I want to plot two lines, one solid and another one dotted, both with different colors. I'm having trouble dealing with the legends for this plot. Take this example:
library(ggplot2)
library(reshape2)
df = data.frame(time = 0:127,
mean_clustered = rnorm(128),
mean_true = rnorm(128)
)
test_data_long <- melt(df, id="time") # convert to long format
p = ggplot(data=test_data_long,
aes(x=time, y=value, colour=variable)) +
geom_line(aes(linetype=variable)) +
labs(title = "", x = "Muestras", y = "Amplitud", color = "Spike promedio\n") +
scale_color_manual(labels = c("Hallado", "Real"), values = c("blue", "red")) +
xlim(0, 127)
print(p)
Two legends appear, and on top of it, none of them is correct (the one with the right colors has wrong line styles, and the one with the right line styles has all other things wrong).
Why is this happening and how can I get the right legend to appear?
You need to ensure all the aesthetic mappings match between the different aesthetics you're using:
library(ggplot2)
library(reshape2)
data.frame(
time = 0:127,
mean_clustered = rnorm(128),
mean_true = rnorm(128)
) -> xdf
test_data_long <- melt(xdf, id = "time")
ggplot(
data = test_data_long,
aes(x = time, y = value, colour = variable)
) +
geom_line(aes(linetype = variable)) +
scale_color_manual(
name = "Spike promedio\n", labels = c("Hallado", "Real"), values = c("blue", "red")
) +
scale_linetype(
name = "Spike promedio\n", labels = c("Hallado", "Real")
) +
labs(
x = "Muestras", y = "Amplitud", title = ""
) +
xlim(0, 127)
Might I suggest also using theme parameters to adjust the legend title:
ggplot(data = test_data_long, aes(x = time, y = value, colour = variable)) +
geom_line(aes(linetype = variable)) +
scale_x_continuous(name = "Muestras", limits = c(0, 127)) +
scale_y_continuous(name = "Amplitud") +
scale_color_manual(name = "Spike promedio", labels = c("Hallado", "Real"), values = c("blue", "red")) +
scale_linetype(name = "Spike promedio", labels = c("Hallado", "Real")) +
labs(title = "") +
theme(legend.title = element_text(margin = margin(b=15)))
Related
As described, I want to add a legend to my graph.
nice_plot <- ggplot() +
geom_line(data = plot_dataframe_SD1, mapping = aes(x = XValues, y = YValues_SD1), color = "blue") +
geom_line(data = plot_dataframe_SD2, mapping = aes(x = XValues, y = YValues_SD2), color = "green") +
xlim(1, 2) +
ylim(1, 5) +
xlab("Standarard Deviation") +
ylab("AV") +
scale_fill_identity(name = 'the fill', guide = 'legend',labels = c('m1')) +
scale_colour_manual(name = 'the colour',
values =c('blue'='blue','green'='green'), labels = c('c2','c1'))
This is my code so far, btut it won't output a legend.
I also don't get an error message.
What is wrong with the code or what do I miss out?
I had to jitter points along a catagorical axis to avoid data overlay. Unfortunately, to do this, I needed to make my categorical variable a factor and then numerical. When I plot it, it remains numerical without the categorical labels. Is there a way I can get the labels to show up?
Here is the code:
levels(factor(All_VARs$Dataset))
[1] "Data1" "Data2" "Data3"
df$Dataset_jit <- jitter(as.numeric(factor(df$Dataset)))
ggplot(df, aes(x = POS_start, y = Dataset_jit, color = Type)) +
geom_point() +
scale_color_manual(values = annotation_color_associations) +
theme_classic()
I would like the y axis to be categorical, while maintaining the jitter.
