Shorten tibble/df by remove duplicant entries inside tidyverse - r

i have a very big dataframe from which i need the lossyear per Point:
# A tibble: 74,856 x 13
Date index Mean Sdev Median pixel_used doy Month Year_n Year lossyear Point Scene
<date> <chr> <dbl> <dbl> <dbl> <int> <int> <int> <dbl> <int> <int> <int> <chr>
1 2013-06-11 NBR 0.481 0.0832 0.496 92647 162 6 2013 2013 2017 1 LC08_125016
2 2013-06-11 NDMI 0.175 0.0737 0.189 92647 162 6 2013 2013 2017 1 LC08_125016
3 2013-06-11 NDVI 0.734 0.0517 0.741 92647 162 6 2013 2013 2017 1 LC08_125016
4 2013-06-11 TCB 0.237 0.0159 0.235 92647 162 6 2013 2013 2017 1 LC08_125016
5 2013-06-11 TCG 0.158 0.0174 0.158 92647 162 6 2013 2013 2017 1 LC08_125016
6 2013-06-11 TCW -0.0958 0.0195 -0.0903 92647 162 6 2013 2013 2017 1 LC08_125016
7 2013-06-27 NBR 0.524 0.0503 0.525 39323 178 6 2013 2013 2017 1 LC08_125016
8 2013-06-27 NDMI 0.234 0.0464 0.236 39323 178 6 2013 2013 2017 1 LC08_125016
9 2013-06-27 NDVI 0.721 0.0351 0.725 39323 178 6 2013 2013 2017 1 LC08_125016
10 2013-06-27 TCB 0.249 0.0299 0.251 39323 178 6 2013 2013 2017 1 LC08_125016
# ... with 74,846 more rows
I was able to create a subset by row df[,c("lossyear", "Point")]:
# A tibble: 74,856 x 2
Point lossyear
<fct> <fct>
1 1 2017
2 1 2017
3 1 2017
4 1 2017
5 1 2017
6 1 2017
7 1 2017
8 1 2017
9 1 2017
10 1 2017
# ... with 74,846 more rows
But how do i "shorten" it, so that i have only 1 Row per unique Point which the corresponding lossyear (2000:2017)? Something like this:
# A tibble: 42 x 2
Point lossyear
<fct> <fct>
1 1 2017
2 2 2017
3 3 2017
4 4 2016
5 5 2016
6 6 2016
7 7 2015
8 8 2014
9 9 2014
10 10 2014
# ... with 32 more rows

We can use distinct to get the unique elements of the selected columns
library(dplyr)
df %>%
distinct(lossyear, Point)

You could group by Pointand get the first value via slice:
library(dplyr)
df %>% select(lossyear, Point)
%>% group_by(Point)
%>% slice(1) %>% ungroupt

