Cleaning a data.frame in a semi-reshape/semi-aggregate fashion - r

First time posting something here, forgive any missteps in my question.
In my example below I've got a data.frame where the unique identifier is the tripID with the name of the vessel, the species code, and a catch metric.
> testFrame1 <- data.frame('tripID' = c(1,1,2,2,3,4,5),
'name' = c('SS Anne','SS Anne', 'HMS Endurance', 'HMS Endurance','Salty Hippo', 'Seagallop', 'Borealis'),
'SPP' = c(101,201,101,201,102,102,103),
'kept' = c(12, 22, 14, 24, 16, 18, 10))
> testFrame1
tripID name SPP kept
1 1 SS Anne 101 12
2 1 SS Anne 201 22
3 2 HMS Endurance 101 14
4 2 HMS Endurance 201 24
5 3 Salty Hippo 102 16
6 4 Seagallop 102 18
7 5 Borealis 103 10
I need a way to basically condense the data.frame so that all there is only one row per tripID as shown below.
> testFrame1
tripID name SPP kept SPP.1 kept.1
1 1 SS Anne 101 12 201 22
2 2 HMS Endurance 101 14 201 24
3 3 Salty Hippo 102 16 NA NA
4 4 Seagallop 102 18 NA NA
5 5 Borealis 103 10 NA NA
I've looked into tidyr and reshape but neither of those are can deliver quite what I'm asking for. Is there anything out there that does this quasi-reshaping?

Here are two alternatives using base::reshape and data.table::dcast:
1) base R
reshape(transform(testFrame1,
timevar = ave(tripID, tripID, FUN = seq_along)),
idvar = cbind("tripID", "name"),
timevar = "timevar",
direction = "wide")
# tripID name SPP.1 kept.1 SPP.2 kept.2
#1 1 SS Anne 101 12 201 22
#3 2 HMS Endurance 101 14 201 24
#5 3 Salty Hippo 102 16 NA NA
#6 4 Seagallop 102 18 NA NA
#7 5 Borealis 103 10 NA NA
2) data.table
library(data.table)
setDT(testFrame1)
dcast(testFrame1, tripID + name ~ rowid(tripID), value.var = c("SPP", "kept"))
# tripID name SPP_1 SPP_2 kept_1 kept_2
#1: 1 SS Anne 101 201 12 22
#2: 2 HMS Endurance 101 201 14 24
#3: 3 Salty Hippo 102 NA 16 NA
#4: 4 Seagallop 102 NA 18 NA
#5: 5 Borealis 103 NA 10 NA

Great reproducible post considering it's your first. Here's a way to do it with dplyr and tidyr -
testFrame1 %>%
group_by(tripID, name) %>%
summarise(
SPP = toString(SPP),
kept = toString(kept)
) %>%
ungroup() %>%
separate("SPP", into = c("SPP", "SPP.1"), sep = ", ", extra = "drop", fill = "right") %>%
separate("kept", into = c("kept", "kept.1"), sep = ", ", extra = "drop", fill = "right")
# A tibble: 5 x 6
tripID name SPP SPP.1 kept kept.1
<dbl> <chr> <chr> <chr> <chr> <chr>
1 1.00 SS Anne 101 201 12 22
2 2.00 HMS Endurance 101 201 14 24
3 3.00 Salty Hippo 102 <NA> 16 <NA>
4 4.00 Seagallop 102 <NA> 18 <NA>
5 5.00 Borealis 103 <NA> 10 <NA>

Related

Using lag function to find the last value for a specific individual

I'm trying to create a column in my spreadsheet that takes the last recorded value (IC) for a specific individual (by the Datetime column) and populates it into a column (LIC) for the current event.
