Applying multiple functions to one column - r

I have four functions, clean, clean2, cleanFun, and trim. Currently I apply the functions to one column, like so.
library(tidyverse)
library(data.table)
py17$CE.Finding.Description <- clean(py17$CE.Finding.Description)
py17$CE.Finding.Description <- clean2(py17$CE.Finding.Description)
py17$CE.Finding.Description <- cleanFun(py17$CE.Finding.Description)
py17$CE.Finding.Description <- trim(py17$CE.Finding.Description)
This process does the trick but I have to copy and paste this multiple times, and I'd eventually like to expand this to multiple columns.
For now, I'd like to save time and add an apply function but I'm not sure how to create that apply function. I've tried creating this.
maxclean <- function(cleaner) {
c(clean(cleaner), clean2(cleaner), cleanFun(cleaner), trim(cleaner))
}
py17$CE.Finding.Description <- sapply(py17$CE.Finding.Description, maxclean)
After trying this I just get
Error in `$<-.data.frame`(`*tmp*`, CE.Finding.Description, value = c(NA, :
replacement has 4 rows, data has 4318
I do not get any errors doing this the long way. Where am I going wrong on this?

Your maxclean function should take the same arguments as the separate functions. In your case - a vector. And then call each function in a row. Like this:
maxclean <- function(x) {
x <- clean(x)
x <- clean2(x)
x <- cleanFun(x)
x <- trim(x)
return(x)
}

Apparently, the OP has created a cleaning pipeline where the output of one step is fed into the next step and the final result of the pipeline overwrites the original input.
The magrittr package has the freduce() function which applies one function after the other in the described way. Thus,
py17$CE.Finding.Description <- clean(py17$CE.Finding.Description)
py17$CE.Finding.Description <- clean2(py17$CE.Finding.Description)
py17$CE.Finding.Description <- cleanFun(py17$CE.Finding.Description)
py17$CE.Finding.Description <- trim(py17$CE.Finding.Description)
can be written as:
library(magrittr)
fcts <- list(clean, clean2, cleanFun, trim)
py17$CE.Finding.Description %<>% freduce(fcts)
which is a shortcut for
py17$CE.Finding.Description <- py17$CE.Finding.Description %>%
clean() %>%
clean2() %>%
cleanFun() %>%
trim()
Here, %>% is the magrittr forward-pipe operator and %<>% is the magrittr compound assignment pipe-operator which updates the left-hand side object with the resulting value.
Reproducible example
Using the mtcars dataset:
data(mtcars)
mycars <- mtcars
mycars$mpg %<>%
{. - mean(.)} %>%
abs() %>%
sqrt()
mycars
or
mycars <- mtcars
mycars$mpg %<>% freduce(list(function(.) {. - mean(.)}, abs, sqrt))
mycars
Applying on multiple columns
The OP has mentioned that he eventually like to expand this to multiple columns
This can be achieved by, e.g.,
mycars <- mtcars
fcts <- list(function(.) {. - mean(.)}, abs, sqrt)
mycars$mpg %<>% freduce(fcts)
mycars$disp %<>% freduce(fcts)
mycars

