Visualize components of data-generating process in R - r

I try to replicate this figure with the true underlying function given also there (see also code below).
I was wondering how the author came up with this (at first glance easy to replicate) figure. If I look e.g. at the first component of (11) f(X_1) = 8*sin(X_1) I cannot see how the author obtains the corresponding graph which has negative function values (As far as I understand the paper, the domain of the X's take values in the range of 0 to 3). Same confusion about the last linear component.
Link to full article: https://epub.ub.uni-muenchen.de/2057/1/tr002.pdf
This is my code
rm(list = ls())
library(mboost)
set.seed(2)
n_sim <- 50
n <- 100
# generate design matrix
x <- seq(from=0.00001, to=3, length.out=n)
x1 <- sample(x, size= n)
x2 <- sample(x, size= n)
x3 <- sample(x, size= n)
x4 <- sample(x, size= n)
x5 <- sample(x, size= n)
x6 <- sample(x, size= n)
x7 <- sample(x, size= n)
x8 <- sample(x, size= n)
x9 <- sample(x, size= n)
X <- matrix(c(x1, x2, x3, x4, x5, x6, x7, x8, x9), nrow = n, ncol = 9)
# generate true underlying function and observations with errors
f_true_train <- 1+ 8*sin(X[,1]) + 3*log(X[,2]) - 0.8*(X[,7]^4-X[,7]^3-5*X[,7]^2) - 3*X[,8]
y <- f_true_train + rnorm(n, 0, 3)
# plot components of true underlying function as in Fig. 1
# of Boosting Additive Models using Component-wise P-Splines by Schmid & Hothorn (2007)
plot(X[,1], 8*sin(X[,1]))
plot(X[,2], 3*log(X[,2]))
plot(X[,7], - 0.8*(X[,7]^4-X[,7]^3-5*X[,7]^2))
plot(X[,8], - 3*X[,8])

Related

r increase the font size of values in dendogram plot

How can I can increase the font size of labels , x2, x1, x3, x4 in the plot produced based on the function varclus
set.seed(1)
x1 <- rnorm(200)
x2 <- rnorm(200)
x3 <- x1 + x2 + rnorm(200)
x4 <- x2 + rnorm(200)
x <- cbind(x1,x2,x3,x4)
v <- varclus(x, similarity="spear") # spearman is the default anyway
v # invokes print.varclus
print(round(v$sim,2))
plot(v)
Thanks.
plot.varclus internally calls plot.hclus as you can see by running:
getS3method("plot",class = 'varclus')
and it passes along the labels argument (and the ... argument(s)).
this includes a font scaling argument cex
so try:
plot(v,
cex = 1.5)

