Checking the value in the dataframe in R - r

The following are my r code. I am trying to check whether the true value a = 10 is included or in the dataframe. If its included in the dataframe, then I need to compute the length of that data frame otherwise I want to assign the length 0 .
Assume the value I am checking is 10
k1 = c(1,2,3,5,6)
k2 = c(10,12,13,15,16,18)
For example, for the k1 set i want to get the length 0 whereas for k2 the length must be 6
I trying to use the following code to do this work
library(tidyverse)
map_lgl(k, `%in%`, x = 10) %>% length
Why it is not working for the k1 dataset?

you can do this with a simple ifelse statement - nothing else required.
a <- 10
ifelse(a %in% k2, length(k2), 0)
[1] 0
you could wrap in a function and feed the different sets in:
my_func <- function(x){
ifelse(a %in% x, length(x), 0)
}
my_func(k2)
[1] 6

If you have more K(i) lists (100, for example) and you need to interate with all of then, you can use a loop and store the results in a resume table.
I never saw map_lgl, but we can use the ~hard code~ of R, like:
k1 <- c(1,2,3,5,6)
k2 <- c(10,12,13,15,16,18)
results <- data.frame()
for(i in 1:2){
analysis <- get(paste("k",i,sep=""))
if(10 %in% analysis){
results[nrow(results)+1, 1] <- paste("k",i,sep="")
results[nrow(results), 2] <- length(analysis)
} else{
results[nrow(results)+1, 1] <- paste("k",i,sep="")
results[nrow(results), 2] <- 0
}
}
Than we get:

Related

Using the lapply() function with many .csv files to compute a new column

I have 60 .csv files, and in each .csv are columns that I would like to use to compute a new column that stores participants accuracy over a number of trials (rows).
'leftright' is a column that tells us whether the correct answer is on the left or right (A is always the correct answer, so it differs from being on the left or right). 'pressed_key' tells us whether participants selected left or right ('Z' for left, 'M' for right).
leftright
pressed_key
A_left_B_right
Z
A_left_B_right
M
B_left_A_right
M
I have written some code below, but I am getting the following message: 'Error: Argument 2 must be a data frame or a named atomic vector' - I wondered if anyone could help?
dat <- matrix(nrow = 0, ncol = 0)
dat <- data.frame(dat)
files <- list.files(path = 'data/', pattern = '*.csv') # load data (60 files)
for (filename in files) {
df = read.csv(filename)
df$correct_key <- lapply(df$leftright, function(x) if (x == 'A_left_B_right') ['Z'] else if (x == 'B_left_A_right') ['M']) # correct answer
df$correct_ans <- (df$correct_key == df$pressed_key)*1 # label whether correct response (1) or incorrect (0)
dat <- bind_rows(dat, df) # bind files
}
The desired output is below, where 'correct_key' is the key that should have been pressed, and 'correct_ans' denotes whether they chose the correct answer or not (1 = correct, 0 = not correct)
leftright
pressed_key
correct_key
correct_ans
A_left_B_right
Z
Z
1
A_left_B_right
M
Z
0
B_left_A_right
M
M
1
The function in the lapply statements has incorrect syntax. Try replacing it with this:
lapply(df$leftright, function(x) {
if (x == 'A_left_B_right') {
'Z'
} else if (x == 'B_left_A_right') {
'M'
}
})

How do I save a single column of data produced from a while loop in R to a dataframe?

