R spplot error: invalid 'nrow' value (too large or NA) - r

I am trying to plot 4 point shapefiles. They are close to identical: each is a SpatialPointsDataFrame, each with:
CR="+proj=longlat +datum=WGS84"
each with 4 variables. The first has 312 points, the second 337, the third 948, and the fourth 345 obs. I can plot each of them, individually or in one map, using R's simple plot() function.
However, when I go to plot them according to a variable value, using spplot, the first two plot perfectly, and the second two give me this error:
Error in matrix(0, rows.per.page, cols.per.page) :
invalid 'nrow' value (too large or NA)
I don't know what this means. I saw one forum response on the subject which pointed towards an error in the CRS. But I know it's not the CRS, as I made these shapefiles w/ identical CRS strings.
Thanks so much in advance for any insights!

Related

Create polygon from large raster in R

I have a large raster file (5GB) containing only 1's and NA's. I would like to convert this into a multipolygon of the areas with 1's, with adjacent cells dissolved into one polygon.
I have imported the file to R using
r = raster::raster(my_filename)
r
class : RasterLayer
dimensions : 17452, 45000, 785340000 (nrow, ncol, ncell)
resolution : 0.008, 0.008 (x, y)
extent : -180, 180, -55.9875, 83.6285 (xmin, xmax, ymin, ymax)
crs : NA
source : C://...binary_X01_januarysnow.asc
names : binary_X01_januarysnow
and
I have tried several methods to create the polygon:
rasterToPolygons from raster with dissolve==TRUE option (R crashes)
isoband from the isoband package (R crashes),
Both of the approaches have worked as expected when I've tried them on a subset of my raster covering appr. the area of Spain, so I assume the problem is only with the size of the data and not my code.
Then I have tried to read my raster with read_stars, and use stars::st_as_sf(st, as_points = FALSE, merge = TRUE, connect8 = TRUE). This returned an empty polygon, possibly because the file was read as a stars proxy object, but I'm not sure, I couldn't find any information about that online.
Then I have force-read the raster as stars and not as stars proxy by using read_stars(my_filename, proxy=FALSE) and have tried to use the st_as_sf command as above but got the message "Error: cannot allocate vector of size 2.9 Gb"
I know that in the worst case I can probably just decrease the raster resolution and therefore size and will be able to create the polygons I want (but with less precise resolution), but I was wondering if anyone has another suggestion I could try? Both the 1's and NA's are located in large continous areas, so it would be enough to have high resolution on the edges, if that helps.
PS This is my very first question on StackOverflow so I apologize if my problem is not clearly described. I don't know how to provide a reproducible example of a large dataset.
What you are looking for is as.polygons() from the terra package, the raster package's successor. terra handles large data sets better than raster does.

vector shp point to ppp spatstat with polygon windows

I always get error to this
# polygon that to be window
neighborhoods <- st_read("neighborhoods/neighborhoods.shp")
# convert CRS to planar projection as recommended by (https://stackoverflow.com/questions/59597078/use-sf-polygon-object-as-window-in-spatstat)
neighborhoods_3857 <- st_transform(neighborhoods, crs = 3857)
# point that to be PPP spatstat
trees <- st_read("trees/trees.shp")
# convert to planar projection
trees_3857 <- st_transform(trees, crs = 3857)
The problems, the "trees_3857" doesn't have dataframe columns that represent in EPSG3857 coordinates, so Feature column of "trees_3857" doesn't have x and y columns that respect to EPSG 3857
q <- ppp(x=?, y=?, win=neighborhoods_3857)
what I have done but error
z <- as.ppp(trees_3857, win=neighborhoods_3857)
Error in as.ppp.sf(trees_3857, win = neighborhoods_3857): unused argument (win = neighborhoods_3857)
Traceback:
You can get the data freely from datacamp.
https://assets.datacamp.com/production/repositories/738/datasets/96a72364e69d872645038b3a6dc7c0dbcb1114d6/neighborhoods.zip
https://assets.datacamp.com/production/repositories/738/datasets/08a3684dc4d538d59ba051a64a834166883ab5d1/trees.zip
Although you're wanting to transform your data into an object of class "ppp" from the spatstat package, the error message indicates that the problem originated in the function as.ppp.sf which is part of the sf package.
The error message says unused argument: win which means that the function did not recognise or accept the argument win.
Just to make it more challenging, the function as.ppp.sf is not documented and is not visible... By typing sf:::as.ppp.sf we can see the function body and figure out that the function has only one argument, so it does not accept any window information.
This is not the way the generic function as.ppp is designed to work in the spatstat package, so if you looked for help(as.ppp) in spatstat, it's not surprising that you got confused.
The best solution is (as Ege Rubak suggests) to convert the point coordinates and then add the window information:
z <- as.ppp(trees_3857)
Window(z) <- as.owin(neighborhoods_3857)
The conversions as.ppp and as.owin will be executed using code in sf so I can't guarantee they will work. The assignment Window(z) <- will be executed in spatstat code, see help("Window<-.ppp").