Confidence intervals from mocel coefficients vs whole model

I'm trying to demonstrate that there is an important difference between two ways of making linear model predictions. The first way, which my heart tells me is more correct, uses predict.lm which as I understand preserves the correlations between coefficients. The second approach tries to use the parameters independently.
Is this the correct way to show the difference? The two approaches seem somewhat close.
Also, is the StdErr of the coefficients the same as the standard deviation of their distributions? Or have I misunderstood what the model table is saying.
Below is a quick reprex to show what I mean:
# fake dataset
xs <- runif(200, min = -1, max = 1)
true_inter <- -1.3
true_slope <- 3.1
ybar <- true_inter + true_slope*xs
ys <- rnorm(200, ybar, sd = 1)
model <- lm(ys~xs)
# predictions
coef_sterr <- summary(model)$coefficients
inters <- rnorm(500, mean = coef_sterr[1,1], sd = coef_sterr[1,2])
slopes <- rnorm(500, mean = coef_sterr[2,1], sd = coef_sterr[2,2])
newx <- seq(from = -1, to= 1, length.out = 20)
avg_predictions <- cbind(1, newx) %*% rbind(inters, slopes)
conf_predictions <- apply(avg_predictions, 1, quantile, probs = c(.25, .975), simplify = TRUE)
# from confint
conf_interval <- predict(model, newdata=data.frame(xs = newx),
interval="confidence",
level = 0.95)
# plot to visualize
plot(ys~xs)
# averages are exactly the same
abline(model)
abline(a = coef(model)[1], b = coef(model)[2], col = "red")
# from predict, using parameter covariance
matlines(newx, conf_interval[,2:3], col = "blue", lty=1, lwd = 3)
# from simulated lines, ignoring parameter covariance
matlines(newx, t(conf_predictions), col = "orange", lty = 1, lwd = 2)
Created on 2022-04-05 by the reprex package (v2.0.1)
In this case, they would be close because there is very little correlation between the model parameters, so drawing them from two independent normals versus a multivariate normal is not that different:
set.seed(519)
xs <- runif(200, min = -1, max = 1)
true_inter <- -1.3
true_slope <- 3.1
ybar <- true_inter + true_slope*xs
ys <- rnorm(200, ybar, sd = 1)
model <- lm(ys~xs)
cov2cor(vcov(model))
# (Intercept) xs
# (Intercept) 1.00000000 -0.08054106
# xs -0.08054106 1.00000000
Also, it is probably worth calculating both of the intervals the same way, though it shouldn't make that much difference. That said, 500 observations may not be enough to get reliable estimates of the 2.5th and 97.5th percentiles of the distribution. Let's consider a slightly more complex example. Here, the two X variables are correlated - the correlation of the parameters derives in part from the correlation of the columns of the design matrix, X.
set.seed(519)
X <- MASS::mvrnorm(200, c(0,0), matrix(c(1,.65,.65,1), ncol=2))
b <- c(-1.3, 3.1, 2.5)
ytrue <- cbind(1,X) %*% b
y <- ytrue + rnorm(200, 0, .5*sd(ytrue))
dat <- data.frame(y=y, x1=X[,1], x2=X[,2])
model <- lm(y ~ x1 + x2, data=dat)
cov2cor(vcov(model))
# (Intercept) x1 x2
# (Intercept) 1.00000000 0.02417386 -0.01515887
# x1 0.02417386 1.00000000 -0.73228003
# x2 -0.01515887 -0.73228003 1.00000000
In this example, the coefficients for x1 and x2 are correlated around -0.73. As you'll see, this still doesn't result in a huge difference. Let's calculate the relevant statistics.
First, we draw B1 using the multivariate method that you rightly suspect is correct. Then, we'll draw B2 from a bunch of independent normals (actually, I'm using a multivariate normal with a diagonal variance-covariance matrix, which is the same thing).
b_est <- coef(model)
v <- vcov(model)
B1 <- MASS::mvrnorm(2500, b_est, v, empirical=TRUE)
B2 <- MASS::mvrnorm(2500, b_est, diag(diag(v)), empirical = TRUE)
Now, let's make a hypothetical X matrix and generate the relevant predictions:
hypX <- data.frame(x1=seq(-3,3, length=50),
x2 = mean(dat$x2))
yhat1 <- as.matrix(cbind(1, hypX)) %*% t(B1)
yhat2 <- as.matrix(cbind(1, hypX)) %*% t(B2)
Then we can calculate confidence intervals, etc...
yh1_ci <- t(apply(yhat1, 1, function(x)unname(quantile(x, c(.025,.975)))))
yh2_ci <- t(apply(yhat2, 1, function(x)unname(quantile(x, c(.025,.975)))))
yh1_ci <- as.data.frame(yh1_ci)
yh2_ci <- as.data.frame(yh2_ci)
names(yh1_ci) <- names(yh2_ci) <- c("lwr", "upr")
yh1_ci$fit <- c(as.matrix(cbind(1, hypX)) %*% b_est)
yh2_ci$fit <- c(as.matrix(cbind(1, hypX)) %*% b_est)
yh1_ci$method <- factor(1, c(1,2), labels=c("Multivariate", "Independent"))
yh2_ci$method <- factor(2, c(1,2), labels=c("Multivariate", "Independent"))
yh1_ci$x1 <- hypX[,1]
yh2_ci$x1 <- hypX[,1]
yh <- rbind(yh1_ci, yh2_ci)
We could then plot the two confidence intervals as you did.
ggplot(yh, aes(x=x1, y=fit, ymin=lwr, ymax=upr, fill=method)) +
geom_ribbon(colour="transparent", alpha=.25) +
geom_line() +
theme_classic()
Perhaps a better visual would be to compare the widths of the intervals.
w1 <- yh1_ci$upr - yh1_ci$lwr
w2 <- yh2_ci$upr - yh2_ci$lwr
ggplot() +
geom_point(aes(x=hypX[,1], y=w2-w1)) +
theme_classic() +
labs(x="x1", y="Width (Independent) - Width (Multivariate)")
This shows that for small values of x1, the independent confidence intervals are wider than the multivariate ones. For values of x1 above 0, it's a more mixed bag.
This tells you that there is some difference, but you don't need the simulation to know which one is 'right'. That's because the prediction is a linear combination of constants and random variables.
In this case, the b terms are the random variables and the x values are the constants. We know that the variance of a linear combination can be calculated this way:
All that is to say that your intuition is correct.

