Limitations of using sequential IDs in Cloud Firestore - firebase

I read in a stackoverflow post that (link here)
By using predictable (e.g. sequential) IDs for documents, you increase the chance you'll hit hotspots in the backend infrastructure. This decreases the scalability of the write operations.
I would like if anyone could explain better on the limitations that can occur when using sequential or user provided id.

Cloud Firestore scales horizontally by allocated key ranges to machines. As load increases beyond a certain threshold on a single machine, it will split the range being served by it and assign it to 2 machines.
Let's say you just starting writing to Cloud Firestore, which means a single server is currently handling the entire range.
When you are writing new documents with random Ids, when we split the range into 2, each machine will end up with roughly the same load. As load increases, we continue to split into more machines, with each one getting roughly the same load. This scales well.
When you are writing new documents with sequential Ids, if you exceed the write rate a single machine can handle, the system will try to split the range into 2. Unfortunately, one half will get no load, and the other half the full load! This doesn't scale well as you can never get more than a single machine to handle your write load.
In the case where a single machine is running more load than it can optimally handle, we call this "hot spotting". Sequential Ids mean we cannot scale to handle more load. Incidentally, this same concept applies to index entries too, which is why we warn sequential index values such as timestamps of now as well.
So, how much is too much load? We generally say 500 writes/second is what a single machine will handle, although this will naturally vary depending on a lot of factors, such as how big a document you are writing, number of transactions, etc.
With this in mind, you can see that smaller more consistent workloads aren't a problem, but if you want something that scales based on traffic, sequential document ids or index values will naturally limit you to what a single machine in the database can keep up with.

Related

AWS Neptune Query gremlins slowness on cold call

I'm currently running some queries with a big gap of performance between first call (up to 2 minutes) and the following one (around 5 seconds).
This duration difference can be seen through the gremlin REST API in both execution and profile mode.
As the query is loading a big amount of data, I expect the issue is coming from the caching functionalities of Neptune in its default configuration. I was not able to find any way to improve this behavior through configuration and would be glad to have some advices in order to reduce the length of the first call.
Context :
The Neptune database is running on a db.r5.8xlarge instance, and during execution CPU always stay bellow 20%. I'm also the only user on this instance during the tests.
As we don't have differential inputs, the database is recreated on a weekly basis and switched to production once the loader has loaded everything. Our database have then a short lifetime.
The database is containing slightly above 1.000.000.000 nodes and far more edges. (probably around 10.000.000.000) Those edges are splitted across 10 types of labels, and most of them are not used in the current query.
Query :
// recordIds is a table of 50 ids.
g.V(recordIds).HasLabel("record")
// Convert local id to neptune id.
.out('local_id')
// Go to tree parent link. (either myself if edge come back, or real parent)
.bothE('tree_top_parent').inV()
// Clean duplicates.
.dedup()
// Follow the tree parent link backward to get all children, this step load a big amount of nodes members of the same tree.
.in('tree_top_parent')
.not(values('some flag').Is('Q'))
// Limitation not reached, result is between 80k and 100K nodes.
.limit(200000)
// Convert back to local id for the 80k to 100k selected nodes.
.in('local_id')
.id()
Neptune's architecture is comprised of a shared cluster "volume" (where all data is persisted and where this data is replicated 6 times across 3 availability zones) and a series of decoupled compute instances (one writer and up to 15 read replicas in a single cluster). No data is persisted on the instances however, approximately 65% of the memory capacity on an instance is reserved for a buffer pool cache. As data is read from the underlying cluster volume, it is stored in the buffer pool cache until the cache fills. Once the cache fills, a least-recently-used (LRU) eviction policy will clear buffer pool cache space for any newer reads.
It is common to see first reads be slower due to the need to fetch objects from the underlying storage. One can improve this by writing and issuing "prefetch" queries that pull in objects that they think they might need in the near future.
If you have a use case that is filling buffer pool cache and constantly seeing buffer pool cache misses (a metric one can see in the CloudWatch metrics for Neptune), then you may also want to consider using one of the "d" instance types (ex: r5d.8xlarge) and enabling the Lookup Cache feature [1]. This feature specifically focuses on improving access to property values/literals at query time by keeping them in a directly attached NVMe store on the instance.
[1] https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-lookup-cache.html

