R MLR package - Saving performance for each parameter - r

I am using the mlr package in R to run the KNN algorithm. I am using tuneParams to search for the optimal k. When I run tuneParams the output shows the performance for each value of k. How can I save the performance for each k? The TuneResult object only has the optimal performance. I would like to use this to create a graph with the performance as a function of k.

To complete the answer you found yourself:
The best way to access all the settings that have been tried out:
as.data.frame(TuneResult$opt.path)

Related

mlr3 optimized average of ensemble

I try to optimize the averaged prediction of two logistic regressions in a classification task using a superlearner.
My measure of interest is classif.auc
The mlr3 help file tells me (?mlr_learners_avg)
Predictions are averaged using weights (in order of appearance in the
data) which are optimized using nonlinear optimization from the
package "nloptr" for a measure provided in measure (defaults to
classif.acc for LearnerClassifAvg and regr.mse for LearnerRegrAvg).
Learned weights can be obtained from $model. Using non-linear
optimization is implemented in the SuperLearner R package. For a more
detailed analysis the reader is referred to LeDell (2015).
I have two questions regarding this information:
When I look at the source code I think LearnerClassifAvg$new() defaults to "classif.ce", is that true?
I think I could set it to classif.auc with param_set$values <- list(measure="classif.auc",optimizer="nloptr",log_level="warn")
The help file refers to the SuperLearner package and LeDell 2015. As I understand it correctly, the proposed "AUC-Maximizing Ensembles through Metalearning" solution from the paper above is, however, not impelemented in mlr3? Or do I miss something? Could this solution be applied in mlr3? In the mlr3 book I found a paragraph regarding calling an external optimization function, would that be possible for SuperLearner?
As far as I understand it, LeDell2015 proposes and evaluate a general strategy that optimizes AUC as a black-box function by learning optimal weights. They do not really propose a best strategy or any concrete defaults so I looked into the defaults of the SuperLearner package's AUC optimization strategy.
Assuming I understood the paper correctly:
The LearnerClassifAvg basically implements what is proposed in LeDell2015 namely, it optimizes the weights for any metric using non-linear optimization. LeDell2015 focus on the special case of optimizing AUC. As you rightly pointed out, by setting the measure to "classif.auc" you get a meta-learner that optimizes AUC. The default with respect to which optimization routine is used deviates between mlr3pipelines and the SuperLearner package, where we use NLOPT_LN_COBYLA and SuperLearner ... uses the Nelder-Mead method via the optim function to minimize rank loss (from the documentation).
So in order to get exactly the same behaviour, you would need to implement a Nelder-Mead bbotk::Optimizer similar to here that simply wraps stats::optim with method Nelder-Mead and carefully compare settings and stopping criteria. I am fairly confident that NLOPT_LN_COBYLA delivers somewhat comparable results, LeDell2015 has a comparison of the different optimizers for further reference.
Thanks for spotting the error in the documentation. I agree, that the description is a little unclear and I will try to improve this!

How to implement regularization / weight decay in R

I'm surprised at the number of R neural network packages that don't appear to have a parameter for regularization/lambda/weight decay. I'm assuming I'm missing something obvious. When I use a package like MLR and look at the integrated learners, I don't see parameters for regularization.
For example: nnTrain from the deepnet package:
list of params
I see parameters for just about everything - even drop out - but not lambda or anything else that looks like regularization.
My understanding of both caret and mlr is that they basically organize other ML packages and try to provide a consistent way to interact with them. I'm not finding L1/L2 regularization in any of them.
I've also done 20 google searches looking for R packages with regularization but found nothing. What am I missing? Thanks!
I looked through more of the models within mlr, (a daunting task), and eventually found the h2o package learners. In mlr, the classif.h2o.deeplearning model has every parameter I could think of, including L1 and L2.
Installing h2o is as simple as:
install.packages('h2o')

Does R support switching between optimizers like STATA does?

I need to implement the model show here:
http://www.ssc.upenn.edu/~fdiebold/papers/paper55/DRAfinal.pdf
The model estimation step on p.315 notes that:
"We maximize the likelihood by iterating the Marquart and
Berndt–Hall–Hall–Hausman algorithms, using numerical derivatives, optimal
stepsize, and a convergence criterion of 10^-6 for the change in the norm of the
parameter vector from one iteration to the next."
Now I know that stata supports switching between optimizers,
http://www.stata.com/manuals13/rmaximize.pdf
see bottom of p2.
Is there an R package or Matlab function/s that can do the same thing?
Specifically I need to be able to switch between BHHH and Levenberg-Marquardt.
Kind Regards
Baz
For R, check out the CRAN Task View on Optimization. Searching that page, it looks like BHHH and Marquardt are available in separate packages (minpack.lm and maxLik, respectively). You could write your own code to handle switching between them.

Using all cores for R MASS::stepAIC process

I've been struggling to perform this sort of analysis and posted on the stats site about whether I was taking things in the right direction, but as I've been investigating I've also found that my lovely beefy processor (linux OS, i7) is only actually using 1 of its cores. Turns out this is default behaviour, but I have a fairly large dataset and between 40 and 50 variables to select from.
A stepAIC function that is checking various different models seems like the ideal sort of thing for parellizing, but I'm a relative newb with R and I only have sketchy notions about parallel computing.
I've taken a look at the documentation for the packages parallel, and snowfall, but these seems to have some built-in list functions for parallelisation and I'm not sure how to morph the stepAIC into a form that can be run in parellel using these packages.
Does anyone know 1) whether this is a feasible exercise, 2) how to do what I'm looking to do and can give me a sort of basic structure/list of keywords I'll need?
Thanks in advance,
Steph
I think that a process in which a step depends on de last (as in step wise selection) is not trivial to do in parallel.
The simplest way to do something in parallel I know is:
library(doMC)
registerDoMC()
l <- foreach(i=1:X) %dopar% { fun(...) }
in my poor understanding of stepwise one extracts variables (or add forward/backward) of a model and measure the fitting in each step. If extracting a variable the model fit is best you keep this model, for example. In the foreach parallel function each step is blind to other step, maybe you could write your own function to perform this task as in
http://beckmw.wordpress.com/tag/stepwise-selection/
I looked for this code, and seems to me that you could use parallel computing with the vif_func function...
I think you also should check optimized codes to do that task as in the package leaps
http://cran.r-project.org/web/packages/leaps/index.html
hope this helps...

Parallelize rfcv() function for feature selection in randomForest package

I wonder if anyone knows how to parallelize rfcv() function implemented in R-package 'randomForest'. Sorry if the question sounds very basic, but I tried to do this using 'foreach' without any results.
Have a look at the caret package and its documentation.
It not only is more general (allowing for more models than "just" random forests) but also integrates pre- and post-processing --- while also giving you parallel execution where feasible, particularly for evaluation and cross-validation which is an "embarassingly parallel" problem.

Resources