Please see the sample data below.
I want to convert the quarterly sale data (with a start date and end date) into monthly sale data.
For example:
Data set A-Row 1 will be split into Data set B- Row 1, 2 and 3 for June, July and August separately and the sale will be pro rata based on number of days in that month, all other columns will be the same;
Data set A-Row 2 will pick up what was left in Row 1 (which ends in 5/9/2017) and formed a complete September.
Is there an efficient way to execute this, the actual data is a csv file with 100K x 15 data size, which will be split to approximately 300K x 15 new data set for monthly analysis.
Some key characteristic from sample question data includes:
The start day for the first quarterly sales data is the day that customer joins, so it could be any day;
All sales will be quarterly but in various days between 90, 91, or 92 days, but it is also possible to have imcomplete quarterly sale data as customer leave in the quarter.
Sample Question:
Customer.ID Country Type Sale Start..Date End.Date Days
1 1 US Commercial 91 7/06/2017 5/09/2017 91
2 1 US Commerical 92 6/09/2017 6/12/2017 92
3 2 US Casual 25 10/07/2017 3/08/2017 25
4 3 UK Commercial 64 7/06/2017 9/08/2017 64
Sample Answer:
Customer.ID Country Type Sale Start.Date End.Date Days
1 1 US Commercial 24 7/06/2017 30/06/2017 24
2 1 US Commercial 31 1/07/2017 31/07/2017 31
3 1 US Commercial 31 1/08/2017 31/08/2017 31
4 1 US Commercial 30 1/09/2017 30/09/2017 30
5 1 US Commercial 31 1/10/2017 31/10/2017 31
6 1 US Commercial 30 1/11/2017 30/11/2017 30
7 1 US Commercial 6 1/12/2017 6/12/2017 6
8 2 US Casual 22 10/07/2017 31/07/2017 22
9 2 US Casual 3 1/08/2017 3/08/2017 3
10 3 UK Commercial 24 7/06/2017 30/06/2017 24
11 3 UK Commercial 31 1/07/2017 31/07/2017 31
12 3 UK Commercial 9 1/08/2017 9/08/2017 9
I just ran CIAndrews' code. It seems to work for the most part, but it is very slow when run on a dataset with 10,000 rows. I eventually cancelled the execution after a few minutes of waiting. There's also an issue with the number of days: For example, July has 31 days, but the days variable only shows thirty. It's true that 31-1 = 30, but the first day should be counted as well.
The code below only takes about 21 seconds on my 2015 MacBook Pro (not including data generation), and takes care of the other problem, too.
library(tidyverse)
library(lubridate)
# generate data -------------------------------------------------------------
set.seed(666)
# assign variables
customer <- sample.int(n = 2000, size = 10000, replace = T)
country <- sample(c("US", "UK", "DE", "FR", "IS"), 10000, replace = T)
type <- sample(c("commercial", "casual", "other"), 10000, replace = T)
start <- sample(seq(dmy("7/06/2011"), today(), by = "day"), 10000, replace = T)
days <- sample(85:105, 10000, replace = T)
end <- start + days
sale <- sample(500:3000, 10000, replace = T)
# generate dataframe of artificial data
df_quarterly <- tibble(customer, country, type, sale, start, end, days)
# split quarters into months ----------------------------------------------
# initialize empty list with length == nrow(dataframe)
list_date_dfs <- vector(mode = "list", length = nrow(df_quarterly))
# for-loop generates new dates and adds as dataframe to list
for (i in 1:length(list_date_dfs)) {
# transfer dataframe row to variable `row`
row <- df_quarterly[i,]
# correct end date so split successful when interval doesn't cover full month
end_corr <- row$end + day(row$start) - day(row$end)
# use lubridate to compute first and last days of relevant months
m_start <- seq(row$start, end_corr, by = "month") %>%
floor_date(unit = "month")
m_end <- m_start + days_in_month(m_start) - 1
# replace first and last elements with original dates
m_start[1] <- row$start
m_end[length(m_end)] <- row$end