Related

pivot_wider results in list column column instead of expected results

I'm just going to chalk this up to my ignorance, but sometimes the pivot_* functions drive me crazy.
I have a tibble:
# A tibble: 12 x 3
year term estimate
<dbl> <chr> <dbl>
1 2018 intercept -29.8
2 2018 daysuntilelection 8.27
3 2019 intercept -50.6
4 2019 daysuntilelection 7.40
5 2020 intercept -31.6
6 2020 daysuntilelection 6.55
7 2021 intercept -19.0
8 2021 daysuntilelection 4.60
9 2022 intercept -10.7
10 2022 daysuntilelection 6.41
11 2023 intercept 120
12 2023 daysuntilelection 0
that I would like to flip to:
# A tibble: 6 x 3
year intercept daysuntilelection
<dbl> <dbl> <dbl>
1 2018 -29.8 8.27
2 2019 -50.6 7.40
3 2020 -31.6 6.55
4 2021 -19.0 4.60
5 2022 -10.7 6.41
6 2023 120 0
Normally pivot_wider should be able to do this as x %>% pivot_wider(!year, names_from = "term", values_from = "estimate") but instead it returns a two-column tibble with lists and a bunch of warning.
# A tibble: 1 x 2
intercept daysuntilelection
<list> <list>
1 <dbl [6]> <dbl [6]>
Warning message:
Values from `estimate` are not uniquely identified; output will contain list-cols.
* Use `values_fn = list` to suppress this warning.
* Use `values_fn = {summary_fun}` to summarise duplicates.
* Use the following dplyr code to identify duplicates.
{data} %>%
dplyr::group_by(term) %>%
dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
dplyr::filter(n > 1L)
Where do I go wrong here? Help!
Next to the solutions offered in the comments, data.table's dcast is a very fast implementation to pivot your data. If the pivot_ functions drive you crazy, maybe this is a nice alternative for you:
x <- read.table(text = "
1 2018 intercept -29.8
2 2018 daysuntilelection 8.27
3 2019 intercept -50.6
4 2019 daysuntilelection 7.40
5 2020 intercept -31.6
6 2020 daysuntilelection 6.55
7 2021 intercept -19.0
8 2021 daysuntilelection 4.60
9 2022 intercept -10.7
10 2022 daysuntilelection 6.41
11 2023 intercept 120
12 2023 daysuntilelection 0")
names(x) <- c("id", "year", "term", "estimate")
library(data.table)
dcast(as.data.table(x), year ~ term)
#> Using 'estimate' as value column. Use 'value.var' to override
#> year daysuntilelection intercept
#> 1: 2018 8.27 -29.8
#> 2: 2019 7.40 -50.6
#> 3: 2020 6.55 -31.6
#> 4: 2021 4.60 -19.0
#> 5: 2022 6.41 -10.7
#> 6: 2023 0.00 120.0
DATA
df <- read.table(text = "
1 2018 intercept -29.8
2 2018 daysuntilelection 8.27
3 2019 intercept -50.6
4 2019 daysuntilelection 7.40
5 2020 intercept -31.6
6 2020 daysuntilelection 6.55
7 2021 intercept -19.0
8 2021 daysuntilelection 4.60
9 2022 intercept -10.7
10 2022 daysuntilelection 6.41
11 2023 intercept 120
12 2023 daysuntilelection 0")
CODE
library(tidyverse)
df %>%
pivot_wider(names_from = V3,values_from = V4 , values_fill = 0) %>%
group_by(V2) %>%
summarise_all(sum,na.rm=T)
OUTPUT
V2 V1 intercept daysuntilelection
<int> <int> <dbl> <dbl>
1 2018 3 -29.8 8.27
2 2019 7 -50.6 7.4
3 2020 11 -31.6 6.55
4 2021 15 -19 4.6
5 2022 19 -10.7 6.41
6 2023 23 120 0

