I am still not very good at using R’s standard debugging tools, and I often find that neither the error nor the traceback tell me enough to figure out what is going on. I would like to change R’s default behavior on error to provide more information.
Specifically, I would always like the call, including the formals, the expression assigned to each formal (the default expression if the default is the expression assigned), and the value of each of the argument expressions as evaluated in place, all returned in a format that makes it unambiguous which expression has been matched to which formal and which values go with which expression. Since the values might be large or of unexpected or evanescent type, I’d like them to be returned in a format, such as a str(), that makes intelligent choices about truncation and correctly identifies promises and other object types that tend to evaluate themselves into something else before you see them.
And finally, I’d like all these things, together with the return value of each call, for every function on the call stack from the error back to (and including) some piece of code that I wrote. It seems to me that the natural structure would be a single R object, a list of lists, one list per call (perhaps tidied, broom-like, into a tibble with some list columns) that I could single-step through in the obvious way.
I apologize if I have described some standard R debugging tool that I just haven't learned how to use properly yet. Is this even possible? If it is, could it be implemented via R's available error handlers, or would it need some package-scale coding project?
I would most prefer a solution that changes the default error response to this, but if that is impracticable, I'd accept a solution that requires that I rerun a code chunk with a wrapper or something similar.
Related
I'm working in R, and I'd like to define some variables that I (or one of my collaborators) cannot change. In C++ I'd do this:
const std::string path( "/projects/current" );
How do I do this in the R programming language?
Edit for clarity: I know that I can define strings like this in R:
path = "/projects/current"
What I really want is a language construct that guarantees that nobody can ever change the value associated with the variable named "path."
Edit to respond to comments:
It's technically true that const is a compile-time guarantee, but it would be valid in my mind that the R interpreter would throw stop execution with an error message. For example, look what happens when you try to assign values to a numeric constant:
> 7 = 3
Error in 7 = 3 : invalid (do_set) left-hand side to assignment
So what I really want is a language feature that allows you to assign values once and only once, and there should be some kind of error when you try to assign a new value to a variabled declared as const. I don't care if the error occurs at run-time, especially if there's no compilation phase. This might not technically be const by the Wikipedia definition, but it's very close. It also looks like this is not possible in the R programming language.
See lockBinding:
a <- 1
lockBinding("a", globalenv())
a <- 2
Error: cannot change value of locked binding for 'a'
Since you are planning to distribute your code to others, you could (should?) consider to create a package. Create within that package a NAMESPACE. There you can define variables that will have a constant value. At least to the functions that your package uses. Have a look at Tierney (2003) Name Space Management for R
I'm pretty sure that this isn't possible in R. If you're worried about accidentally re-writing the value then the easiest thing to do would be to put all of your constants into a list structure then you know when you're using those values. Something like:
my.consts<-list(pi=3.14159,e=2.718,c=3e8)
Then when you need to access them you have an aide memoir to know what not to do and also it pushes them out of your normal namespace.
Another place to ask would be R development mailing list. Hope this helps.
(Edited for new idea:) The bindenv functions provide an
experimental interface for adjustments to environments and bindings within environments. They allow for locking environments as well as individual bindings, and for linking a variable to a function.
This seems like the sort of thing that could give a false sense of security (like a const pointer to a non-const variable) but it might help.
(Edited for focus:) const is a compile-time guarantee, not a lock-down on bits in memory. Since R doesn't have a compile phase where it looks at all the code at once (it is built for interactive use), there's no way to check that future instructions won't violate any guarantee. If there's a right way to do this, the folks at the R-help list will know. My suggested workaround: fake your own compilation. Write a script to preprocess your R code that will manually substitute the corresponding literal for each appearance of your "constant" variables.
(Original:) What benefit are you hoping to get from having a variable that acts like a C "const"?
Since R has exclusively call-by-value semantics (unless you do some munging with environments), there isn't any reason to worry about clobbering your variables by calling functions on them. Adopting some sort of naming conventions or using some OOP structure is probably the right solution if you're worried about you and your collaborators accidentally using variables with the same names.