# compute the number of days per month as well as sales per month
# correct difference by adding 1
m_days <- as.integer(m_end - m_start) + 1
m_sale <- (row$sale / sum(m_days)) * m_days
# add tibble to list
list_date_dfs[[i]] <- tibble(customer = row$customer,
country = row$country,
type = row$type,
sale = m_sale,
start = m_start,
end = m_end,
days = m_days
)
}
# bind dataframe list elements into single dataframe
df_monthly <- bind_rows(list_date_dfs)
It's not pretty as it uses multiple functions and loops, since it consists out of multiple operations:
# Creating the dataset
library(tidyr)
customer <- c(1,1,2,3)
country <- c("US","US","US","UK")
type <- c("Commercial","Commercial","Casual","Commercial")
sale <- c(91,92,25,64)
Start <- as.Date(c("7/06/2017","6/09/2017","10/07/2017","7/06/2017"),"%d/%m/%Y")
Finish <- as.Date(c("5/09/2017","6/12/2017","3/08/2017","9/08/2017"),"%d/%m/%Y")
days <- c(91,92,25,64)
df <- data.frame(customer,country, type,sale, Start,Finish,days)
# Function to split per month
library(zoo)
addrowFun <- function(y){
temp <- do.call("rbind", by(y, 1:nrow(y), function(x) with(x, {
eom <- as.Date(as.yearmon(Start), frac = 1)
if (eom < Finish)
data.frame(customer, country, type, Start = c(Start, eom+1), Finish = c(eom, Finish))
else x
})))
return(temp)
}
loop <- df
for(i in 1:10){ #not all months are split up at once
loop <- addrowFun(loop)
}
# Calculating the days per month
loop$days <- as.numeric(difftime(loop$Finish,loop$Start, units="days"))
# Creating the function to get the monthly sales pro rata
sumFun <- function(x){
tempSum <- df[x$Start >= df$Start & x$Finish <= df$Finish & df$customer == x$customer,]
totalSale <- sum(tempSum$sale)
totalDays <- sum(tempSum$days)
return(x$days / totalDays * totalSale)
}
for(i in 1:length(loop$customer)){
loop$sale[i] <- sumFun(loop[i,])
}
loop
CiAndrews,
Thanks for the help and patience. I have managed to get the answer with small change. I have replace the "rbind" with "rbind.fill" from "plyr" package and everything runs smoothly after that.
Please see the head of sample2.csv below
customer country type sale Start Finish days
1 43108181108 US Commercial 3330 17/11/2016 24/02/2017 99
2 43108181108 US Commercial 2753 24/02/2017 23/05/2017 88
3 43108181108 US Commercial 3043 13/02/2018 18/05/2018 94
4 43108181108 US Commercial 4261 23/05/2017 18/08/2017 87
5 43103703637 UK Casual 881 4/11/2016 15/02/2017 103
6 43103703637 UK Casual 1172 26/07/2018 1/11/2018 98
Please see the codes below:
library(tidyr)
#read data and change the start and finish to data type
data <- read.csv("Sample2.csv")
data$Start <- as.Date(data$Start, "%d/%m/%Y")
data$Finish <- as.Date(data$Finish, "%d/%m/%Y")
customer <- data$customer
country <- data$country
days <- data$days
Finish <- data$Finish
Start <- data$Start
sale <- data$sale
type <- data$type
df <- data.frame(customer, country, type, sale, Start, Finish, days)
# Function to split per month
library(zoo)
library(plyr)
addrowFun <- function(y){
temp <- do.call("rbind.fill", by(y, 1:nrow(y), function(x) with(x, {
eom <- as.Date(as.yearmon(Start), frac = 1)
if (eom < Finish)
data.frame(customer, country, type, Start = c(Start, eom+1), Finish = c(eom, Finish))
else x
})))
return(temp)
}
loop <- df
for(i in 1:10){ #not all months are split up at once
loop <- addrowFun(loop)
}
# Calculating the days per month
loop$days <- as.numeric(difftime(loop$Finish,loop$Start, units="days"))
# Creating the function to get the monthly sales pro rata
sumFun <- function(x){
tempSum <- df[x$Start >= df$Start & x$Finish <= df$Finish & df$customer == x$customer,]
totalSale <- sum(tempSum$sale)
totalDays <- sum(tempSum$days)
return(x$days / totalDays * totalSale)
}
for(i in 1:length(loop$customer)){
loop$sale[i] <- sumFun(loop[i,])
}
loop
Related
I have data like this.