You can use position = position_jitter():
ggplot(df, aes(x = POS_start, y = as.factor(Set), color = as.factor(Type))) +
geom_point(position = position_jitter(height = 0.2), show.legend = FALSE) +
theme_classic() +
scale_color_manual(values = colorRampPalette(c("pink", "purple"))(5)) +
labs(x = "CDS Position", y = "Dataset")
Edit:
OP says they need to be able to do other things, so another approach is to manually control the y-axis with scale_y_continuous:
df$Dataset_jit <- jitter(as.numeric(factor(df$Set)))
ggplot(df, aes(x = POS_start, y = Dataset_jit, color = as.factor(Type))) +
geom_point(show.legend = FALSE) +
theme_classic() +
scale_color_manual(values = colorRampPalette(c("pink", "purple"))(5)) +
scale_y_continuous(breaks = 1:3, labels = c("Data 1", "Data 2", "Data 3")) +
labs(x = "CDS Position", y = "Dataset")
Sample Data
set.seed(3)
df <- data.frame(POS_start = round(runif(n = 100,1,1500),0),
Set = sample(1:3,100, prob = c(0.45,0.1,0.45), replace = TRUE),
Type = sample(1:5,100,replace = TRUE))
I have two very similar plots, which have two y-axis - a bar plot and a line plot:
code:
sec_plot <- ggplot(data, aes_string (x = year, group = 1)) +
geom_col(aes_string(y = frequency), fill = "orange", alpha = 0.5) +
geom_line(aes(y = severity))
However, there are no labels. I want to get a label for the barplot as well as a label for the line plot, something like:
How can I add the labels to the plot, if there is only pone single group? is there a way to specify this manually? Until know I have only found option where the labels can be added by specifying them in the aes
EXTENSION (added a posterior):
getSecPlot <- function(data, xvar, yvar, yvarsec, groupvar){
if ("agegroup" %in% xvar) xvar <- get("agegroup")
# data <- data[, startYear:= as.numeric(startYear)]
data <- data[!claims == 0][, ':=' (scaled = get(yvarsec) * max(get(yvar))/max(get(yvarsec)),
param = max(get(yvar))/max(get(yvarsec)))]
param <- data[1, param] # important, otherwise not found in ggplot
sec_plot <- ggplot(data, aes_string (x = xvar, group = groupvar)) +
geom_col(aes_string(y = yvar, fill = groupvar, alpha = 0.5), position = "dodge") +
geom_line(aes(y = scaled, color = gender)) +
scale_y_continuous(sec.axis = sec_axis(~./(param), name = paste0("average ", yvarsec),labels = function(x) format(x, big.mark = " ", scientific = FALSE))) +
labs(y = paste0("total ", yvar)) +
scale_alpha(guide = 'none') +
theme_pubclean() +
theme(legend.title=element_blank(), legend.background = element_rect(fill = "white"))
}
plot.ExposureYearly <- getSecPlot(freqSevDataAge, xvar = "agegroup", yvar = "exposure", yvarsec = "frequency", groupvar = "gender")
plot.ExposureYearly
How can the same be done on a plot where both the line plot as well as the bar plot are separated by gender?
Here is a possible solution. The method I used was to move the color and fill inside the aes and then use scale_*_identity to create and format the legends.
Also, I needed to add a scaling factor for severity axis since ggplot does not handle the secondary axis well.
data<-data.frame(year= 2000:2005, frequency=3:8, severity=as.integer(runif(6, 4000, 8000)))
library(ggplot2)
library(scales)
sec_plot <- ggplot(data, aes(x = year)) +
geom_col(aes(y = frequency, fill = "orange"), alpha = 0.6) +
geom_line(aes(y = severity/1000, color = "black")) +
scale_fill_identity(guide = "legend", label="Claim frequency (Number of paid claims per 100 Insured exposure)", name=NULL) +
scale_color_identity(guide = "legend", label="Claim Severity (Average insurance payment per claim)", name=NULL) +
theme(legend.position = "bottom") +
scale_y_continuous(sec.axis =sec_axis( ~ . *1, labels = label_dollar(scale=1000), name="Severity") ) + #formats the 2nd axis
guides(fill = guide_legend(order = 1), color = guide_legend(order = 2)) #control which scale plots first
sec_plot
I'm working on some data on party polarization (something like this) and used geom_dumbbell from ggalt and ggplot2. I keep getting the same aes error and other solutions in the forum did not address this as effectively. This is my sample data.
df <- data_frame(policy=c("Not enough restrictions on gun ownership", "Climate change is an immediate threat", "Abortion should be illegal"),
Democrats=c(0.54, 0.82, 0.30),
Republicans=c(0.23, 0.38, 0.40),
diff=sprintf("+%d", as.integer((Democrats-Republicans)*100)))
I wanted to keep order of the plot, so converted policy to factor and wanted % to be shown only on the first line.
