", "Option 3"), selected=newInputValue)
# Append new input to list of existing inputs
inputTagList <<- tagAppendChild(inputTagList, newInput)
})
# Return updated list of inputs
inputTagList
})
})
(The solution was guided on Nick's hints in the original gist from where you got the code of the promising solution)