Why do MASS:lm.ridge coefficents differ from those calculated manually?

When performing ridge regression manually, as it is defined
solve(t(X) %*% X + lbd*I) %*%t(X) %*% y
I get different results from those calculated by MASS::lm.ridge. Why? For ordinary linear regression the manual method (computing the pseudoinverse) works fine.
Here is my Minimal, Reproducible Example:
library(tidyverse)
ridgeRegression = function(X, y, lbd) {
Rinv = solve(t(X) %*% X + lbd*diag(ncol(X)))
t(Rinv %*% t(X) %*% y)
}
# generate some data:
set.seed(0)
tb1 = tibble(
x0 = 1,
x1 = seq(-1, 1, by=.01),
x2 = x1 + rnorm(length(x1), 0, .1),
y = x1 + x2 + rnorm(length(x1), 0, .5)
)
X = as.matrix(tb1 %>% select(x0, x1, x2))
# sanity check: force ordinary linear regression
# and compare it with the built-in linear regression:
ridgeRegression(X, tb1$y, 0) - coef(summary(lm(y ~ x1 + x2, data=tb1)))[, 1]
# looks the same: -2.94903e-17 1.487699e-14 -2.176037e-14
# compare manual ridge regression to MASS ridge regression:
ridgeRegression(X, tb1$y, 10) - coef(MASS::lm.ridge(y ~ x0 + x1 + x2 - 1, data=tb1, lambda = 10))
# noticeably different: -0.0001407148 0.003689412 -0.08905392
MASS::lm.ridge scales the data before modelling - this accounts for the difference in the coefficients.
You can confirm this by checking the function code by typing MASS::lm.ridge into the R console.
Here is the lm.ridge function with the scaling portion commented out:
X = as.matrix(tb1 %>% select(x0, x1, x2))
n <- nrow(X); p <- ncol(X)
#Xscale <- drop(rep(1/n, n) %*% X^2)^0.5
#X <- X/rep(Xscale, rep(n, p))
Xs <- svd(X)
rhs <- t(Xs$u) %*% tb1$y
d <- Xs$d
lscoef <- Xs$v %*% (rhs/d)
lsfit <- X %*% lscoef
resid <- tb1$y - lsfit
s2 <- sum(resid^2)/(n - p)
HKB <- (p-2)*s2/sum(lscoef^2)
LW <- (p-2)*s2*n/sum(lsfit^2)
k <- 1
dx <- length(d)
div <- d^2 + rep(10, rep(dx,k))
a <- drop(d*rhs)/div
dim(a) <- c(dx, k)
coef <- Xs$v %*% a
coef
# x0 x1 x2
#[1,] 0.01384984 0.8667353 0.9452382