A sub-sample of my data looks like this (actual dataset has 4949 rows and 37 individuals):
> head(ACdatas.scale)
Date Datetime ID.2 IC LIC
1 2019-05-25 2019-05-25 11:57 139 High NA
2 2019-06-09 2019-06-09 19:42 139 Low NA
3 2019-07-05 2019-07-05 20:12 139 Medium NA
4 2019-07-27 2019-07-27 17:27 152 Low NA
5 2019-08-04 2019-08-04 9:13 152 Medium NA
6 2019-08-04 2019-08-04 16:18 139 Medium NA
I would like to be able to populate the last value from the IC column into the current LIC column for the current event (see below)
> head(ACdatas.scale)
Date Datetime ID.2 IC LIC
1 2019-05-25 2019-05-25 11:57 139 High NA
2 2019-06-09 2019-06-09 19:42 139 Low High
3 2019-07-05 2019-07-05 20:12 139 Medium Low
4 2019-07-27 2019-07-27 17:27 152 Low NA
5 2019-08-04 2019-08-04 9:13 152 Medium Low
6 2019-08-04 2019-08-04 16:18 139 Medium Medium
I've tried the following code:
ACdatas.scale <- ACdatas.scale %>%
arrange(ID.2, Datetime) %>%
group_by(ID.2) %>%
mutate(LIC= lag(IC))
This worked some of the time, but when I checked back through the data, it seemed to have a problem when the date switched, so it could accurately populate the field within the same day, but not when the previous event was on the previous day. Just to make it super confusing, it only had issues with some of the day switches, and not all! Help please!!
Sample data,
dat <- data.frame(id=c(rep("A",5),rep("B",5)), IC=c(1:5,11:15))
dplyr
library(dplyr)
dat %>%
group_by(id) %>%
mutate(LIC = lag(IC)) %>%
ungroup()
# # A tibble: 10 x 3
# id IC LIC
# <chr> <int> <int>
# 1 A 1 NA
# 2 A 2 1
# 3 A 3 2
# 4 A 4 3
# 5 A 5 4
# 6 B 11 NA
# 7 B 12 11
# 8 B 13 12
# 9 B 14 13
# 10 B 15 14
data.table
library(data.table)
as.data.table(dat)[, LIC := shift(IC, type = "lag"), by = .(id)][]
# id IC LIC
# <char> <int> <int>
# 1: A 1 NA
# 2: A 2 1
# 3: A 3 2
# 4: A 4 3
# 5: A 5 4
# 6: B 11 NA
# 7: B 12 11
# 8: B 13 12
# 9: B 14 13
# 10: B 15 14
base R
dat$LIC <- ave(dat$IC, dat$id, FUN = function(z) c(NA, z[-length(z)]))
dat
# id IC LIC
# 1 A 1 NA
# 2 A 2 1
# 3 A 3 2
# 4 A 4 3
# 5 A 5 4
# 6 B 11 NA
# 7 B 12 11
# 8 B 13 12
# 9 B 14 13
# 10 B 15 14
By using your data:
mydat <- structure(list(Date = structure(c(18041, 18056, 18082,
18104, 18112, 18112),
class = "Date"),
Datetime = structure(c(1558760220,1560084120,
1562332320, 1564223220,
1564884780, 1564910280),
class = c("POSIXct","POSIXt"),
tzone = ""),
ID.2 = c(139, 139, 139, 152, 152, 139),
IC = c("High", "Low", "Medium", "Low", "Medium", "Medium"),
LIC = c(NA, NA, NA, NA, NA, NA)), row.names = c(NA, -6L),
class = "data.frame")
mydat %>% arrange(Datetime) %>% group_by(ID.2) %>% mutate(LIC = lag(IC))
# A tibble: 6 x 5
# Groups: ID.2 [2]
Date Datetime ID.2 IC LIC
<date> <dttm> <dbl> <chr> <chr>
1 2019-05-25 2019-05-25 11:57:00 139 High NA
2 2019-06-09 2019-06-09 19:42:00 139 Low High
3 2019-07-05 2019-07-05 20:12:00 139 Medium Low
4 2019-07-27 2019-07-27 17:27:00 152 Low NA
5 2019-08-04 2019-08-04 09:13:00 152 Medium Low
6 2019-08-04 2019-08-04 16:18:00 139 Medium Medium

Merge/combine rows with same ID and Date in R

I have an excel database like below. The Excel database had option to enter only 3 drug details. Wherever there are more than 3 drugs, it has been entered into another row with PID and Date.