Related

dplyr: how to pass strings to dplyr's mutate argument

I want to write a helper function that summarizes the percentage change for column A, B and C in one shot. I want to pass a string to the "mutate" argument of dplyr with the help of rlang. Unfortunately, I get an error saying that I have an unexpected ",". Could you please take a look? Thanks in advance!
library(rlang) #read text inputs and return vars
library(dplyr)
set.seed(10)
dat <- data.frame(A=rnorm(10,0,1),
B=rnorm(10,0,1),
C=rnorm(10,0,1),
D=2001:2010)
calc_perct_chg <- function(input_data,
target_Var_list,
year_Var_name){
#create new variable names
mutate_varNames <- paste0(target_Var_list,rep("_pct_chg = ",length(target_Var_list)))
#generate text for formula
mutate_formula <- lapply(target_Var_list,function(x){output <- paste0("(",x,"-lag(",x,"))/lag(",x,")");return(output)})
mutate_formula <- unlist(mutate_formula) #convert list to a vector
#generate arguments for mutate
mutate_args <<- paste0(mutate_varNames,collapse=",",mutate_formula)
#data manipulation
output <- input_data %>%
arrange(!!parse_quo(year_Var_name,env=caller_env())) %>%
mutate(!!parse_quo(mutate_args,env=caller_env()))
#output data frame
return(output)
}
# error: unexpected ','
calc_perct_chg(input_data =dat,
target_Var_list=list("A","B","C"),
year_Var_name="D")
I don't think it's a good idea to evaluate string as code, also I think you are over-complicating it. Using across this should be easier.
library(dplyr)
calc_perct_chg <- function(input_data,
target_Var_list,
year_Var_name){
input_data %>%
arrange(across(all_of(year_Var_name))) %>%
mutate(across(all_of(target_Var_list), ~(.x - lag(.x))/lag(.x)))
}
calc_perct_chg(input_data = dat,
target_Var_list = c("A","B","C"),
year_Var_name = "D")

R: dbplyr using eval()

I have a question on how to use eval(parse(text=...)) in dbplyr SQL translation.
The following code works exactly what I want with dplyr using eval(parse(text=eval_text))
selected_col <- c("wt", "drat")
text <- paste(selected_col, ">3")
implode <- function(..., sep='|') {
paste(..., collapse=sep)
}
eval_text <- implode(text)
mtcars %>% dplyr::filter(eval(parse(text=eval_text)))
But when I put it into the database it returns an error message. I am looking for any solution that allows me to dynamically set the column names and filter with the or operator.
db <- tbl(con, "mtcars") %>%
dplyr::filter(eval(parse(eval_text)))
db <- collect(db)
Thanks!
Right approach, but dbplyr tends to work better with something that can receive the !! operator ('bang-bang' operator). At one point dplyr had *_ versions of functions (e.g. filter_) that accepted text inputs. This is now done using NSE (non-standard evaluation).
A couple of references: shiptech and r-bloggers (sorry couldn't find the official dplyr reference).
For your purposes you should find the following works:
library(rlang)
df %>% dplyr::filter(!!parse_expr(eval_text))
Full working:
library(dplyr)
library(dbplyr)
library(rlang)
data(mtcars)
df = tbl_lazy(mtcars, con = simulate_mssql()) # simulated database connection
implode <- function(..., sep='|') { paste(..., collapse=sep) }
selected_col <- c("wt", "drat")
text <- paste(selected_col, ">3")
eval_text <- implode(text)
df %>% dplyr::filter(eval(parse(eval_text))) # returns clearly wrong SQL
df %>% dplyr::filter(!!parse_expr(eval_text)) # returns valid & correct SQL
df %>% dplyr::filter(!!!parse_exprs(text)) # passes filters as a list --> AND (instead of OR)

Problem with mutate keyword and functions in R

I got a problem with the use of MUTATE, please check the next code block.
output1 <- mytibble %>%
mutate(newfield = FND(mytibble$ndoc))
output1
Where FND function is a FILTER applied to a large file (5GB):
FND <- function(n){
result <- LARGETIBBLE %>% filter(LARGETIBBLE$id == n)
return(paste(unique(result$somefield),collapse=" "))
}
I want to execute FND function for each row of output1 tibble, but it just executes one time.
Never use $ in dplyr pipes, very rarely they are used. You can change your FND function to :
library(dplyr)
FND <- function(n){
LARGETIBBLE %>% filter(id == n) %>% pull(somefield) %>%
unique %>% paste(collapse = " ")
}
Now apply this function to every ndoc value in mytibble.
mytibble %>% mutate(newfield = purrr::map_chr(ndoc, FND))
You can also use sapply :
mytibble$newfield <- sapply(mytibble$ndoc, FND)
FND(mytibble$ndoc) is more suitable for data frames. When you use functions such as mutate on a tibble, there is no need to specify the name of the tibble, only that of the column. The symbols %>% are already making sure that only data from the tibble is used. Thus your example would be:
output1 <- mytibble %>%
mutate(newfield = FND(ndoc))
FND <- function(n){
result <- LARGETIBBLE %>% filter(id == n)
return(paste(unique(result$somefield),collapse=" "))
}
This would be theoretically, however I do not know if your function FND will work, maybe try it and if not, give some practical example with data and what you are trying to achieve.