The feature you're looking for may exist, but I doubt it given the origin of R as a interactive environment where you'd want to be able to undo your actions.
R doesn't have a language constant feature. The list idea above is good; I personally use a naming convention like ALL_CAPS.
I took the answer below from this website
The simplest sort of R expression is just a constant value, typically a numeric value (a number) or a character value (a piece of text). For example, if we need to specify a number of seconds corresponding to 10 minutes, we specify a number.
> 600
[1] 600
If we need to specify the name of a file that we want to read data from, we specify the name as a character value. Character values must be surrounded by either double-quotes or single-quotes.
> "http://www.census.gov/ipc/www/popclockworld.html"
[1] "http://www.census.gov/ipc/www/popclockworld.html"
Help files call attributes() a function. Its syntax looks like a function call. Even class(attributes) calls it a function.
But I see I can assign something to attributes(myobject), which seems unusual. For example, I cannot assign anything to log(myobject).
So what is the proper name for "functions" like attributes()? Are there any other examples of it? How do you tell them apart from regular functions? (Other than trying supposedfunction(x)<-0, that is.)
Finally, I guess attributes() implementation overrides the assignment operator, in order to become a destination for assignments. Am I right? Is there any usable guide on how to do it?
Very good observation Indeed. It's an example of replacement function, if you see closely and type apropos('attributes') in your R console, It will return
"attributes"
"attributes<-"
along with other outputs.
So, basically the place where you are able to assign on the left sign of assignment operator, you are not calling attributes, you are actually calling attributes<- , There are many functions in R like that for example: names(), colnames(), length() etc. In your example log doesn't have any replacement counterpart hence it doesn't work the way you anticipated.
Definiton(from advanced R book link given below):
Replacement functions act like they modify their arguments in place,
and have the special name xxx<-. They typically have two arguments (x
and value), although they can have more, and they must return the
modified object
If you want to see the list of these functions you can do :
apropos('<-$') and you can check out similar functions, which has similar kind of properties.
You can read about it here and here
I am hopeful that this solves your problem.
I was wondering if there was an underlying programming logic as to why some basic R functions behave differently towards raw data input into them vs. vectors.
For example, if I do this
mean(1,2,3)
I don't get the correct answer, and don't get an error
But if I do this
sum(1,2,3)
I do get the right answer, even though I'd assume proper syntax would be sum(c(1,2,3))
And if I do this
sd(1,2,3)
I get an error Error in sd(1, 2, 3) : unused argument (3)
I'm interested into what, if any, the underlying programming logic of these different behaviors are. (I'm sure if I rooted around in the source code I could figure out exactly why they behave differently, but I want to know if there is a reason why the code might have been written that way).
Practically, I'm teaching a basic R class and want to explain to my students why things work that way; they get a bit tired of me saying "That's just how R works, live with it; and always put things in vectors to make life easy."
EDITS: I have bolded some sections to add emphasis. My question is largely about software design, not how these particular function happen to operate or how to determine their exact operation. That is, not "what arguments do these functions accept" but "why do simple mathematical functions in R appear (to a biologist) to have been designed differently".
the second argument taken by mean is trim, which is not a listed argument for sum. the first argument for sum is \dots, so, I believe, the function will try to compute the sum of all values entered as unnamed arguments.
mean and sum are generic functions, so they get deployed differently depending on an object's class.
Im running an optimisation routine using optim in R and im telling the programme what i want returned. for example, if i put return(op1$par), it will return all 4 of my variable values. Thats fine, and if i run return(op1), I obviously get all the information from the optimisation routine (par, value, convergence etc). However, in this format, the par values arent accessible in the output, it simply details that there are 4 values.
Now what i need is to the get the parameter values and the convergence information at the same time. R wont let me call this return(op1$par, op1$convergence) so im looking for the best way to get these two entities in one run?
I should specify that im writing this to a file for 1000s of iterations and not just looking to call it up once on screen.