merge of 2 data frames based on several columns defining 1 variable in r

I have 2 data frame. Codes are: year, pd, treatm and rep.
Variablea are LAI in the first data frame, cimer, himv, nőv are in the second.
I would like to add variable LAI to the other variables/ columns.
I am not sure how to set the correct ordeing of LAI data, while 1 data has 4 codes to define.
Could You help me to solve this problem, please?
Thank You very much!
Data frames are:
> sample1
year treatm pd rep LAI
1 2020 1 A 1 2.58
2 2020 1 A 2 2.08
3 2020 1 A 3 2.48
4 2020 1 A 4 2.98
5 2020 2 A 1 3.34
6 2020 2 A 2 3.11
7 2020 2 A 3 3.20
8 2020 2 A 4 2.56
9 2020 1 B 1 2.14
10 2020 1 B 2 2.17
11 2020 1 B 3 2.24
12 2020 1 B 4 2.29
13 2020 2 B 1 3.41
14 2020 2 B 2 3.12
15 2020 2 B 3 2.81
16 2020 2 B 4 2.63
17 2021 1 A 1 2.15
18 2021 1 A 2 2.25
19 2021 1 A 3 2.52
20 2021 1 A 4 2.57
21 2021 2 A 1 2.95
22 2021 2 A 2 2.82
23 2021 2 A 3 3.11
24 2021 2 A 4 3.04
25 2021 1 B 1 3.25
26 2021 1 B 2 2.33
27 2021 1 B 3 2.75
28 2021 1 B 4 3.09
29 2021 2 B 1 3.18
30 2021 2 B 2 2.75
31 2021 2 B 3 3.21
32 2021 2 B 4 3.57
> sample2
year.pd.treatm.rep.cimer.himv.nőv
1 2020,A,1,1,92,93,94
2 2020,A,2,1,91,92,93
3 2020,B,1,1,72,73,75
4 2020,B,2,1,73,74,75
5 2020,A,1,2,95,96,100
6 2020,A,2,2,90,91,94
7 2020,B,1,2,74,76,78
8 2020,B,2,2,71,72,74
9 2020,A,1,3,94,95,96
10 2020,A,2,3,92,93,96
11 2020,B,1,3,76,77,77
12 2020,B,2,3,74,75,76
13 2020,A,1,4,90,91,97
14 2020,A,2,4,90,91,94
15 2020,B,1,4,74,75,NA
16 2020,B,2,4,73,75,NA
17 2021,A,1,1,92,93,94
18 2021,A,2,1,91,92,93
19 2021,B,1,1,72,73,75
20 2021,B,2,1,73,74,75
21 2021,A,1,2,95,96,100
22 2021,A,2,2,90,91,94
23 2021,B,1,2,74,76,78
24 2021,B,2,2,71,72,74
25 2021,A,1,3,94,95,96
26 2021,A,2,3,92,93,96
27 2021,B,1,3,76,77,77
28 2021,B,2,3,74,75,76
29 2021,A,1,4,90,91,97
30 2021,A,2,4,90,91,94
31 2021,B,1,4,74,75,NA
32 2021,B,2,4,73,75,NA
You can use inner_join from dply
library(tidyverse)
inner_join(sample2,sample1, by=c("year","pd", "treatm", "rep"))
Output (first six lines)
year pd treatm rep cimer himv nov LAI
1: 2020 A 1 1 92 93 94 2.58
2: 2020 A 2 1 91 92 93 3.34
3: 2020 B 1 1 72 73 75 2.14
4: 2020 B 2 1 73 74 75 3.41
5: 2020 A 1 2 95 96 100 2.08
6: 2020 A 2 2 90 91 94 3.11
You can also use data.table
sample2[sample1, on=.(year,pd,treatm,rep)]

How do I create multiple dataframes from a result in a for loop in R?