library(lubridate)
set.seed(2021)
gen_date <- seq(ymd_h("2021-01-01-00"), ymd_h("2021-09-30-23"), by = "hours")
hourx <- hour(gen_date)
datex <- date(gen_date)
sales <- round(runif(length(datex), 10, 50), 0)*100
mydata <- data.frame(datex, hourx, sales)
head(mydata)
# datex hourx sales
#1 2021-01-01 0 2800
#2 2021-01-01 1 4100
#3 2021-01-01 2 3800
#4 2021-01-01 3 2500
#5 2021-01-01 4 3500
#6 2021-01-01 5 3800
tail(mydata
# datex hourx sales
#6547 2021-09-30 18 3900
#6548 2021-09-30 19 3600
#6549 2021-09-30 20 3000
#6550 2021-09-30 21 4700
#6551 2021-09-30 22 4700
#6552 2021-09-30 23 3600
I have task to do modelling using Linear Regression but with tricky data. Assume we have data from January to March, we need those data to forecast April data. Here the steps:
We use January and February data as Independent Variables (X) and March data as Dependent Variable (Y) for building regression model, because February has the fewest days, which is 28 days, then we cut January & March data into 28 days too.
data_jan <- mydata[1:672,]
data_feb <- mydata[745:1416,]
data_mar <- mydata[1417:2088,]
Modelling Regression using lm function
mydata_reg <- data.frame(x1 = data_jan$sales,
x2 = data_feb$sales,
y = data_mar$sales)
model_reg <- lm(y~., data = mydata_reg)
After get model, we use new data within February & March as independent data (X)
mydata_reg_for <- data.frame(x1 = data_feb$sales,
x2 = data_mar$sales)
pred_data_apr <- predict(model_reg, newdata = mydata_reg_for)
Check lenght of the month, Because april has 30 days and we only get 28 days forecast data, so we still need 2 days data to complete our forecast. February only has 28 days, so we use first two dates from March, which are "2021-03-01" & "2021-03-02". Now, March has 31 days, then we don't need do anything, we just add "2021-03-29" & "2021-03-30".
data_feb_add <- mydata[1417:1464,]
data_mar_add <- mydata[2089:2136,]
mydata_reg_add <- data.frame(x1 = data_feb_add$sales,
x2 = data_mar_add$sales)
After that we do modelling using model_reg function before and Add all april forecast.
pred_data_apr_add <- predict(model_reg, newdata = mydata_reg_add)
data_apr <- c(as.numeric(pred_data_apr), as.numeric(pred_data_apr_add))
My question is how do we make this process run automatically every month using dplyr package? Because every month has different days. I use february data because it has the fewest days. This condition also is applied to other months. Many Thank You.
If you want to control the number of days after each month (or in each month) you could filter by the date not the row numbers.
I'm sure it can be tidied up more than this, but you would just need to change the forecast_date <- as.Date("2021-04-01") to whichever month you want to forecast.
##set the forecast month. This should be straight forward to automate with a list or an increment
forcast_date <- as.Date("2021-04-01") # April
##get the forecast month length. This would be used for the data_feb_add and data_mar_add step.
forcast_month_length <- days_in_month(forcast_date) #30 days
##get dates for the previous 3 months
month_1_date <- forcast_date %m-% months(3)
month_2_date <- forcast_date %m-% months(2)
month_3_date <- forcast_date %m-% months(1)
##find the shortest month in that time range.