Is there a way I can merge the rows in R so that each patient's records will be in a single row? In the example below, I need to merge Row 1 & 2 and 4 & 6.
Thanks.
Row
PID
Date
Drug1
Dose1
Drug2
Dose2
Drug3
Dose3
Age
Place
1
11A
25/10/2021
RPG
12
NAT
34
QRT
5
45
PMk
2
11A
25/10/2021
BET
10
SET
43
BLT
45
3
12B
20/10/2021
ATY
13
LTP
3
CRT
3
56
GTL
4
13A
22/10/2021
GGS
7
GSF
12
ERE
45
45
RKS
5
13A
26/10/2021
BRT
9
ARR
4
GSF
34
46
GLO
6
13A
22/10/2021
DFS
5
7
14B
04/08/2021
GDS
2
TRE
55
HHS
34
25
MTK
Up front, the two methods below are completely different, not equivalents in "base R vs dplyr". I'm sure either can be translated to the other.
dplyr
The premise here is to first reshape/pivot the data longer so that each Drug/Dose is on its own line, renumber them appropriately, and then bring it back to a wide state.
NOTE: frankly, I usually prefer to deal with data in a long format, so consider keeping it in its state immediately before pivot_wider. This means you'd need to bring Age and Place back into it somehow.
Why? A long format deals very well with many types of aggregation; ggplot2 really really prefers data in the long format; I dislike seeing and having to deal with all of the NA/empty values that will invariably happen with this wide format, since many PIDs don't have (e.g.) Drug6 or later. This seems subjective, but it can really be an objective change/improvement to data-mangling, depending on your workflow.
library(dplyr)
# library(tidyr) # pivot_longer, pivot_wider
dat0 <- select(dat, PID, Date, Age, Place) %>%
group_by(PID, Date) %>%
summarize(across(everything(), ~ .[!is.na(.) & nzchar(trimws(.))][1] ))
dat %>%
select(-Age, -Place) %>%
tidyr::pivot_longer(
-c(Row, PID, Date),
names_to = c(".value", "iter"),
names_pattern = "^([^0-9]+)([123]?)$") %>%
arrange(Row, iter) %>%
group_by(PID, Date) %>%
mutate(iter = row_number()) %>%
select(-Row) %>%
tidyr::pivot_wider(
c("PID", "Date"), names_sep = "",
names_from = "iter", values_from = c("Drug", "Dose")) %>%
left_join(dat0, by = c("PID", "Date"))
# # A tibble: 5 x 16
# # Groups: PID, Date [5]
# PID Date Drug1 Drug2 Drug3 Drug4 Drug5 Drug6 Dose1 Dose2 Dose3 Dose4 Dose5 Dose6 Age Place
# <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int> <int> <int> <int> <int> <int> <int> <chr>
# 1 11A 25/10/2021 RPG NAT QRT BET "SET" "BLT" 12 34 5 10 43 45 45 PMk
# 2 12B 20/10/2021 ATY LTP CRT <NA> <NA> <NA> 13 3 3 NA NA NA 56 GTL
# 3 13A 22/10/2021 GGS GSF ERE DFS "" "" 7 12 45 5 NA NA 45 RKS
# 4 13A 26/10/2021 BRT ARR GSF <NA> <NA> <NA> 9 4 34 NA NA NA 46 GLO
# 5 14B 04/08/2021 GDS TRE HHS <NA> <NA> <NA> 2 55 34 NA NA NA 25 MTK
Notes:
I broke out dat0 early, since Age and Place don't really fit into the pivot/renumber/pivot mindset.