How do I make a for loop with the filter function?

I'm having a problem with using the filter() function inside a for loop, it doesn't filter the data frame and instead creates an i value. The code is below:
library(tidyverse)
library(magrittr)
library(dplyr)
funcexrds <- readRDS("C:/Users/chlav/Dropbox/Antidumping/Data/ano_pais_imp/funcex.rds")
funcexrds <- funcexrds %>% arrange(desc_cnae, pais)
View(funcexrds)
funcexpais_lista <- funcexrds %>% select(pais) %>% as.list()
funcexcnae_lista <- funcexrds %>% select(desc_cnae) %>% as.list()
subset1 <- filter(funcexrds, pais == "África do Sul", desc_cnae == "Abate de reses, exceto suínos")
for (i in 1:length(unique(funcexpais_lista))) {
funcexrds_t <- filter(funcexrds, pais == "i")
}
As you can see if you reproduce the code, subset1 returns the filtered dataset as you expect, but the for loop doesn't
I agree with #Clemsang. If you're trying to get the for loop to pull out whatever relevant information is at Pais == 1, Pais == 2, etc. putting i outside of quotes effectively shows the for loop where to put the number you indicated in
for (i in 1:length(unique(funcexpais_lista)))
Also just some housekeeping to keep in mind, since tidyverse already contains the dplyr and magrittr functions, you should only need to load tidyverse before starting your code!

Dplyr conditional select and mutate

I have working code which excludes columns based on a parameter and mutates certain columns based on other parameters. There is this SO question Can dplyr package be used for conditional mutating? but it does not address conditional select
Is there a way to have pure dplyr code without the if statements?
Working R Code:
# Loading
diamonds_tbl <- diamonds
head(diamonds_tbl)
# parameters
initialColumnDrop <- c('x','y','z')
forceCategoricalColumns <- c('carat','cut', 'color')
forceNumericalColumns <- c('')
# Main Code
if(length(which(colnames(diamonds_tbl) %in% initialColumnDrop))>=1){
diamonds_tbl_clean <- diamonds_tbl %>%
select(-one_of(initialColumnDrop)) #Drop specific columns in columnDrop
}
if(length(which(colnames(diamonds_tbl_clean) %in% forceCategoricalColumns))>=1){
diamonds_tbl_clean <- diamonds_tbl_clean %>%
mutate_at(forceCategoricalColumns,funs(as.character)) #Force columns to be categorical
}
if(length(which(colnames(diamonds_tbl_clean) %in% forceNumericalColumns))>=1){
diamonds_tbl_clean <- diamonds_tbl_clean %>%
mutate_at(forceNumericalColumns,funs(as.numeric)) #Force columns to be numeric
}
I don't really understand the desire for a "pure dplyr" solution, but you can make any problem easier with helper functions. For example you could write a a function to run a transformation only if certain columns are found
run_if_cols_match <- function(data, cols, expr) {
if (any(names(data) %in% cols)) {
expr(data)
} else {
data
}
}
Then you could use that in a pipe
diamonds_tbl_clean <- diamonds_tbl %>%
run_if_cols_match(initialColumnDrop,
. %>% select(-one_of(initialColumnDrop))) %>%
run_if_cols_match(forceCategoricalColumns,
. %>% mutate_at(forceCategoricalColumns,funs(as.character))) %>%
run_if_cols_match(forceNumericalColumns,
. %>% mutate_at(forceNumericalColumns,funs(as.numeric)))
which would do the same thing as your code. Here just just conditionally run different anonymous pipes.

Resources