Query raster brick layer based on another raster in R

I have a NetCDF file of global oceanographic (OmegaA) data at relatively coarse spatial resolution with 33 depth levels. I also have a global bathymetry raster at much finer resolution. My goal is to use get the seabed OmegaA data from the NetCDF file, using the bathymetry data to determine the desired depth. My code so far;
library(raster)
library(rgdal)
library(ncdf4)
# Aragonite data. Defaults to CRS WGS84
ncin <- nc_open("C:/..../GLODAPv2.2016b.OmegaA.nc")
ncin.depth <- ncvar_get(ncin, "Depth")# 33 depth levels
omegaA.brk <- brick("C:/.../GLODAPv2.2016b.OmegaA.nc")
omegaA.brk <-rotate(omegaA.bkr)# because netCDF is in Lon 0-360.
# depth raster. CRS WGS84
r<-raster("C:/....GEBCO.tif")
# resample the raster brick to the resolution that matches the bathymetry raster
omegaA.brk <-resample(omegaA.brk, r, method="bilinear")
# create blank final raster
omegaA.rast <- raster(ncol = r#ncols, nrow = r#nrows)
extent(omegaA.rast) <- extent(r)
omegaA.rast[] <- NA_real_
# create vector of indices of desired depth values
depth.values<-getValues(r)
depth.values.index<-which(!is.na(depth.values))
# loop to find appropriate raster brick layer, and extract the value at the desired index, and insert into blank raster
for (p in depth.values.index) {
dep.index <-which(abs(ncin.depth+depth.values[p]) == min(abs(ncin.depth+depth.values[p]))) ## this sometimes results in multiple levels being selected
brk.level <-omegaA.brk[[dep.index]] # can be more than on level if multiple layers selected above.
omegaA.rast[p] <-omegaA.brk[[1]][p] ## here I choose the first level if multiple levels have been selected above
print(paste(p, "of", length(depth.values.index))) # counter to look at progress.
}
The problem: The result is a raster with massive gaps (NAs) in it where there should be data. The gaps often take a distinctive shape - eg, follow a contour, or along a long straight line. I've pasted a cropped example.
enter image description here
I think this could be because either 1) for some reason the 'which' statement in the loop is not finding a match or 2) a misalignment of the projections is created which I've read can happen when using 'Rotate'.
I've tried to make sure all the extents, resolutions, number of cells, and CRS's are all the same, which they seem to be.
To speed up the process I've cropped the global brick and bathy raster to my area of interest, again checking that all the spatial resolutions, etc etc match - I've not included those steps here for simplicity.
At a loss. Any help welcome!
Without a reproducible example, this kind of problems is hard to solve. I can't tell where your problem is but I'll present to you the approach I would try. Maybe it's good, maybe it's bad, I don't know but it may inspire you to find a way to go around your problem.
To my understanding, you have a brick of OmegaA (33 layers/depth) and a bathymetry raster. You want to get the OmegaA value at the bottom of the sea. Here is how I would do:
Make OmegaA raster to the same resolution and extent to the bathymetry one
Transforme the bathymetry raster into a raster brick of 33 three layers of 0-1. e.g. If the sea bottom is at 200m for one particular pixel, than this pixel on all depth layer other than 200 is 0 and 1 for the 200. To program this, I would go the long way, something like
:
r_1 <- r
values(r_1) <- values(r)==10 # where 10 is the depth (it could be a range with < or >)
r_2 <- r
values(r_2) <- values(r)==20
...
r_33 <- r
values(r_33) <- values(r)==250
r_brick <- brick(r_1, r_2, ..., r_33)
then you multiple both your raster bricks. They have the same dimension, it should be easy. The output should be a raster brick of 33 layers with 0 everywhere where it isn't the bottom of the sea and the value of OmegaA anywhere else.
Combine all the layer of the brick obtained previously into a simple raster with a sum.
This should work. If you have problem with dealing with raster brick, you could make the data into base R arrays, it could be simpler.
Good luck.