Multiplicative regression

I am trying to estimate a regression model on a data set with one continuous dependent variable (y) and three categorical independent variables (x1,x2,x3). For example imagine y is the price you pay for a smartphone and x are three features (say color, size and storage space).
My assumption is that each feature represents a multiplicative factor relative to an (unknown) baseline price. So if the baseline price for your phone is 100 a red color would increase this by 25%, a large size decrease it by 50% and high storage space increase by 75%. This means the final price of the phone would be 100 x (1+0.25) x (1-0.50) x (1+0.75) = 109.375.
The problem is that I only know the final price (not the baseline price) and the individual features. How can I estimate the multiplicative factors that go along with these features? I have written a brief simulation in R below to illustrate this problem.
Thanks for your help with this,
Michael
x_fun <- function() {
tmp1 <- runif(N)
tmp2 <- cut(tmp1, quantile(tmp1, probs=c(0, 1/3, 2/3, 3/3)))
levels(tmp2) <- seq(1:length(levels(tmp2)))
tmp2[is.na(tmp2)] <- 1
as.factor(tmp2)}
N <- 1000
x1 <- x_fun()
x2 <- x_fun()
x3 <- x_fun()
f1 <- 1+0.25*(as.numeric(x1)-2)
f2 <- 1+0.50*(as.numeric(x2)-2)
f3 <- 1+0.75*(as.numeric(x3)-2)
y_Base <- runif(min=0, max=1000, N)
y <- y_Base*f1*f2*f3
output <- data.frame(y, x1, x2, x3)
rm(y_Base, f1, f2, f3, N, y, x_fun, x1, x2, x3)
I think you can do it like this if you know the base levels of your factors:
N <- 1000
set.seed(42)
x1 <- x_fun()
x2 <- x_fun()
x3 <- x_fun()
f1 <- 1+0.25*(as.numeric(x1)-2)
f2 <- 1+0.50*(as.numeric(x2)-2)
f3 <- 1+0.75*(as.numeric(x3)-2)
y_Base <- runif(min=0, max=1000, N)
y <- y_Base*f1*f2*f3
str(x1)
output <- data.frame(y, x1, x2, x3)
#rm(y_Base, f1, f2, f3, N, y, x_fun, x1, x2, x3)
output[, c("x1", "x2", "x3")] <- lapply(output[, c("x1", "x2", "x3")], relevel, ref = "2")
fit <- glm(y ~ x1 + x2 + x3, data = output, family = gaussian(link = "log"))
summary(fit)
predbase <- exp(log(output$y) - predict(fit, type = "link") + coef(fit)["(Intercept)"])
library(ggplot2)
ggplot(data.frame(x = y_Base, y = predbase, output[, c("x1", "x2", "x3")]),
aes(x = x, y = y)) +
geom_point() +
facet_wrap( ~ x1 + x2 + x3) +
geom_abline(slope = 1, color = "dark red")