I have 11 dataframes with various observations from seagrass surveys in the Chesapeake. Each dataframe contains the following variables (with example values included). There are 11 dataframes as each one represents observations from a single SAMPYR. So:
> head(density.2007)
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS
1 HI 2 1.0 50 2006 2007 1 6.0
2 HI 5 0.5 100 2006 2007 1 11.6
3 HI 7 0.5 50 2006 2007 1 6.0
4 HI 9 0.5 100 2006 2007 1 9.6
5 HI 10 1.0 100 2006 2007 1 30.0
6 HI 23 1.0 50 2006 2007 1 40.4
> head(density.2008)
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS NOTES id
29 HI 1 1.0 100 2007 2008 1 39.6 29
30 HI 2 1.0 50 2006 2008 2 54.8 30
31 HI 3 0.5 100 2007 2008 1 11.2 31
32 HI 4 1.0 100 2007 2008 1 8.8 32
33 HI 5 0.5 100 2006 2008 2 24.0 33
34 HI 7 0.5 50 2006 2008 2 0.0 34
I would like to write a for loop that takes the number of unique characters from the PLOT column, and calculates the frequency of each one (so I can then filter so only those that appear more than once are listed).
What I have so far is:
density.names <- c("density.2007",
"density.2008",
"density.2009",
"density.2010",
"density.2011",
"density.2012",
"density.2013",
"density.2014",
"density.2015",
"density.2016",
"density.2017"
)
for(i in 1:length(density.names)) {
get(density.names[i]) %>%
count(PLOT) %>%
print()
}
This code outputs
+ print()
PLOT n
1 HI 1 1
2 HI 10 1
3 HI 100 1
4 HI 103 1
5 HI 104 1
6 HI 11 1
7 HI 13 1
8 HI 14 1
9 HI 15 1
10 HI 17 1
11 HI 18 1
12 HI 2 1
13 HI 20 1
14 HI 21 1
15 HI 23 1
16 HI 25 1
17 HI 27 1
18 HI 29 1
19 HI 3 1
20 HI 31 1
21 HI 32 1
22 HI 36 1
23 HI 37 1
24 HI 38 1
25 HI 39 1
26 HI 4 1
27 HI 40 1
But I can't do anything further with that. Is there a way for me to filter rows so only those with a n=2 show up? Or to print 11 dataframes from the for loop, so I can further manipulate them but at least I'll have a copy of them in the global environment?
Thank you! I can provide additional details if that helps.
Don't do it in a loop !! It is done completely different. I'll show you step by step.
My first step is to prepare a function that will generate data similar to yours.
library(tidyverse)
dens = function(year, n) tibble(
PLOT = paste("HI", sample(1:(n/7), n, replace = T)),
SIZE = runif(n, 0.1, 3),
DENSITY = sample(seq(50,200, by=50), n, replace = T),
SEEDYR = year-1,
SAMPYR = year,
AGE = sample(1:5, n, replace = T),
SHOOTS = runif(n, 0.1, 3)
)
Let's see how it works and generate some sample data frames
set.seed(123)
density.2007 = dens(2007, 120)
density.2008 = dens(2008, 88)
density.2009 = dens(2009, 135)
density.2010 = dens(2010, 156)
The density.2007 data frame looks like this
# A tibble: 120 x 7
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 HI 15 1.67 200 2006 2007 4 1.80
2 HI 14 0.270 150 2006 2007 2 2.44
3 HI 3 0.856 50 2006 2007 3 0.686
4 HI 10 1.25 200 2006 2007 5 1.43
5 HI 11 0.673 50 2006 2007 5 1.40
6 HI 5 2.51 150 2006 2007 3 2.23
7 HI 14 0.543 150 2006 2007 2 2.17
8 HI 5 2.43 200 2006 2007 5 2.51
9 HI 9 1.69 100 2006 2007 4 2.67
10 HI 3 2.02 50 2006 2007 2 2.86
# ... with 110 more rows
Now they need to be combined into one frame
df = density.2007 %>%
bind_rows(density.2008) %>%
bind_rows(density.2009) %>%
bind_rows(density.2010)
output
# A tibble: 499 x 7
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 HI 15 1.67 200 2006 2007 4 1.80
2 HI 14 0.270 150 2006 2007 2 2.44
