I am in trouble making raster stack which have slightly different extent. The answer (1st one) given here is useful but did not help in my case. For example, I want to make a raster stack using bio2 raster for Australia and this Australian raster. The second raster comes for Australia only and the first one is global. So I cropped the global bio2 raster to the same extent of Australian raster using crop() function, but the resultant raster extent (i.e., bio2.au) is slightly different (therefore, I cannot make raster using the cropped raster and the Australian raster, awc). Sample code is below:
library(raster)
awc <- raster("path to Australian raster")
bio2.g <- raster("path to Bio2 global raster")
# crop bio2.g to the same extent of awc
bio2.au <- crop(bio2.g, extent(awc))
# make a raster stack
st <- stack(awc, bio2.au)
Error in compareRaster(x) : different extent
I have also tried using quick=TRUE within the stack() function. But in this case the cell values in awc is lost. Note: the size of awc raster is 4gb.
# first make a list of rasters saved in the computer
li <- list.files("path to file", pattern = ".tif$", full.names = TRUE)
st <- stack(li, quick=TRUE)
st[[1]] # no cell values for awc
Your suggestions will be highly appreciated. My ultimate goal is to crop several bioclim rasters to the same extent of Australian raster awc and stack them together so that raster cell values are not lost.
Edit (after comment of #Cobin):
Below is the attribute of each raster
# global raster (bigger raster)
> r
class : RasterLayer
dimensions : 21600, 43200, 933120000 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : D:\Worldclim2_Bioclim\wc2.0_bio_30s_02.tif
names : wc2.0_bio_30s_02
values : 0, 37.06667 (min, max)
# Australian raster (smaller raster)
> r1
class : RasterLayer
dimensions : 43201, 49359, 2132358159 (nrow, ncol, ncell)
resolution : 0.0008333333, 0.0008333333 (x, y)
extent : 112.8921, 154.0246, -44.00042, -7.999583 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : D:\SoilAWC5cm.EV1.tif
names : SoilAWC5cm.EV1
values : 2.997789, 27.86114 (min, max)
# new raster, after crop() function is applied
> r2 <- crop(r,extent(r1))
> r2
class : RasterLayer
dimensions : 4320, 4936, 21323520 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : 112.8917, 154.025, -44, -8 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : C:\Users\Anwar\AppData\Local\Temp\Rtmpmg9fyF\raster\r_tmp_2018-11-23_164300_11308_65747.grd
names : wc2.0_bio_30s_02
values : 1.933333, 18.15833 (min, max)
# rebuild r2 to match r1
> r22 <- raster(vals=values(r2),ext=extent(r1), nrows=dim(r1)[1],ncols=dim(r1)[2])
Error in setValues(r, vals) :
length(values) is not equal to ncell(x), or to 1
I suppose that the extent of two raster are differet though the raster masked by crop function.You
should check the both of awc and bio.au extent base on same reolution, rows and columns. Because I couldn't download data from
hyperlink, I give an example of my own data.
r <- raster('/big_raster')
r1 <- raster('/small_raster')
r2 <- crop(r,extent(r1))
r1
class : RasterLayer
dimensions : 74, 157, 11618 (nrow, ncol, ncell)
resolution : 0.0833333, 0.0833333 (x, y)
extent : 89.2185, 102.3018, 30.96238, 37.12905 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : D:\D\temp\Rtest\modis8km.tif
names : modis8km
values : -32768, 32767 (min, max)
r2
class : RasterLayer
dimensions : 74, 157, 11618 (nrow, ncol, ncell)
resolution : 0.08333333, 0.08333333 (x, y)
extent : 89.25, 102.3333, 31, 37.16667 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : in memory
names : g201401a
values : -32768, 7789 (min, max)
Though r1 and r1 with same resolution and dimension, the extent have tiny offset. It cause stack error.
stack(r1,r2)
Error in compareRaster(x) : different extent
So, you should rebuid the r2 to match r1:
r22 <- raster(vals=values(r2),ext=extent(r1),crs=crs(r1),
nrows=dim(r1)[1],ncols=dim(r1)[2])
Now stack(r22,r1) will be successful.