shortest_month <- min(c(days_in_month(month_1_date),
days_in_month(month_2_date),
days_in_month(month_2_date))) #28 days
##select the first 28 days (the shortest month) for each of the months used for the variables
data_month_1 <- mydata[mydata$datex %in% month_1_date:(month_1_date + shortest_month - 1),]
data_month_2 <- mydata[mydata$datex %in% month_2_date:(month_2_date + shortest_month - 1),]
data_month_3 <- mydata[mydata$datex %in% month_3_date:(month_3_date + shortest_month - 1),]
##select the number of days needed for each month for the forecast data (30 days for april)
month_2_forecast_length <- mydata[mydata$datex %in% month_2_date:(month_2_date + forcast_month_length - 1),]
month_3_forecast_length <- mydata[mydata$datex %in% month_3_date:(month_3_date + forcast_month_length - 1),]
You can simply split data by group_split
mydata %>%
group_split(month(datex))
this code will split mydata into 12 lists, and each list elements are dataframe with each 12 month
I want to count the number of rows within a certain time range based on each row after grouping by id. For instance, let us say a 1-month window around each datetime entry in the column "cleaned_date".
head(data$cleaned_date)
[1] "2004-10-11 CDT" "2008-09-10 CDT" "2011-10-25 CDT" "2011-12-31 CST"
The dates are in POSIXct format.
For the first entry, I need to count the number of rows within the time from 2004-09-11 to 2004-11-11, for the second entry, count the number of rows within the time from 2008-08-10 to 2008-10-10, so on and so forth.
I used roughly the following code
data %>% group_by(id) %>% filter(cleaned_date %within% interval(cleaned_date - 24 * 60 * 60 * 30, cleaned_date + 24 * 60 * 60 * 30)) %>% mutate(counts = n())
But it does not seem to work and I got counts as an empty column. Any help would be appreciated, thanks!
A reproducible example can be the following:
The input is
cleaned_date id
1 2008-09-11 A
2 2008-09-10 B
3 2008-09-30 B
4 2011-10-25 A
5 2011-11-14 A
And I want the output to be
cleaned_date id counts
1 2008-09-11 A 1
2 2008-09-10 B 2
3 2008-09-30 B 2
4 2011-10-25 A 2
5 2011-11-14 A 2
For the first entry, I want to count the rows in the timeframe 2008-08-11 to 2008-10-11, the second entry seems to satisfy but we need to group by "id", so it does not count. For the second entry I want to count the rows in the timeframe 2008-08-10 to 2008-10-10, rows 2 and 3 satisfy, so the counts is 2. For the third entry I want to count the rows in the timeframe 2008-08-30 to 2008-10-30, rows 2 and 3 satisfy again, so on and so forth.
Note that the actual dataset I would like to operate on has millions of rows, so it might be more efficient to use tidyverse rather than base R.
Perhaps not the most elegant solution.
# input data. Dates as character vector
input = data.frame(
cleaned_date = c("2008-09-11", "2008-09-10", "2008-09-30", "2011-10-25", "2011-11-14"),
id = c("A", "B", "B", "A", "A")
)
# function to create a date window n months around specified date
window <- function(x, n = 1){
x <- rep(as.POSIXlt(x),2)
x[1]$mon <- x[1]$mon - n
x[2]$mon <- x[2]$mon + n
return(format(seq(from = x[1], to = x[2], by = "day"), format="%Y-%m-%d"))
}
# find counts for each row
input$counts <- unlist(lapply(1:nrow(input), function(x){
length(which((input$cleaned_date %in% window(input$cleaned_date[x])) & input$id == input$id[x]))
}))
input
cleaned_date id counts
1 2008-09-11 A 1
2 2008-09-10 B 2
3 2008-09-30 B 2
4 2011-10-25 A 2
5 2011-11-14 A 2
Edit for large datasets:
# dummy dataset with 1,000,000 rows
years <- c(2000:2020)
months <- c(1:12)
days <- c(1:20)
n <- 1000000
dates <- paste(sample(years, size = n, replace = T), sample(months, size = n, replace = T), sample(days, size = n, replace = T), sep = "-")
groups <- sample(c("A","B","C"), size = n, replace = T)
input <- data.frame(
cleaned_date = dates,
id = groups
)
input$cleaned_date <- format(as.POSIXlt(input$cleaned_date), format="%Y-%m-%d")
# optional, sort data by date for small boost in performance
input <- input[order(input$cleaned_date),]
counts <- NULL
#pb <- progress::progress_bar$new(total = length(unique(input$cleaned_date)))
t1 <- Sys.time()