I have written the following very simple while loop in R.
i=1
while (i <= 5) {
print(10*i)
i = i+1
}
I would like to save the results to a dataframe that will be a single column of data. How can this be done?
You may try(if you want while)
df1 <- c()
i=1
while (i <= 5) {
print(10*i)
df1 <- c(df1, 10*i)
i = i+1
}
as.data.frame(df1)
df1
1 10
2 20
3 30
4 40
5 50
Or
df1 <- data.frame()
i=1
while (i <= 5) {
df1[i,1] <- 10 * i
i = i+1
}
df1
If you already have a data frame (let's call it dat), you can create a new, empty column in the data frame, and then assign each value to that column by its row number:
# Make a data frame with column `x`
n <- 5
dat <- data.frame(x = 1:n)
# Fill the column `y` with the "missing value" `NA`
dat$y <- NA
# Run your loop, assigning values back to `y`
i <- 1
while (i <= 5) {
result <- 10*i
print(result)
dat$y[i] <- result
i <- i+1
}
Of course, in R we rarely need to write loops like his. Normally, we use vectorized operations to carry out tasks like this faster and more succinctly:
n <- 5
dat <- data.frame(x = 1:n)
# Same result as your loop
dat$y <- 10 * (1:n)
Also note that, if you really did need a loop instead of a vectorized operation, that particular while loop could also be expressed as a for loop.
I recommend consulting an introductory book or other guide to data manipulation in R. Data frames are very powerful and their use is a necessary and essential part of programming in R.

Writing a for loop with the output as a data frame in R

I am currently working my way through the book 'R for Data Science'.
I am trying to solve this exercise question (21.2.1 Q1.4) but have not been able to determine the correct output before starting the for loop.
Write a for loop to:
Generate 10 random normals for each of μ= −10, 0, 10 and 100.
Like the previous questions in the book I have been trying to insert into a vector output but for this example, it appears I need the output to be a data frame?
This is my code so far:
values <- c(-10,0,10,100)
output <- vector("double", 10)
for (i in seq_along(values)) {
output[[i]] <- rnorm(10, mean = values[[i]])
}
I know the output is wrong but am unsure how to create the format I need here. Any help much appreciated. Thanks!
There are many ways of doing this. Here is one. See inline comments.
set.seed(357) # to make things reproducible, set random seed
N <- 10 # number of loops
xy <- vector("list", N) # create an empty list into which values are to be filled
# run the loop N times and on each loop...
for (i in 1:N) {
# generate a data.frame with 4 columns, and add a random number into each one
# random number depends on the mean specified
xy[[i]] <- data.frame(um10 = rnorm(1, mean = -10),
u0 = rnorm(1, mean = 0),
u10 = rnorm(1, mean = 10),
u100 = rnorm(1, mean = 100))
}
# result is a list of data.frames with 1 row and 4 columns
# you can bind them together into one data.frame using do.call
# rbind means they will be merged row-wise
xy <- do.call(rbind, xy)
um10 u0 u10 u100
1 -11.241117 -0.5832050 10.394747 101.50421
2 -9.233200 0.3174604 9.900024 100.22703
3 -10.469015 0.4765213 9.088352 99.65822
4 -9.453259 -0.3272080 10.041090 99.72397
5 -10.593497 0.1764618 10.505760 101.00852
6 -10.935463 0.3845648 9.981747 100.05564
7 -11.447720 0.8477938 9.726617 99.12918
8 -11.373889 -0.3550321 9.806823 99.52711
9 -7.950092 0.5711058 10.162878 101.38218
10 -9.408727 0.5885065 9.471274 100.69328
Another way would be to pre-allocate a matrix, add in values and coerce it to a data.frame.
xy <- matrix(NA, nrow = N, ncol = 4)
for (i in 1:N) {
xy[i, ] <- rnorm(4, mean = c(-10, 0, 10, 100))
}
# notice that i name the column names post festum
colnames(xy) <- c("um10", "u0", "u10", "u100")
xy <- as.data.frame(xy)
As this is a learning question I will not provide the solution directly.
> values <- c(-10,0,10,100)
> for (i in seq_along(values)) {print(i)} # Checking we iterate by position
[1] 1
[1] 2
[1] 3
[1] 4
> output <- vector("double", 10)
> output # Checking the place where the output will be
[1] 0 0 0 0 0 0 0 0 0 0
> for (i in seq_along(values)) { # Testing the full code
+ output[[i]] <- rnorm(10, mean = values[[i]])
+ }
Error in output[[i]] <- rnorm(10, mean = values[[i]]) :
more elements supplied than there are to replace
As you can see the error say there are more elements to put than space (each iteration generates 10 random numbers, (in total 40) and you only have 10 spaces. Consider using a data format that allows to store several values for each iteration.
So that:
> output <- ??
> for (i in seq_along(values)) { # Testing the full code
+ output[[i]] <- rnorm(10, mean = values[[i]])
+ }
> output # Should have length 4 and each element all the 10 values you created in the loop
# set the number of rows
rows <- 10
# vector with the values
means <- c(-10,0,10,100)
# generating output matrix
output <- matrix(nrow = rows,
ncol = 4)
# setting seed and looping through the number of rows
set.seed(222)
for (i in 1:rows){
output[i,] <- rnorm(length(means),
mean=means)
}
#printing the output
output