Rasterize error: Polygon to raster conversion produces horizontal lines

I am working with shapefiles in R that I need to convert from polygon to raster. While the vectors look perfect when plotted, when converted to raster using 'rasterize' they produce erroneous horizontal lines. Here is an example of the problem:
Here is a generic example of the code that I am using (sorry that I cannot upload the data itself as it is proprietary):
spdf.dat <- readOGR("directory here", "layer here")
# Plot polygon
plot(spdf.dat, col = 'dimgrey', border = 'black')
# Extract boundaries
ext <- extent(spdf.dat)
# Set resolution for rasterization
res <- 1
# determine no. of columns from extents and resolution
yrow <- round((ext#ymax - ext#ymin) / res)
xcol <- round((ext#xmax - ext#xmin) / res)
# Rasterize base
rast.base <- raster(ext, yrow, xcol, crs = projection(spdf.dat))
# Rasterize substrate polygons
rast <- rasterize(spdf.dat, rast.base, field = 1, fun = 'min', progress='text')
plot(rast, col = 'dimgrey')
Does this seem to be a problem with the source data or the rasterize function? Has anyone seen this sort of error before? Thank you for any advice that you can provide.
To make it official so the question is considered answered, I'll copy my commented responses here. You can therefor accept it.
When I look at your figure, it seems to me that the problematic appearing lines in the raster are situated at the same latitude of some islands. Try to removes these islands from your dataset. If the problem disappear, you'll know that your data is the problem and where in your data the problem lies.
An other option is to try the gdalUtils package which has a function: gdal_rasterize. Maybe gdal is less exigent in the input data.
I had a similar problem rasterizing the TIGER areal water data for the San Juan Islands in Washington State , as well as for Maui - both of these spatial polygon data frames at the default resolution returned by package Tigris using a raster defined by points 1 arc-second of lat/lon apart. There were several horizontal stripes starting at what appeared to be sharp bends of the coastline. Various simplification algorithms helped, but not predictably, and not perfectly.
Try package Velox, which takes some getting used to as it uses Reference Classes. It probably has size limits, as it uses the Boost geometry libraries and works in memory. You don't need to understand it all, I don't. It is fast compared to raster::rasterize (especially for large and complicated spatial lines dataframes), although I didn't experience the hundred-fold speedups claimed, I am not gonna complain about a mere factor of 10 or 20 speedup. Most importantly, velox$rasterize() doesn't leave streaks for the locations I found where raster::rasterize did!
I found that it leaves a lot of memory garbage, and when converting large rasterLayers derived from velox$rasterize, running gc() was helpful before writing the raster in native R .grd format (in INT1S format to save disk space).
Just as a follow up to this question based on my experiences.
The horizontal lines are as a result of these 'islands' as described above. However, it only occurs if the polygon is 'multi-part'. If 'islands' are distinct polygons rather than a separate part of one polygon, then raster:rasterize() works fine.

Why does R think the projection data are different?

I'm working with satellite tracked animals and have a load of relocation data.
So I have my map data and relocations as SpatialPointsDataFrames and when I ask
if proj4string(map)==proj4string(locs) I get TRUE.
But when I try the count.points function as follows
cp <- count.points(locs, map)
I get the following error
Error in count.points(SpatialPoints(x), w) :
different proj4string in w and xy
Does anyone have any ideas on why this is the case?
Edit Code:
load("mydata")
map = mydata$map
map
mimage(map)
locs= mydata$relocs
locs
image(map)
points(locs, col=as.numeric(slot(locs, "data")[,1]), pch=16)
cp <- count.points(locs, map)
Reproducible example would go a long, long way here. But generally speaking R's comparison of projection strings is approximately verbatim. So if there's an extra space or so forth, it will fail.
Given the out for proj4string(map), proj4string(locs), proj4string(SpatialPoints(locs)) in the comment, particularly that proj4string(SpatialPoints(locs)) is NA, I'd say that count.points is dropping the proj4string when it changes to a SpatialPoints object. I think the way to coerce a SPDF to SP while keeping the projection string is via as(x,"SpatialPoints").... Try using trace to insert that into count.points?

Resources