# split up vectorization for each unique date.
for(date in unique(input$cleaned_date)){
#pb$tick()
w <- window(date)
tmp <- input[which(input$cleaned_date %in% w),]
tmp_counts <- unlist(lapply(which(tmp$cleaned_date == date), function(x){
length(which(tmp$id == tmp$id[x]))
}))
counts <- c(counts, tmp_counts)
}
# add counts to dataset
input$counts <- counts
# optional, re-order data to original format
input <- input[order(as.numeric(rownames(input))),]
print(Sys.time() - t1)
Time difference of 3.247204 mins
If you want to go faster, you can run the loop in parallel
library(foreach)
library(doParallel)
cores=detectCores()
cl <- makeCluster(cores[1]-1)
registerDoParallel(cl)
dates = unique(input$cleaned_date)
t1 <- Sys.time()
counts <- foreach(i=1:length(dates), .combine= "c") %dopar% {
w <- window(dates[i])
tmp <- input[which(input$cleaned_date %in% w),]
tmp_counts <- unlist(lapply(which(tmp$cleaned_date == dates[i]), function(x){
length(which(tmp$id == tmp$id[x]))
}))
tmp_counts
}
stopCluster(cl)
input$counts <- counts
input <- input[order(as.numeric(rownames(input))),]
print(Sys.time() - t1)
Time difference of 37.37211 secs
Note, I'm running this on a MacBook Pro with a 2.3 GHz Quad-Core Intel Core i7 and 16 GB of RAM.
It is still hard to determine exactly what you're trying to accomplish, but this will at least get you counts for a specified date range:
df %>%
group_by(id) %>%
filter(cleaned_date >= "2008-08-11" & cleaned_date <= "2008-10-11") %>%
mutate(counts = n())
Will give us:
cleaned_date id counts
<date> <chr> <int>
1 2008-09-11 A 1
2 2008-09-10 B 2
3 2008-09-30 B 2
I have made measurements of temperature in a high time resolution of 10 minutes on different urban Tree species, whose reactions should be compared. Therefore I am researching especially periods of heat. The Task that I fail to do on my Dataset is to choose complete days from a maximum value. E.G. Days where there is one measurement above 30 °C should be subsetted from my Dataframe completely.
Below you find a reproducible example that should illustrate my problem:
In my Measurings Dataframe I have calculated a column indicating wether the individual Measurement is above or below 30°C. I wanted to use that column to tell other functions wether they should pick a day or not to produce a New Dataframe. When anytime of the day the value is above 30 ° C i want to include it by Date from 00:00 to 23:59 in that New Dataframe for further analyses.
start <- as.POSIXct("2018-05-18 00:00", tz = "CET")
tseq <- seq(from = start, length.out = 1000, by = "hours")
Measurings <- data.frame(
Time = tseq,
Temp = sample(20:35,1000, replace = TRUE),
Variable1 = sample(1:200,1000, replace = TRUE),
Variable2 = sample(300:800,1000, replace = TRUE)
)
Measurings$heat30 <- ifelse(Measurings$Temp > 30,"heat", "normal")
Measurings$otheroption30 <- ifelse(Measurings$Temp > 30,"1", "0")
The example is yielding a Dataframe analog to the structure of my Data:
head(Measurings)
Time Temp Variable1 Variable2 heat30 otheroption30
1 2018-05-18 00:00:00 28 56 377 normal 0
2 2018-05-18 01:00:00 23 65 408 normal 0
3 2018-05-18 02:00:00 29 78 324 normal 0
4 2018-05-18 03:00:00 24 157 432 normal 0
5 2018-05-18 04:00:00 32 129 794 heat 1
6 2018-05-18 05:00:00 25 27 574 normal 0
So how do I subset to get a New Dataframe where all the days are taken where at least one entry is indicated as "heat"?