base R
Here's a base R method that splits (according to your grouping criteria: PID and Date), finds the Drug/Dose columns that need to be renumbered, renames them, and the merges all of the frames back together.
spl <- split(dat, ave(rep(1L, nrow(dat)), dat[,c("PID", "Date")], FUN = seq_along))
spl
# $`1`
# Row PID Date Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Age Place
# 1 1 11A 25/10/2021 RPG 12 NAT 34 QRT 5 45 PMk
# 3 3 12B 20/10/2021 ATY 13 LTP 3 CRT 3 56 GTL
# 4 4 13A 22/10/2021 GGS 7 GSF 12 ERE 45 45 RKS
# 5 5 13A 26/10/2021 BRT 9 ARR 4 GSF 34 46 GLO
# 7 7 14B 04/08/2021 GDS 2 TRE 55 HHS 34 25 MTK
# $`2`
# Row PID Date Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Age Place
# 2 2 11A 25/10/2021 BET 10 SET 43 BLT 45 NA
# 6 6 13A 22/10/2021 DFS 5 NA NA NA
nms <- lapply(spl, function(x) grep("^(Drug|Dose)", colnames(x), value = TRUE))
nms <- data.frame(i = rep(names(nms), lengths(nms)), oldnm = unlist(nms))
nms$grp <- gsub("[0-9]+$", "", nms$oldnm)
nms$newnm <- paste0(nms$grp, ave(nms$grp, nms$grp, FUN = seq_along))
nms <- split(nms, nms$i)
newspl <- Map(function(x, nm) {
colnames(x)[ match(nm$oldnm, colnames(x)) ] <- nm$newnm
x
}, spl, nms)
newspl[-1] <- lapply(newspl[-1], function(x) x[, c("PID", "Date", grep("^(Drug|Dose)", colnames(x), value = TRUE)), drop = FALSE ])
newspl
# $`1`
# Row PID Date Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Age Place
# 1 1 11A 25/10/2021 RPG 12 NAT 34 QRT 5 45 PMk
# 3 3 12B 20/10/2021 ATY 13 LTP 3 CRT 3 56 GTL
# 4 4 13A 22/10/2021 GGS 7 GSF 12 ERE 45 45 RKS
# 5 5 13A 26/10/2021 BRT 9 ARR 4 GSF 34 46 GLO
# 7 7 14B 04/08/2021 GDS 2 TRE 55 HHS 34 25 MTK
# $`2`
# PID Date Drug4 Dose4 Drug5 Dose5 Drug6 Dose6
# 2 11A 25/10/2021 BET 10 SET 43 BLT 45
# 6 13A 22/10/2021 DFS 5 NA NA
Reduce(function(a, b) merge(a, b, by = c("PID", "Date"), all = TRUE), newspl)
# PID Date Row Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Age Place Drug4 Dose4 Drug5 Dose5 Drug6 Dose6
# 1 11A 25/10/2021 1 RPG 12 NAT 34 QRT 5 45 PMk BET 10 SET 43 BLT 45
# 2 12B 20/10/2021 3 ATY 13 LTP 3 CRT 3 56 GTL <NA> NA <NA> NA <NA> NA
# 3 13A 22/10/2021 4 GGS 7 GSF 12 ERE 45 45 RKS DFS 5 NA NA
# 4 13A 26/10/2021 5 BRT 9 ARR 4 GSF 34 46 GLO <NA> NA <NA> NA <NA> NA
# 5 14B 04/08/2021 7 GDS 2 TRE 55 HHS 34 25 MTK <NA> NA <NA> NA <NA> NA
Notes:
The underlying premise of this is that you want to merge the rows onto previous rows. This means (to me) using base::merge or dplyr::full_join; two good links for understanding these concepts, in case you are not aware: How to join (merge) data frames (inner, outer, left, right), What's the difference between INNER JOIN, LEFT JOIN, RIGHT JOIN and FULL JOIN?