R script - NLS not working

I have 5 (x,y) data points and I'm trying to find a best fit solution consisting of two lines which intersect at a point (x0,y0), and which follow these equations:
y1 = (m1)(x1 - x0) + y0
y2 = (m2)(x2 - x0) + y0
Specifically, I require that the intersection must occur between x=2 and x=3. Have a look at the code:
#Initialize x1, y1, x2, y2
x1 <- c(1,2)
y1 <- c(10,10)
x2 <- c(3,4,5)
y2 <- c(20,30,40)
g <- c(TRUE, TRUE, FALSE, FALSE, FALSE)
q <- nls(c(y1, y2) ~ ifelse(g == TRUE, m1 * (x1 - x0) + y0, m2 * (x2 - x0) + y0), start = c(m1 = -1, m2 = 1, y0 = 0, x0 = 2), algorithm = "port", lower = c(m1 = -Inf, m2 = -Inf, y0 = -Inf, x0 = 2), upper = c(m1 = Inf, m2 = Inf, y0 = Inf, x0 = 3))
coef <- coef(q)
m1 <- coef[1]
m2 <- coef[2]
y0 <- coef[3]
x0 <- coef[4]
#Plot the original x1, y1, and x2, y2
plot(x1,y1,xlim=c(1,5),ylim=c(0,50))
points(x2,y2)
#Plot the fits
x1 <- c(1,2,3,4,5)
fit1 <- m1 * (x1 - x0) + y0
lines(x1, fit1, col="red")
x2 <- c(1,2,3,4,5)
fit2 <- m2 * (x2 - x0) + y0
lines(x2, fit2, col="blue")
So, you can see the data points listed there. Then, I run it through my nls, get my parameters m1, m2, x0, y0 (the slopes, and the intersection point).
But, take a look at the solution:
Clearly, the red line (which is supposed to only be based on the first 2 points) is not the best line of fit for the first 2 points. This is the same case with the blue line (the 2nd fit), which supposed to be is dependent on the last 3 points). What is wrong here?
This is segmented regression:
# input data
x1 <- c(1,2); y1 <- c(10,10); x2 <- c(3,4,5); y2 <- c(20,30,40)
x <- c(x1, x2); y <- c(y1, y2)
# segmented regression
library(segmented)
fm <- segmented.lm(lm(y ~ x), ~ x, NA, seg.control(stop.if.error = FALSE, K = 2))
summary(fm)
# plot
plot(fm)
points(y ~ x)
See ?lm, ?segmented.lm and ?seg.control for more info.
I'm not exactly sure what's wrong but I can get it to work by rearranging things a bit. Please note the comment in ?nls about "Do not use ‘nls’ on artificial "zero-residual" data."; I added a bit of noise.
## Initialize x1, y1, x2, y2
x1 <- c(1,2)
y1 <- c(10,10)
x2 <- c(3,4,5)
y2 <- c(20,30,40)
## make single x, y vector
x <- c(x1,x2)
set.seed(1001)
## (add a bit of noise to avoid zero-residual artificiality)
y <- c(y1,y2)+rnorm(5,sd=0.01)
g <- c(TRUE,TRUE,FALSE,FALSE,FALSE) ## specify identities of points
## particular changes:
## * you have lower=upper=2 for x0. Did you want 2<x0<3?
## * specified data argument explicitly (allows use of predict() etc.)
## * changed name from 'q' to 'fit1' (avoid R built-in function)
fit1 <- nls(y ~ ifelse(g,m1,m1+delta_m)*(x - x0) + y0,
start = c(m1 = -1, delta_m = 2, y0 = 0, x0 = 2),
algorithm = "port",
lower = c(m1 = -Inf, delta_m = 0, y0 = -Inf, x0 = 2),
upper = c(m1 = Inf, delta_m = Inf, y0 = Inf, x0 = 3),
data=data.frame(x,y))
#Plot the original 'data'
plot(x,y,col=rep(c("red","blue"),c(2,3)),
xlim=c(1,5),ylim=c(0,50))
## add predicted values
xvec <- seq(1,5,length.out=101)
lines(xvec,predict(fit1,newdata=data.frame(x=xvec)))
edit: based ifelse clause on point identity, not x position
edit: changed to require second slope to be > first slope
On a second look, I think the issue above is probably due to the use of separate vectors for x1 and x2 above, rather than a single x vector: I suspect these got replicated by R to match up with the g vector, which would have messed things up pretty badly. For example, this stripped-down example:
g <- c(TRUE, TRUE, FALSE, FALSE, FALSE)
ifelse(g,x1,x2)
## [1] 1 2 5 3 4
shows that x2 gets extended to (3 4 5 3 4) before being used in the ifelse clause. The scariest part is that normally one gets a warning such as this:
> x2 + 1:5
[1] 4 6 8 7 9
Warning message:
In x2 + 1:5 :
longer object length is not a multiple of shorter object length
but in this case there is no warning ...

Resources