cor() function in R with a subset

I have a table in R with three columns. I want to get the correlation of the first two columns with a subset of the third column following a specific set of conditions (values are all numeric, I want them to be > a certain number). The cor() function doesn't seem to have an argument to define such a subset.
I know that I could use the summary(lm()) function and square-root the r^2, but the issue is that I'm doing this inside a for loop and am just appending the correlation to a separate list that I have. I can't really append part of the summary of the regression easily to a list.
Here is what I am trying to do:
for (i in x) {list[i] = cor(data$column_a, data$column_b, subset = data$column_c > i)}
Obviously, though, I can't do that because the cor() function doesn't work with subsets.
(Note: x = seq(1,100) and list = NULL)
You can do this without a loop using lapply. Here's some code that will output a data frame with the month-range in one column and the correlation in another column. The do.call(rbind... business is just to take the list output from lapply and turn it into a data frame.
corrs = do.call(rbind, lapply(min(airquality$Month):max(airquality$Month),
function(x) {
data.frame(month_range=paste0(x," - ", max(airquality$Month)),
correlation = cor(airquality$Temp[airquality$Month >= x & airquality$Temp < 80],
airquality$Wind[airquality$Month >= x & airquality$Temp < 80]))
}))
corrs
month_range correlation
1 5 - 9 -0.3519351
2 6 - 9 -0.2778532
3 7 - 9 -0.3291274
4 8 - 9 -0.3395647
5 9 - 9 -0.3823090
You can subset the data first, and then find the correlation.
a <- subset(airquality, Temp < 80 & Month > 7)
cor(a$Temp, a$Wind)
Edit: I don't really know what your list variable is, but here is an example of dynamically changing the subset based on i (see how the month requirement changes with each iteration)
list <- seq(1, 5)
for (i in 1:5){
a <- subset(airquality, Temp < 80 & Month > i)
list[i] <- cor(a$Temp, a$Wind)
}
Based on the pseudo-code you provided alone, here's something that should work:
for (i in x) {
df <- subset(data, column_c > i)
list[i] = cor(df$column_a, df$column_b)
}
However, I don't know why you would want your index in list[i] to be the same value that you use to subset column_c. That could be another source of problems.