3 HI 3 0.856 50 2006 2007 3 0.686
4 HI 10 1.25 200 2006 2007 5 1.43
5 HI 11 0.673 50 2006 2007 5 1.40
6 HI 5 2.51 150 2006 2007 3 2.23
7 HI 14 0.543 150 2006 2007 2 2.17
8 HI 5 2.43 200 2006 2007 5 2.51
9 HI 9 1.69 100 2006 2007 4 2.67
10 HI 3 2.02 50 2006 2007 2 2.86
# ... with 489 more rows
In the next step, count how many times each value of the PLOT variable occurs
PLOT.count = df %>%
group_by(PLOT) %>%
summarise(PLOT.n = n()) %>%
arrange(PLOT.n)
ouptut
# A tibble: 22 x 2
PLOT PLOT.n
<chr> <int>
1 HI 20 3
2 HI 22 5
3 HI 21 7
4 HI 18 12
5 HI 2 19
6 HI 1 20
7 HI 15 20
8 HI 17 21
9 HI 6 22
10 HI 11 23
# ... with 12 more rows
In the penultimate step, let's append these counters to the original data frame
df = df %>% left_join(PLOT.count, by="PLOT")
output
# A tibble: 499 x 8
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS PLOT.n
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int>
1 HI 15 1.67 200 2006 2007 4 1.80 20
2 HI 14 0.270 150 2006 2007 2 2.44 32
3 HI 3 0.856 50 2006 2007 3 0.686 27
4 HI 10 1.25 200 2006 2007 5 1.43 25
5 HI 11 0.673 50 2006 2007 5 1.40 23
6 HI 5 2.51 150 2006 2007 3 2.23 38
7 HI 14 0.543 150 2006 2007 2 2.17 32
8 HI 5 2.43 200 2006 2007 5 2.51 38
9 HI 9 1.69 100 2006 2007 4 2.67 26
10 HI 3 2.02 50 2006 2007 2 2.86 27
# ... with 489 more rows
Now filter it at will
df %>% filter(PLOT.n > 30)
ouptut
# A tibble: 139 x 8
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS PLOT.n
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int>
1 HI 14 0.270 150 2006 2007 2 2.44 32
2 HI 5 2.51 150 2006 2007 3 2.23 38
3 HI 14 0.543 150 2006 2007 2 2.17 32
4 HI 5 2.43 200 2006 2007 5 2.51 38
5 HI 8 0.598 50 2006 2007 1 1.70 34
6 HI 7 1.94 50 2006 2007 4 1.61 35
7 HI 14 2.91 50 2006 2007 4 0.215 32
8 HI 7 0.846 150 2006 2007 4 0.506 35
9 HI 7 2.38 150 2006 2007 3 1.34 35
10 HI 7 2.62 100 2006 2007 3 0.167 35
# ... with 129 more rows
Or this way
df %>% filter(PLOT.n == min(PLOT.n))
df %>% filter(PLOT.n == median(PLOT.n))
df %>% filter(PLOT.n == max(PLOT.n))
output
# A tibble: 3 x 8
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS PLOT.n
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int>
1 HI 20 0.392 200 2009 2010 1 0.512 3
2 HI 20 0.859 150 2009 2010 5 2.62 3
3 HI 20 0.882 200 2009 2010 5 1.06 3
> df %>% filter(PLOT.n == median(PLOT.n))
# A tibble: 26 x 8
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS PLOT.n
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int>
1 HI 9 1.69 100 2006 2007 4 2.67 26
2 HI 9 2.20 50 2006 2007 4 1.49 26
3 HI 9 0.587 200 2006 2007 3 1.13 26
4 HI 9 1.27 50 2006 2007 1 2.55 26
5 HI 9 1.56 150 2006 2007 3 2.01 26
6 HI 9 0.198 100 2006 2007 3 2.08 26
7 HI 9 2.72 150 2007 2008 3 0.421 26
8 HI 9 0.251 200 2007 2008 2 0.328 26
9 HI 9 1.83 50 2007 2008 1 0.192 26
10 HI 9 1.97 100 2007 2008 1 0.900 26
# ... with 16 more rows
> df %>% filter(PLOT.n == max(PLOT.n))
# A tibble: 38 x 8
PLOT SIZE DENSITY SEEDYR SAMPYR AGE SHOOTS PLOT.n
<chr> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <int>
1 HI 5 2.51 150 2006 2007 3 2.23 38
2 HI 5 2.43 200 2006 2007 5 2.51 38
3 HI 5 2.06 100 2006 2007 5 1.93 38
4 HI 5 1.25 150 2006 2007 4 2.29 38
5 HI 5 2.29 200 2006 2007 1 2.97 38
6 HI 5 0.789 150 2006 2007 2 1.59 38
7 HI 5 1.11 100 2007 2008 4 2.61 38
8 HI 5 2.38 150 2007 2008 4 2.95 38
9 HI 5 2.67 200 2007 2008 3 1.77 38
10 HI 5 2.63 100 2007 2008 1 1.90 38
# ... with 28 more rows