Related
I'm merging two MODIS DSR tiles using a R script that I developed, these are the products:
https://drive.google.com/drive/folders/1RG3JkXlbaotBax-h5lEMT7lEn-ObwWsD?usp=sharing
So, I open both products (tile h15v05 and tile h16v05) from same date (2019180), then I open each SDS and merge them together (00h from h15v05 with 00h from h16v05 and so on...)
Visualisation on Panoply (using the merge option) of the two products:
Purple square is the location of the division line that separates the two tiles.
With my code I obtain a plot with pixels with different resolution (and different min/max values) and I don't understand why:
I suspect that the results obtained are due to:
1- Changing from Sinusoidal CRS to longlat WGS84 CRS;
2- Using resample (method ngb) to work with mosaic.
My code is extensive, but here are some parts of it:
# Open scientific dataset as raster
SDSs <- sds(HDFfile)
SDS <- SDSs[SDSnumber]
crs(SDS) <- crs("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs")
SDSreprojected <- project(SDS, DesiredCRS)
SDSasRaster <- as(SDSreprojected, "Raster")
# Resample SDS based on a reference SDS (SDS GMT_1200_DSR of a first product), I need to do this to be able to use mosaic
SDSresampled <- resample(SDSasRaster,ResampleReference_Raster,method='ngb')
# Create mosaic of same SDS, but first convert stack to list to use mosaic
ListWith_SameSDS_OfGroupFiles <- as.list(StackWith_SameSDS_OfGroupFiles)
ListWith_SameSDS_OfGroupFiles.mosaicargs <- ListWith_SameSDS_OfGroupFiles
ListWith_SameSDS_OfGroupFiles.mosaicargs$fun <- mean
SDSmosaic <- do.call(mosaic, ListWith_SameSDS_OfGroupFiles.mosaicargs)
# Save SDSs mosaic stack to netCDF
writeRaster(StackWith_AllMosaicSDSs_OfGroupFiles, NetCDFpath, overwrite=TRUE, format="CDF", varname= "DSR", varunit="w/m2", longname="Downward Shortwave Radiation", xname="Longitude", yname="Latitude", zname="TimeGMT", zunit="GMT")
Does anyone have an idea of what could be the cause of this mismatch between results?
print(ResampleReference_Raster)
class : RasterLayer
dimensions : 1441, 897, 1292577 (nrow, ncol, ncell)
resolution : 0.01791556, 0.006942043 (x, y)
extent : -39.16222, -23.09196, 29.99652, 40 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source : memory
names : MCD18A1.A2019180.h15v05.061.2020343034815
values : 227.5543, 970.2346 (min, max)
print(SDSasRaster)
class : RasterLayer
dimensions : 1399, 961, 1344439 (nrow, ncol, ncell)
resolution : 0.01515284, 0.007149989 (x, y)
extent : -26.10815, -11.54627, 29.99717, 40 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source : memory
names : MCD18A1.A2019180.h16v05.061.2020343040755
values : 0, 0 (min, max)
print(SDSmosaic)
class : RasterLayer
dimensions : 1441, 897, 1292577 (nrow, ncol, ncell)
resolution : 0.01791556, 0.006942043 (x, y)
extent : -39.16222, -23.09196, 29.99652, 40 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source : memory
names : layer
values : 0, 62.7663 (min, max)
Also, some of the islands were ignored by the script (bottom right)...
sorry I didn't reply earlier. So I think you're right that this issue is extent to which you are resampling. I think you might be able to get around this by creating a dummy raster that has the extent of the raster you want to resample, but has the resolution of the raster you want to mosaic to.Try:
dummy<-raster(ext = SDSasRaster#extent, resolution=ResampledReference_Raster#res, crs=SDSasRaster#crs)
SDS2<-resample(SDSasRaster, dummy, method="ngb")
Final<-moasic(SDS2, ResampledReference_Raster, fun=mean)
I have three rasters. Raster1 is a landcover file for a land cover types. Raster2 and raster3 are rasters showing variable 'NPP'. As you can see each raster has different extent & resolution. I want to know how much NPP is in both raster 2 and 3 in accordance with the landcover for raster1. However what could be done in order to bring all rasters to same extent and resolution and find NPP in raster2 and raster3 accordance with the landcover class in raster1?