df <- arrange(df, desc(diff))
df$policy <- factor(df$policy, levels=rev(df$policy))
percent_first <- function(x) {
x <- sprintf("%d%%", round(x*100))
x[2:length(x)] <- sub("%$", "", x[2:length(x)])
x
}
Then I used ggplot that rendered something close to what I wanted.
gg2 <- ggplot()
gg2 <- gg + geom_segment(data = df, aes(y=country, yend=country, x=0, xend=1), color = "#b2b2b2", size = 0.15)
# making the dumbbell
gg2 <- gg + geom_dumbbell(data=df, aes(y=country, x=Democrats, xend=Republicans),
size=1.5, color = "#B2B2B2", point.size.l=3, point.size.r=3,
point.color.l = "#9FB059", point.color.r = "#EDAE52")
I then wanted the dumbbell to read Democrat and Republican on top to label the two points (like this). This is where I get the error.
gg2 <- gg + geom_text(data=filter(df, country=="Government will not control gun violence"),
aes(x=Democrats, y=country, label="Democrats"),
color="#9fb059", size=3, vjust=-2, fontface="bold", family="Calibri")
gg2 <- gg + geom_text(data=filter(df, country=="Government will not control gun violence"),
aes(x=Republicans, y=country, label="Republicans"),
color="#edae52", size=3, vjust=-2, fontface="bold", family="Calibri")
Any thoughts on what I might be doing wrong?
I think it would be easier to build your own "dumbbells" with geom_segment() and geom_point(). Working with your df and changing the variable refences "country" to "policy":
library(tidyverse)
# gather data into long form to make ggplot happy
df2 <- gather(df,"party", "value", Democrats:Republicans)
ggplot(data = df2, aes(y = policy, x = value, color = party)) +
# our dumbell
geom_path(aes(group = policy), color = "#b2b2b2", size = 2) +
geom_point(size = 7, show.legend = FALSE) +
# the text labels
geom_text(aes(label = party), vjust = -1.5) + # use vjust to shift text up to no overlap
scale_color_manual(values = c("Democrats" = "blue", "Republicans" = "red")) + # named vector to map colors to values in df2
scale_x_continuous(limits = c(0,1), labels = scales::percent) # use library(scales) nice math instead of pasting
Produces this plot:
Which has some overlapping labels. I think you could avoid that if you use just the first letter of party like this:
ggplot(data = df2, aes(y = policy, x = value, color = party)) +
geom_path(aes(group = policy), color = "#b2b2b2", size = 2) +
geom_point(size = 7, show.legend = FALSE) +
geom_text(aes(label = gsub("^(\\D).*", "\\1", party)), vjust = -1.5) + # just the first letter instead
scale_color_manual(values = c("Democrats" = "blue", "Republicans" = "red"),
guide = "none") +
scale_x_continuous(limits = c(0,1), labels = scales::percent)
Only label the top issue with names:
ggplot(data = df2, aes(y = policy, x = value, color = party)) +
geom_path(aes(group = policy), color = "#b2b2b2", size = 2) +
geom_point(size = 7, show.legend = FALSE) +
geom_text(data = filter(df2, policy == "Not enough restrictions on gun ownership"),
aes(label = party), vjust = -1.5) +
scale_color_manual(values = c("Democrats" = "blue", "Republicans" = "red")) +
scale_x_continuous(limits = c(0,1), labels = scales::percent)
I am visualizing missing data in R using this method which uses ggplot2:
library(reshape2)
library(ggplot2)
ggplot_missing <- function(x){
x %>%
is.na %>%
melt %>%
ggplot(data = .,
aes(x = Var2,
y = Var1)) +
geom_raster(aes(fill = value)) +
scale_fill_grey(name = "", labels = c("Present","Missing")) +
theme_minimal() +
theme(axis.text.x = element_text(angle=45, vjust=0.5)) +
labs(x = "Columns / Attributes",
y = "Rows / Observations")
}
The scale_fill_grey method uses black and grey. How can I change the color of the cells to a specific color, say "red"?
I have tried:
scale_fill_brewer(name = "", labels = c("Present","Missing"), na.val="red")
Also,
scale_fill_gradient(name = "", labels = c("Present","Missing"), low = "#FF69B4", high = "#FF0000")
But I get the error:
Error: Discrete value supplied to continuous scale
I got it to work by replacing scale_fill_grey with the following:
scale_fill_manual(name = "", values = c('my_color_1', 'my_color_2'), labels = c("Present","Missing")) +