Trying to translate a SAS GLM to R sasLM::GLM

I have a data set like this:
X1 Record Plot Row Column Cp Csp Entry Year Location Genotype Trait Value Whole_plot
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr>
1 3256 717 566 6 7 0 2 717 2019 Preston Novelty STD 5 6 + 7
2 3263 716 567 6 7 0 1 716 2019 Preston Flanders STD 4 6 + 7
3 3893 716 657 7 8 0 1 716 2019 Preston Flanders STD 2 7 + 8
4 3900 717 658 7 8 0 2 717 2019 Preston Novelty STD 2 7 + 8
5 4698 716 772 9 3 0 1 716 2019 Preston Flanders STD 3 9 + 3
6 4712 717 774 9 3 0 2 717 2019 Preston Novelty STD 3 9 + 3
7 3257 717 566 6 7 0 2 717 2019 Preston Novelty V1 5 6 + 7
8 3264 716 567 6 7 0 1 716 2019 Preston Flanders V1 4 6 + 7
9 3894 716 657 7 8 0 1 716 2019 Preston Flanders V1 3 7 + 8
10 3901 717 658 7 8 0 2 717 2019 Preston Novelty V1 3 7 + 8
the SAS code is
PROC GLM DATA=MAD.MDA_plot_subplot_controls outstat=MAD.subplot_control_anova_stat;
BY Year Location Trait;
CLASS Whole_plot Genotype;
MODEL Value = Whole_plot Genotype/SS3;
RANDOM Whole_plot;
LSMEANS Whole_plot;
RUN;
QUIT;
what I tried was this
require(sasLM)
glm(Value ~ factor(Row) + factor(Column),MDA_plot_controls)
but I do get an error
Error in glm(Value ~ factor(Row) + factor(Column), MDA_plot_controls) :
'family' not recognized
In addition: Warning message:
Unknown or uninitialised column: `family`.
i don't understand the 'family' column.

Filter a dataframe by keeping row dates of three days in a row preferably with dplyr