(How can I know which resolution should I choose for all the rasters?)
> raster1
class : RasterLayer
dimensions : 2803, 5303, 14864309 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : 60.85, 105.0417, 15.95833, 39.31667 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
source :XXXXX
names : landusemaskedme
values : 1, 12 (min, max)
raster2
class : RasterLayer
dimensions : 2336, 4419, 10322784 (nrow, ncol, ncell)
resolution : 0.01, 0.01 (x, y)
extent : 60.85, 105.04, 15.96, 39.32 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
source : memory
names : NPP
values : 0, 31.78096 (min, max)
> raster3
class : RasterLayer
dimensions : 47, 89, 4183 (nrow, ncol, ncell)
resolution : 0.5, 0.5 (x, y)
extent : 60.75, 105.25, 15.75, 39.25 (xmin, xmax, ymin, ymax)
crs : NA
source : memory
names : NPP
values : 0, 21.141 (min, max)
I can see that your rasters are having almost same extent and coordinate system except for raster3 which does not have any reference system (crs: NA). First, you need to have rasters of the same extent and coordinate reference system, then you can use resample function from raster package like
library(raster)
#To have the same projection for raster3 as that of your base landcover class in raster1
newproj <- projection(raster1)
praster3 <- projectRaster(raster3, crs=newproj)
#Conversion of rasters into same extent
raster2_resampled <- resample(raster2, raster1, method='bilinear')
raster3_resampled <- resample(praster3, raster1, method='bilinear')
It is always better to resample a finer resolution raster to coarser resolution, not the vice versa though it can be done as you have asked in your question. In your case, raster1 has the finer resolution (0.008333333 x 0.008333333) followed by raster2 (0.01 x 0.01). raster3 has the coarsest resolution (0.5 x 0.5). So, it would be better to convert all the rasters to the resolution and extent of raster3. Hope that helps you out.
I want to crop a raster stack using a polygon shapefile i made in ArcGIS, however I get error that extent does not overlap.
First I create the raster stack:
test1 < stack("C:/mydir/test1.tif")
define projection
myCRS <- test1#crs
then read shapefile
myExtent <- readShapePoly("C:/mydir/loc1.shp", verbose=TRUE, proj4string=myCRS)
Crop
myCrop <- crop(test1, myExtent)
Error in .local(x, y, ...) : extents do not overlap
I have searched for a solution, but i only find that projection can be the problem, however they are definetly both in the same CRS:
> test1$test1.1
class : RasterLayer
band : 1 (of 4 bands)
dimensions : 10980, 10980, 120560400 (nrow, ncol, ncell)
resolution : 10, 10 (x, y)
extent : 6e+05, 709800, 5690220, 5800020 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=31 +datum=WGS84 +units=m +no_defs +ellps=WGS84
+towgs84=0,0,0
data source : C:\mydir\test1.tif
names : test1.1
values : 0, 65535 (min, max)
> myExtent
class : SpatialPolygonsDataFrame
features : 1
extent : 499386.6, 517068.2, 6840730, 6857271 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=31 +datum=WGS84 +units=m +no_defs +ellps=WGS84
+towgs84=0,0,0
variables : 2
names : Shape_Leng, Shape_Area
min values : 67444.6461177, 283926851.657
max values : 67444.6461177, 283926851.657
The message is pretty self explanatory. Your extent do not overlap... here how to check it:
library(raster)
ext.ras <- extent(6e+05, 709800, 5690220, 5800020)
ext.pol <- extent(499386.6, 517068.2, 6840730, 6857271)
plot(ext.ras, xlim = c( 499386.6,709800), ylim= c(5690220,6857271), col="red")
plot(ext.pol, add=T, col="blue")
I've created extent object from data in your question. You see one extent in the top left corner and the other in the bottom right. Have you tried reading both files in QGIS, you could probably easily see it.