Cheers
Try something like this:
return(c(Parameters=op1$par, Convergence=op1$convergence))
The names Parameters and Convergence are only for identifying what are the parameters and what is the convergence, since this result will be a vector.
By design, a function can return only one object (or else assignments like a <- fn(b) would get confusing; which thing do you assign?). But that object can be a vector, or a list (which is what optim does). So wrap your arguments in something like
return(c(par=op1$par, convergence=op1$convergence))
or more generally (for objects of different types),
return(list(par=op1$par, convergence=op1$convergence))
I'm working in R, and I'd like to define some variables that I (or one of my collaborators) cannot change. In C++ I'd do this:
const std::string path( "/projects/current" );
How do I do this in the R programming language?
Edit for clarity: I know that I can define strings like this in R:
path = "/projects/current"
What I really want is a language construct that guarantees that nobody can ever change the value associated with the variable named "path."
Edit to respond to comments:
It's technically true that const is a compile-time guarantee, but it would be valid in my mind that the R interpreter would throw stop execution with an error message. For example, look what happens when you try to assign values to a numeric constant:
> 7 = 3
Error in 7 = 3 : invalid (do_set) left-hand side to assignment
So what I really want is a language feature that allows you to assign values once and only once, and there should be some kind of error when you try to assign a new value to a variabled declared as const. I don't care if the error occurs at run-time, especially if there's no compilation phase. This might not technically be const by the Wikipedia definition, but it's very close. It also looks like this is not possible in the R programming language.
See lockBinding:
a <- 1
lockBinding("a", globalenv())
a <- 2
Error: cannot change value of locked binding for 'a'
Since you are planning to distribute your code to others, you could (should?) consider to create a package. Create within that package a NAMESPACE. There you can define variables that will have a constant value. At least to the functions that your package uses. Have a look at Tierney (2003) Name Space Management for R
I'm pretty sure that this isn't possible in R. If you're worried about accidentally re-writing the value then the easiest thing to do would be to put all of your constants into a list structure then you know when you're using those values. Something like:
my.consts<-list(pi=3.14159,e=2.718,c=3e8)
Then when you need to access them you have an aide memoir to know what not to do and also it pushes them out of your normal namespace.
Another place to ask would be R development mailing list. Hope this helps.
(Edited for new idea:) The bindenv functions provide an
experimental interface for adjustments to environments and bindings within environments. They allow for locking environments as well as individual bindings, and for linking a variable to a function.
This seems like the sort of thing that could give a false sense of security (like a const pointer to a non-const variable) but it might help.
(Edited for focus:) const is a compile-time guarantee, not a lock-down on bits in memory. Since R doesn't have a compile phase where it looks at all the code at once (it is built for interactive use), there's no way to check that future instructions won't violate any guarantee. If there's a right way to do this, the folks at the R-help list will know. My suggested workaround: fake your own compilation. Write a script to preprocess your R code that will manually substitute the corresponding literal for each appearance of your "constant" variables.
(Original:) What benefit are you hoping to get from having a variable that acts like a C "const"?
Since R has exclusively call-by-value semantics (unless you do some munging with environments), there isn't any reason to worry about clobbering your variables by calling functions on them. Adopting some sort of naming conventions or using some OOP structure is probably the right solution if you're worried about you and your collaborators accidentally using variables with the same names.
The feature you're looking for may exist, but I doubt it given the origin of R as a interactive environment where you'd want to be able to undo your actions.
R doesn't have a language constant feature. The list idea above is good; I personally use a naming convention like ALL_CAPS.
I took the answer below from this website
The simplest sort of R expression is just a constant value, typically a numeric value (a number) or a character value (a piece of text). For example, if we need to specify a number of seconds corresponding to 10 minutes, we specify a number.
> 600
[1] 600
If we need to specify the name of a file that we want to read data from, we specify the name as a character value. Character values must be surrounded by either double-quotes or single-quotes.
> "http://www.census.gov/ipc/www/popclockworld.html"
[1] "http://www.census.gov/ipc/www/popclockworld.html"