I know that for example dplyr:filter could filter the individual entries (row 5 in the head of the example). But how could I tell to take all the day 2018-05-18?
I am quite new to analyzing Data with R so I would appreciate any suggestions on a working solution to my problem. dplyris what I have been using for quite some tasks, but I am open to whatever works.
Thanks a lot, Konrad
Create variable which specify which day (droping hours, minutes etc.). Iterate over unique dates and take only such subsets which in heat30 contains "heat" at least once:
Measurings <- Measurings %>% mutate(Time2 = format(Time, "%Y-%m-%d"))
res <- NULL
newdf <- lapply(unique(Measurings$Time2), function(x){
ss <- Measurings %>% filter(Time2 == x) %>% select(heat30) %>% pull(heat30) # take heat30 vector
rr <- Measurings %>% filter(Time2 == x) # select date x
# check if heat30 vector contains heat value at least once, if so bind that subset
if(any(ss == "heat")){
res <- rbind(res, rr)
}
return(res)
}) %>% bind_rows()
Below is one possible solution using the dataset provided in the question. Please note that this is not a great example as all days will probably include at least one observation marked as over 30 °C (i.e. there will be no days to filter out in this dataset but the code should do the job with the actual one).
# import packages
library(dplyr)
library(stringr)
# break the time stamp into Day and Hour
time_df <- as_data_frame(str_split(Measurings$Time, " ", simplify = T))
# name the columns
names(time_df) <- c("Day", "Hour")
# create a new measurement data frame with separate Day and Hour columns
new_measurings_df <- bind_cols(time_df, Measurings[-1])
# form the new data frame by filtering the days marked as heat
new_df <- new_measurings_df %>%
filter(Day %in% new_measurings_df$Day[new_measurings_df$heat30 == "heat"])
To be more precise, you are creating a random sample of 1000 observations varying between 20 to 35 for temperature across 40 days. As a result, it is very likely that every single day will have at least one observation marked as over 30 °C in your example. Additionally, it is always a good practice to set seed to ensure reproducibility.
I have 2 dataframes, one representing daily sales figures of different stores (df1) and one representing when each store has been audited (df2). I need to create a new dataframe displaying sales information from each site taken 1 week before each audit (i.e. the information in df2). Some example data, firstly for the daily sales figures from different stores across a certain period:
Dates <- as.data.frame(seq(as.Date("2015/12/30"), as.Date("2016/4/7"),"day"))
Sales <- as.data.frame(matrix(sample(0:50, 30*10, replace=TRUE), ncol=3))
df1 <- cbind(Dates,Sales)
colnames(df1) <- c("Dates","Site.A","Site.B","Site.C")
And for the dates of each audit across different stores:
Store<- c("Store.A","Store.A","Store.B","Store.C","Store.C")
Audit_Dates <- as.data.frame(as.POSIXct(c("2016/1/4","2016/3/1","2016/2/1","2016/2/1","2016/3/1")))
df2 <- as.data.frame(cbind(Store,Audit_Dates ))
colnames(df2) <- c("Store","Audit_Dates")
Of note is that there will be an uneven amount of dates within each output (i.e. there may not be a full weeks worth of information prior to some store audits). I have previously asked a question addressing a similar problem Creating a dataframe from an lapply function with different numbers of rows. Below shows an answer from this which would work for an example if I was to consider information from only 1 store:
library(lubridate)
##Data input
Store.A_Dates <- as.data.frame(seq(as.Date("2015/12/30"), as.Date("2016/4/7"),"day"))
Store.A_Sales <- as.data.frame(matrix(sample(0:50, 10*10, replace=TRUE), ncol=1))
Store.A_df1 <- cbind(Store.A_Dates,Store.A_Sales)
colnames(Store.A_df1) <- c("Store.A_Dates","Store.A_Sales")
Store.A_df2 <- as.Date(c("2016/1/3","2016/3/1"))
##Output
Store.A_output<- lapply(Store.A_df2, function(x) {Store.A_df1[difftime(Store.A_df1[,1], x - days(7)) >= 0 & difftime(Store.A_df1[,1], x) <= 0, ]})
n1 <- max(sapply(Store.A_output, nrow))
output <- data.frame(lapply(Store.A_output, function(x) x[seq_len(n1),]))
But I don't know how I would get this for multiple sites.