Randomly selecting from a subset of rows

I have data in blocks[[i]] where i = 4 to 6 like so
Stimulus Response PM
stretagost s <NA>
colpublo s <NA>
zoning d <NA>
epilepsy d <NA>
resumption d <NA>
incisive d <NA>
440 rows in each block[[i]].
Currently my script does some stuff to 1 randomly selected item out of every 15 trials (except for the first 5 trials every 110, also I have it set so I can never choose rows less than 2 apart) for each block [[i]].
What I would like to be able to do is do stuff to 1 item from every 15 trials, randomly selected out of only those where response == "d". i.e., I don't want my random selection to ever do stuff to rows where response=="s". I have no idea how to achieve this but here is the script I have so far, which just randomly chooses 1 row out of each 15:
PMpositions <- list()
for (i in 4:6){
positions <- c()
x <- 0
for (j in c(seq(5, 110-15, 15),seq(115, 220-15, 15),seq(225, 330-15, 15),seq(335,440-15, 15)))
{
sub.samples <- setdiff(1:15 + j, seq(x-2,x+2,1))
x <- sample(sub.samples, 1)
positions <- c(positions,x)
}
PMpositions[[i]] <- positions
blocks[[i]]$Response[PMpositions[[i]]] <- Wordresponse
blocks[[i]]$PM[PMpositions[[i]]] <- PMresponse
blocks[[i]][PMpositions[[i]],]$Stimulus <- F[[i]]
}
I ended up dealing with it like so
PMpositions <- list()
for (i in 1:3){
startingpositions <- c(seq(5, 110-15, 15),seq(115, 220-15, 15),seq(225, 330-15,
15),seq(335, 440-15, 15))
positions <- c()
x <- 0
for (j in startingpositions)
{
sub.samples <- setdiff(1:15 + j, seq(x-2,x+2,1))
x <- sample(sub.samples, 1)
positions <- c(positions,x)
}
repeat {
positions[which(blocks[[i]][positions,2]==Nonwordresponse)]<-
startingpositions[which(blocks[[i]][positions,2]==Nonwordresponse)]+sample(1:15,
size=length(which(blocks[[i]][positions,2]==Nonwordresponse)), replace = TRUE)
distancecheck<- which ( abs( c(positions[2:length(positions)],0)-positions ) < 2)
if (length(positions[which(blocks[[i]][positions,2]==Nonwordresponse)])== 0 & length
(distancecheck)== 0) break
}
PMpositions[[i]] <- positions
blocks[[i]]$Response[PMpositions[[i]]] <- Wordresponse
blocks[[i]]$PM[PMpositions[[i]]] <- PMresponse
blocks[[i]][PMpositions[[i]],]$Stimulus <- as.character(NF[[i]][,1])
Nonfocal[[i]] <- blocks[[i]]
}
I realised when getting stuck on repeat loops that sometimes I have 15 "s" in response in a row! doh. Would be nice to be able to fix this but it is ok for what I need, when I get stuck I'm just running it again (the location of d/s are randomly generated).
EDIT: Here's a different approach that only samples 'd' rows. It's pretty customized code, but the main idea is to use the prob argument to only sample rows where "Response"=="d" and set the probably of sampling all other rows to zero.
Response <- rep(c("s","d"),220)
chunk <- sort(rep(1:30,15))[1:440] # chunks of 15 up to 440
# function to randomly sample from each set of 15 rows
sampby15 <- function(i){
sample((1:440)[chunk==i], 1,
# use the `prob` argument to only sample 'd' values
prob=rep(1,length=440)[chunk==i]*(Response=="d")[chunk==i])
}
s <- sapply(1:15,FUN=sampby15) # apply to each chunk to get sample rows
Response[s] # confirm only 'd' values
# then you have code to do whatever to those rows...
So the really basic function you'll want to operate on each block is like this:
subsetminor <- function(dataset, only = "d", rows = 1) {
remainder <- subset(dataset, Response == only)
return(remainder[sample(1:nrow(remainder), size = rows), ])
}
We can spruce it up a bit to avoid rows next to each other:
subsetminor <- function(dataset, only = "d", rows = 1) {
remainder <- subset(dataset, Response == only)
if(rows > 1) {
sampled <- sample(1:nrow(remainder), size = rows)
pairwise <- t(combn(sampled, 2))
while(any(abs(pairwise[, 1] - pairwise[, 2]) <= 2)) {
sampled <- sample(1:nrow(remainder), size = rows)
pairwise <- t(combn(sampled, 2))
}
}
out <- remainder[sampled, ]
return(out)
}
The above can be simplified/DRY'd out quite a bit, but it should get the job done.

Resources