If they really are suppose to overlap, than I would suspect the way you read your shapefile. Instead of
myExtent <- readShapePoly("C:/mydir/loc1.shp", verbose=TRUE, proj4string=myCRS)
use :
library(rgdal)
myExtent <- readOGR("C:/mydir","loc1.shp")
myExtent <- spTRansform(myExtent, CRS(proj4string(test1)))
I have a raster and I am using the raster package.
class : RasterLayer
dimensions : 103, 118, 12154 (nrow, ncol, ncell)
resolution : 0.008333333, 0.008333333 (x, y)
extent : -83.075, -82.09167, 34.95833, 35.81667 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
data source : C:\fb.tif
names : fdr_fb
values : 1, 128 (min, max)
I know how to subset and all. But how can I find the cellnumber (preferred) or cellvalue by using the Lat-Long value?
For example, I can find cell value using lat/long:
extract(ras,SpatialPoints(cbind(-82.8,35.2)))
But I want to find the cell number (row,col) corresponding to (Say) Long= -82.1 and Lat= 35.0
Raster: https://www.dropbox.com/s/8nhfirxr2hm3l4v/fdr_fb.tif?dl=0
To get the cell number from a point, you can do:
cellFromXY(ras, cbind(-82.8, 35.2))
If you have an Extent object e you can do:
cellsFromExtent(ras, e)
I have data from various Global Circulation Models (GCM) that I need in at a finer resolution to perturb climate observations that are 0.5 degree pixel. I saw that I could use disaggregate because this function won't change pixels values, as 'resample' does using, e.g., the bilinear method. But still, the output doesn't match my fine-res-grids.
Here an example with the dimensions of the files I'm dealing with:
r = raster(ncols=720, nrows=360) #fine resolution grid
r[] = runif(1:100)
> r
class : RasterLayer
dimensions : 360, 720, 259200 (nrow, ncol, ncell)
resolution : 0.5, 0.5 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
data source : in memory
names : layer
values : 0.0159161, 0.9876637 (min, max)
s = raster(ncols=192, nrows=145) #dimensions of one of the GCM
s[] = runif(1:10)
> s
class : RasterLayer
dimensions : 145, 192, 27840 (nrow, ncol, ncell)
resolution : 1.875, 1.241379 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
data source : in memory
names : layer
values : 0.03861309, 0.9744665 (min, max)
d=disaggregate(s, fact=c(3.75,2.482759)) #fact equals r/s for cols and rows
> d
class : RasterLayer
dimensions : 290, 768, 222720 (nrow, ncol, ncell)
resolution : 0.46875, 0.6206897 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
data source : in memory
names : layer
values : 0.03861309, 0.9744665 (min, max)
The dimensions of 'd' are not equal to the dimensions of 'r', so I can't do operations with the 2 grids. And I'm not meant to be interpolating the pixel values. So, what's the best method to achieve the disaggregation with GCM data?
Thanks in advance.
The code below should help- it uses aggregate to the closest integer scaling possible then resample to match the other raster's spatial characteristics exactly:
r = raster(ncols=720, nrows=360) #fine resolution grid
r[] = runif(1:100)
s = raster(ncols=192, nrows=145) #dimensions of one of the GCM
s[] = runif(1:10)
d=disaggregate(s, fact=c(round(dim(r)[1]/dim(s)[1]),round(dim(r)[2]/dim(s)[2])), method='') #fact equals r/s for cols and rows
e=resample(d, r, method="ngb")
But there a few caveats/ warnings: If you want to have the same values as the original raster, use disaggregate with method='' or else it will interpolate. But most important looking at the aspect ratio between your r and s rasters, they are not the same: dim(r)[1]/dim(s)[1] != dim(r)[2]/dim(s)[2]). I would double check the original data because if there is a difference in resolution, projection, or extent you will not get what you want from the steps above.