Try this:
# Renamed vars for my convenience...
colnames(df1) <- c("t","Store.A","Store.B","Store.C")
colnames(df2) <- c("Store","t")
library(tidyr)
library(dplyr)
# Gather df1 so that df1 and df2 have the same format:
df1 = gather(df1, Store, Sales, -t)
head(df1)
t Store Sales
1 2015-12-30 Store.A 16
2 2015-12-31 Store.A 24
3 2016-01-01 Store.A 8
4 2016-01-02 Store.A 42
5 2016-01-03 Store.A 7
6 2016-01-04 Store.A 46
# This lapply call does not iterate over actual values, just indexes, which allows
# you to subset the data comfortably:
r <- lapply(1:nrow(df2), function(i) {
audit.t = df2[i, "t"] #time of audit
audit.s = df1[, "Store"] == df2[i, "Store"] #store audited
df = df1[audit.s, ] #data from audited store
df[, "audited"] = audit.t #add extra column with audit date
week_before = difftime(df[, "t"], audit.t - (7*24*3600)) >= 0
week_audit = difftime(df[, "t"], audit.t) <= 0
df[week_before & week_audit, ]
})
Does this give you the proper subsets?
Also, to summarise your results:
r = do.call("rbind", r) %>%
group_by(audited, Store) %>%
summarise(sales = sum(Sales))
r
audited Store sales
<time> <chr> <int>
1 2016-01-04 Store.A 97
2 2016-02-01 Store.B 156
3 2016-02-01 Store.C 226
4 2016-03-01 Store.A 115
5 2016-03-01 Store.C 187
This question already has answers here:
Split date into different columns for year, month and day
(4 answers)
Closed 6 years ago.
I have a dataset which looks like:
mother_id,dateOfBirth
1,1962-09-24
2,1991-02-19
3,1978-11-11
I need to extract the constituent elements (day,month,year) from date of birth and put them in corresponding columns to look like:
mother_id,dateOfBirth,dayOfBirth,monthOfBirth,yearOfBirth
1,1962-09-24,24,09,1962
2,1991-02-19,19,02,1991
3,1978-11-11,11,11,1978
Currently, I have it coded as a loop:
data <- read.csv("/home/tumaini/Desktop/IHI-Projects/Data-Linkage/matching file dss nacp.csv",stringsAsFactors = F)
dss_individuals <- read.csv("/home/tumaini/Desktop/IHI-Projects/Data-Linkage/Data/dssIndividuals.csv", stringsAsFactors = F)
lookup <- data[,c("patientid","extId")]
# remove duplicates
lookup <- lookup[!(duplicated(lookup$patientid)),]
dss_individuals$dateOfBirth <- as.character.Date(dss_individuals$dob)
dss_individuals$dayOfBirth <- 0
dss_individuals$monthOfBirth <- 0
dss_individuals$yearOfBirth <- 0
# Loop starts here
for(i in 1:nrow(dss_individuals)){ #nrow(dss_individuals)
split_list <- unlist(strsplit(dss_individuals[i,]$dateOfBirth,'[- ]'))
dss_individuals[i,]["dayOfBirth"] <- split_list[3]
dss_individuals[i,]["monthOfBirth"] <- split_list[2]
dss_individuals[i,]["yearOfBirth"] <- split_list[1]
}
This seems to work, but is horrendously slow as I have 400 000 rows. Is there a way I can get this done more efficiently?