Gremlin console keeps returning "Connection to server is no longer active" error

I tried to run a Gremlin query adding a property to vertex through Gremlin console.
g.V().hasLabel("user").has("status", "valid").property(single, "type", "valid")
I constantly get this error:
org.apache.tinkerpop.gremlin.jsr223.console.RemoteException: Connection to server is no longer active
This error happens after query is running for one or two minutes.
I tried some simple queries like g.V().limit(10) and it works fine.
Since the affected vertex count is more than 4 million, not sure if it is failing due to timeout issue.
I also tried to split it into small batches:
g.V().hasLabel("user").has("status", "valid").hasNot("type").limit(200000).property(single, "type", "valid")
It succeeded for first few batches and started failing again.
Is there any recommendations for updating millions of vertices?
The precise approach you take may vary depending on the backend graph database and storage you are using as well as the capacity of the hardware being used.
The capacity of the hardware where Gremlin Server is running in terms of number of CPUs and most importantly, memory, will also be a factor as will the setting of the query timeout value.
To do this in Gremlin, if you had a way to identify distinct ranges of vertices easily you could split this up into multiple threads each doing batches of updates. If the example you show is representative of your actual need then that is likely not possible in this case.
Likewise some graph databases provide a bulk load capability that is often a good way to do large batch updates but probably not an option here as you need to do essentially a conditional update based on looking at the current presence (or not) of a property.
Without more information about your data model and hardware etc. the best answer is probably to do two things:
Use smaller limits. Maybe try 5K or even just 1K at first and work up from there until you find a reliable sweet spot.
Increase the query timeout settings.
You may need to experiment to find the sweet spot for your environment as the capacity of the hardware will definitely play a role in situations like this as well as how you write your query.

Embedded key-value db vs. just storing one file per key?

I'm confused about the advantage of embedded key-value databases over the naive solution of just storing one file on disk per key. For example, databases like RocksDB, Badger, SQLite use fancy data structures like B+ trees and LSMs but seem to get roughly the same performance as this simple solution.
For example, Badger (which is the fastest Go embedded db) takes about 800 microseconds to write an entry. In comparison, creating a new file from scratch and writing some data to it takes 150 mics with no optimization.
EDIT: to clarify, here's the simple implementation of a key-value store I'm comparing with the state of the art embedded dbs. Just hash each key to a string filename, and store the associated value as a byte array at that filename. Reads and writes are ~150 mics each, which is faster than Badger for single operations and comparable for batched operations. Furthermore, the disk space is minimal, since we don't store any extra structure besides the actual values.
I must be missing something here, because the solutions people actually use are super fancy and optimized using things like bloom filters and B+ trees.
But Badger is not about writing "an" entry:
My writes are really slow. Why?
Are you creating a new transaction for every single key update? This will lead to very low throughput.
To get best write performance, batch up multiple writes inside a transaction using single DB.Update() call.
You could also have multiple such DB.Update() calls being made concurrently from multiple goroutines.
That leads to issue 396:
I was looking for fast storage in Go and so my first try was BoltDB. I need a lot of single-write transactions. Bolt was able to do about 240 rq/s.
I just tested Badger and I got a crazy 10k rq/s. I am just baffled
That is because:
LSM tree has an advantage compared to B+ tree when it comes to writes.
Also, values are stored separately in value log files so writes are much faster.
You can read more about the design here.
One of the main point (hard to replicate with simple read/write of files) is:
Key-Value separation
The major performance cost of LSM-trees is the compaction process. During compactions, multiple files are read into memory, sorted, and written back. Sorting is essential for efficient retrieval, for both key lookups and range iterations. With sorting, the key lookups would only require accessing at most one file per level (excluding level zero, where we’d need to check all the files). Iterations would result in sequential access to multiple files.
Each file is of fixed size, to enhance caching. Values tend to be larger than keys. When you store values along with the keys, the amount of data that needs to be compacted grows significantly.
In Badger, only a pointer to the value in the value log is stored alongside the key. Badger employs delta encoding for keys to reduce the effective size even further. Assuming 16 bytes per key and 16 bytes per value pointer, a single 64MB file can store two million key-value pairs.
Your question assumes that the only operation needed are single random reads and writes. Those are the worst case scenarios for log-structured merge (LSM) approaches like Badger or RocksDB. The range query, where all keys or key-value pairs in a range gets returned, leverages sequential reads (due to the adjacencies of sorted kv within files) to read data at very high speeds. For Badger, you mostly get that benefit if doing key-only or small value range queries since they are stored in a LSM while large values are appended in a not-necessarily sorted log file. For RocksDB, you’ll get fast kv pair range queries.
The previous answer somewhat addresses the advantage on writes - the use of buffering. If you write many kv pairs, rather than storing each in separate files, LSM approaches hold these in memory and eventually flush them in a file write. There’s no free lunch so asynchronous compaction must be done to remove overwritten data and prevent checking too many files for queries.
Previously answered here. Mostly similar to other answers provided here but makes one important, additional point: files in a filesystem can't occupy the same block on disk. If your records are, on average, significantly smaller than typical disk block size (4-16 KiB), storing them as separate files will incur substantial storage overhead.