I would like to filter a dataframe based on its date column. I would like to keep the rows where I have at least 3 consecutive days. I would like to do this as effeciently and quickly as possible, so if someone has a vectorized approached it would be good.
I tried to inspire myself from the following link, but it didn't really go well, as it is a different problem:
How to filter rows based on difference in dates between rows in R?
I tried to do it with a for loop, I managed to put an indicator on the dates who are not consecutive, but it didn't give me the desired result, because it keeps all dates that are in a row even if they are less than 3 in a row.
tf is my dataframe
for(i in 2:(nrow(tf)-1)){
if(tf$Date[i] != tf$Date[i+1] %m+% days(-1)){
if(tf$Date[i] != tf$Date[i-1] %m+% days(1)){
tf$Date[i] = as.Date(0)
}
}
}
The first 22 rows of my dataframe look something like this:
Date RR.x RR.y Y
1 1984-10-20 1 10.8 1984
2 1984-11-04 1 12.5 1984
3 1984-11-05 1 7.0 1984
4 1984-11-09 1 22.9 1984
5 1984-11-10 1 24.4 1984
6 1984-11-11 1 19.0 1984
7 1984-11-13 1 5.9 1984
8 1986-10-15 1 10.3 1986
9 1986-10-16 1 18.1 1986
10 1986-10-17 1 11.3 1986
11 1986-11-17 1 14.1 1986
12 2003-10-17 1 7.8 2003
13 2003-10-25 1 7.6 2003
14 2003-10-26 1 5.0 2003
15 2003-10-27 1 6.6 2003
16 2003-11-15 1 26.4 2003
17 2003-11-20 1 10.0 2003
18 2011-10-29 1 10.0 2011
19 2011-11-04 1 11.4 2011
20 2011-11-21 1 9.8 2011
21 2011-11-22 1 5.6 2011
22 2011-11-23 1 20.4 2011
The result should be:
Date RR.x RR.y Y
4 1984-11-09 1 22.9 1984
5 1984-11-10 1 24.4 1984
6 1984-11-11 1 19.0 1984
8 1986-10-15 1 10.3 1986
9 1986-10-16 1 18.1 1986
10 1986-10-17 1 11.3 1986
13 2003-10-25 1 7.6 2003
14 2003-10-26 1 5.0 2003
15 2003-10-27 1 6.6 2003
20 2011-11-21 1 9.8 2011
21 2011-11-22 1 5.6 2011
22 2011-11-23 1 20.4 2011
One possibility could be:
df %>%
mutate(Date = as.Date(Date, format = "%Y-%m-%d"),
diff = c(0, diff(Date))) %>%
group_by(grp = cumsum(diff > 1 & lead(diff, default = last(diff)) == 1)) %>%
filter(if_else(diff > 1 & lead(diff, default = last(diff)) == 1, 1, diff) == 1) %>%
filter(n() >= 3) %>%
ungroup() %>%
select(-diff, -grp)
Date RR.x RR.y Y
<date> <int> <dbl> <int>
1 1984-11-09 1 22.9 1984
2 1984-11-10 1 24.4 1984
3 1984-11-11 1 19 1984
4 1986-10-15 1 10.3 1986
5 1986-10-16 1 18.1 1986
6 1986-10-17 1 11.3 1986
7 2003-10-25 1 7.6 2003
8 2003-10-26 1 5 2003
9 2003-10-27 1 6.6 2003
10 2011-11-21 1 9.8 2011
11 2011-11-22 1 5.6 2011
12 2011-11-23 1 20.4 2011
Here's a base solution:
DF$Date <- as.Date(DF$Date)
rles <- rle(cumsum(c(1,diff(DF$Date)!=1)))
rles$values <- rles$lengths >= 3
DF[inverse.rle(rles), ]
Date RR.x RR.y Y
4 1984-11-09 1 22.9 1984
5 1984-11-10 1 24.4 1984
6 1984-11-11 1 19.0 1984
8 1986-10-15 1 10.3 1986
9 1986-10-16 1 18.1 1986
10 1986-10-17 1 11.3 1986
13 2003-10-25 1 7.6 2003
14 2003-10-26 1 5.0 2003
15 2003-10-27 1 6.6 2003
20 2011-11-21 1 9.8 2011
21 2011-11-22 1 5.6 2011
22 2011-11-23 1 20.4 2011
Similar approach in dplyr
DF%>%
mutate(Date = as.Date(Date))%>%
add_count(IDs = cumsum(c(1, diff(Date) !=1)))%>%
filter(n >= 3)
# A tibble: 12 x 6
Date RR.x RR.y Y IDs n
<date> <int> <dbl> <int> <dbl> <int>
1 1984-11-09 1 22.9 1984 3 3
2 1984-11-10 1 24.4 1984 3 3
3 1984-11-11 1 19 1984 3 3
4 1986-10-15 1 10.3 1986 5 3
5 1986-10-16 1 18.1 1986 5 3
6 1986-10-17 1 11.3 1986 5 3
7 2003-10-25 1 7.6 2003 8 3
8 2003-10-26 1 5 2003 8 3
9 2003-10-27 1 6.6 2003 8 3
10 2011-11-21 1 9.8 2011 13 3
11 2011-11-22 1 5.6 2011 13 3
12 2011-11-23 1 20.4 2011 13 3

Resources