I compared the speed of substr, format, and use of lubridate. It seems that lubridate and format are much faster than substr, if the the variable is stored as date. However, substr would be fastest if the variable is stored as character vector. The results of a single run is shown.
x <- sample(
seq(as.Date('1000/01/01'), as.Date('2000/01/01'), by="day"),
400000, replace = T)
system.time({
y <- substr(x, 1, 4)
m <- substr(x, 6, 7)
d <- substr(x, 9, 10)
})
# user system elapsed
# 3.775 0.004 3.779
system.time({
y <- format(x,"%y")
m <- format(x,"%m")
d <- format(x,"%d")
})
# user system elapsed
# 1.118 0.000 1.118
system.time({
y <- year(x)
m <- month(x)
d <- day(x)
})
# user system elapsed
# 0.951 0.000 0.951
x1 <- as.character(x)
system.time({
y <- substr(x1, 1, 4)
m <- substr(x1, 6, 7)
d <- substr(x1, 9, 10)
})
# user system elapsed
# 0.082 0.000 0.082
Not sure if this will solve your speed issues but here is a nicer way of doing it using dplyr and lubridate. In general when it comes to manipulating data.frames I personally recommend using either data.tables or dplyr. Data.tables is supposed to be faster but dplyr is more verbose which I personally prefer as I find it easier to pick up my code after not having read it for months.
library(dplyr)
library(lubridate)
dat <- data.frame( mother_id = c(1,2,3),
dateOfBirth = ymd(c( "1962-09-24" ,"1991-02-19" ,"1978-11-11"))
)
dat %>% mutate( year = year(dateOfBirth) ,
month = month(dateOfBirth),
day = day(dateOfBirth) )
Or you can use the mutate_each function to save having to write the variable name multiple times (though you get less control over the name of the output variables)
dat %>% mutate_each( funs(year , month , day) , dateOfBirth)
Here are some solutions. These solutions each (i) use 1 or 2 lines of code and (ii) return numeric year, month and day columns. In addition, the first two solutions use no packages -- the third uses chron's month.day.year function.
1) POSIXlt Convert to "POSIXlt" class and pick off the parts.
lt <- as.POSIXlt(DF$dateOfBirth, origin = "1970-01-01")
transform(DF, year = lt$year + 1900, month = lt$mon + 1, day = lt$mday)
giving:
mother_id dateOfBirth year month day
1 1 1962-09-24 1962 9 24
2 2 1991-02-19 1991 2 19
3 3 1978-11-11 1978 11 11
2) read.table
cbind(DF, read.table(text = format(DF$dateOfBirth), sep = "-",
col.names = c("year", "month", "day")))
giving:
mother_id dateOfBirth year month day
1 1 1962-09-24 1962 9 24
2 2 1991-02-19 1991 2 19
3 3 1978-11-11 1978 11 11
3) chron::month.day.year
library(chron)
cbind(DF, month.day.year(DF$dateOfBirth))
giving:
mother_id dateOfBirth month day year
1 1 1962-09-24 9 24 1962
2 2 1991-02-19 2 19 1991
3 3 1978-11-11 11 11 1978
Note 1: Often when year, month and day are added to data it is not really necessary and in fact they could be generated on the fly when needed using format, substr or as.POSIXlt so you might critically examine whether you actually need to do this.
Note 2: The input data frame, DF in reproducible form, was assumed to be:
Lines <- "mother_id,dateOfBirth
1,1962-09-24
2,1991-02-19
3,1978-11-11"
DF <- read.csv(text = Lines)
Use format once for each part:
dss_individuals$dayOfBirth <- format(dss_individuals$dateOfBirth,"%d")
dss_individuals$monthOfBirth <- format(dss_individuals$dateOfBirth,"%m")
dss_individuals$yearOfBirth <- format(dss_individuals$dateOfBirth,"%Y")
Check the substr function from the base package (or other functions from the nice stringr package) to extract different parts of a string. This function may assume that day, month and year are always in the same place and with the same length.
The strsplit function is vectorized so using rbind.data.frame to convert your list to a dataframe works:
do.call(rbind.data.frame, strsplit(df$dateOfBirth, split = '-'))
Results need to be transposed in order to be used: you can do it using do.call or the t function.