A lot of one-value read or one many-value read in Firebase

I would like to use firebase to load a 2D map in my site. There will be dynamic load of fields when user scroll map and also show changed map-fields.
But i am interested what is more efficient.
Read list of values even if i need only about 50% of loaded fields (e.g. 100 loaded fields)
geoRef.startAt(null, start).endAt(null, end).on('value', callback);
maybe better:
geoRef.startAt(null, start).endAt(null, end).once('value', callback);
geoRef.startAt(null, start).endAt(null, end).on('child_changed', callback);
or read a lot of single value (e.g. 50x)
geoRef.child(valueX).child(valueY).on('value', callback);
These reads will be triggerd for every user scroll. So that there will be a lot of 50x vs 1x(50%) reads.
Thanks
It's impossible to answer this question specifically without details. Are we talking 1000 records that are each 10 bytes or 1 million records that are each 5MB?
Data size and network bandwidth are the consideration here, not the number of connections. Firebase holds a socket opened to the server, so the overhead of establishing TCP connections is not a concern (as it would be with multiple HTTP requests), although the time it takes a request to return from the server (latency) is.
This leaves only two considerations: how much data and how many records.
For instance, if my system contains 1002 records and I want 1000 of them, and each is 1KB in size, it's going to be faster to simply request them all at once (since this requires only the latency of waiting for one response from the server). But if I want 10 of them, requesting them separately would likely be faster.
Even more ideal would be to segment them using priorities or split them cleverly into multiple paths by category, time frame, or another context. Then I can retrieve only segments of the data as a single transaction.
For example:
/messages/today
/messages/yesterday
/messages/all_messages
Now, assuming today is measured in hundreds and the payload is 1KB, I can just grab this whole list and iterate it client side any time I'd like--not worth the energy to grab them individually. If this is my common use case, perfect.
And assuming all_messages is measured in the millions of records, each about 1KB, then to grab 100 messages from here, I'll naturally gravitate to snagging each one individually.

Most bandwidth efficient unidirectional synchronise (server to multiple clients)

What is the most bandwidth efficient way to unidirectionally synchronise a list of data from one server to many clients?
I have sizeable chunk of data (perhaps 20,000, 50-byte records) which I need to periodically synchronise to a series of clients over the Internet (perhaps 10,000 clients). Records may added, removed or updated only at the server end.
Something similar to bittorrent? Or even using bittorrent. Or maybe invent a wrapper around bittorrent.
(Assuming you pay for bandwidth on your server and not the others ...)
Ok, so we've got some detail now - perhaps 10 GB of total (uncompressed) data, every 3 days, so that's 100 GB per month.
That's actually not really a sizeable chunk of data these days. Whose bandwidth are you trying to save - yours, or your clients'?
Does the data perhaps compress very readily? For raw binary data it's not uncommon to achieve 50% compression, and if the data happens to have a lot of repeated patterns within it then 80%+ is possible.
That said, if you really do need a system that can just transfer the changes, my thoughts are:
make sure you've got a well defined primary key field - use that as your key to identify each record
record a timestamp for each record to say when it last changed
have each client tell you the timestamp of the last change it knows of, so you can calculate the deltas
ensure that full downloads are possible too, in case clients get out of sync

Resources