To do that, we need to determine which rows are duplicates of previous; further, we need to know how many previous same-key rows there are. There are a few ways to do this, but I think the easiest is with base::split. In this case, no PID/Date combination has more than two rows, but if you had one combination that mandated a third row, spl would be length-3, and the resulting names would go out to Drug9/Dose9.
The second portion (nms <- ...) is where we work on the names. The first few steps create a nms dataframe that we'll use to map from old to new names. Since we're concerned about contiguous numbering through all multi-row groups, we aggregate on the base (number removed) of the Drug/Dose names, so that we number all Drug columns from Drug1 through how many there are.
Note: this assumes that there are always perfect pairs of Drug#/Dose#; if there is ever a mismatch, then the numbering will be suspect.
We end with nms being a split dataframe, just like spl of the data. This is useful and important, since we'll Map (zip-like lapply) them together.
The third block updates spl with the new names. The result in newspl is just renaming of the columns so that when we merge them together, no column-duplication will occur.
One additional step here is removing unrelated columns from the 2nd and subsequent frame in the list. That is, we keep Age and Place in the first such frame but remove it from the rest. My assumption (based on the NA/empty nature of those fields in duplicate rows) is that we only want to keep the first row's values.
The last step is to iteratively merge them together. The Reduce function is nice for this.
Update:
With the help of akrun see here: Use ~separate after mutate and across
We could:
library(dplyr)
library(stringr)
library(tidyr)
df %>%
group_by(PID) %>%
summarise(across(everything(), ~toString(.))) %>%
mutate(across(everything(), ~ list(tibble(col1 = .) %>%
separate(col1, into = str_c(cur_column(), 1:3), sep = ",\\s+", fill = "left", extra = "drop")))) %>%
unnest(c(PID, Row, Date, Drug1, Dose1, Drug2, Dose2, Drug3, Dose3, Age,
Place)) %>%
distinct() %>%
select(-1, -2)
PID3 Row1 Row2 Row3 Date1 Date2 Date3 Drug11 Drug12 Drug13 Dose11 Dose12 Dose13 Drug21 Drug22 Drug23 Dose21 Dose22 Dose23 Drug31 Drug32 Drug33 Dose31 Dose32 Dose33 Age1 Age2 Age3 Place1 Place2 Place3
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 11A NA 1 2 NA 25/10/2021 25/10/2021 NA RPG BET NA 12 10 NA NAT SET NA 34 43 NA QRT BLT NA 5 45 NA 45 NA NA PMk NA
2 12B NA NA 3 NA NA 20/10/2021 NA NA ATY NA NA 13 NA NA LTP NA NA 3 NA NA CRT NA NA 3 NA NA 56 NA NA GTL
3 13A 4 5 6 22/10/2021 26/10/2021 22/10/2021 GGS BRT DFS 7 9 5 GSF ARR NA 12 4 NA ERE GSF NA 45 34 NA 45 46 NA RKS GLO NA
4 14B NA NA 7 NA NA 04/08/2021 NA NA GDS NA NA 2 NA NA TRE NA NA 55 NA NA HHS NA NA 34 NA NA 25 NA NA MTK
First answer:
Keeping the excellent explanation of #r2evans in mind! We could do it this way if really desired.
library(dplyr)
df %>%
group_by(PID) %>%
summarise(across(everything(), ~toString(.)))
output:
PID Row Date Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Age Place
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 11A 1, 2 25/10/2021, 25/10/2021 RPG, BET 12, 10 NAT, SET 34, 43 QRT, BLT 5, 45 45, NA PMk, NA
2 12B 3 20/10/2021 ATY 13 LTP 3 CRT 3 56 GTL
3 13A 4, 5, 6 22/10/2021, 26/10/2021, 22/10/2021 GGS, BRT, DFS 7, 9, 5 GSF, ARR, NA 12, 4, NA ERE, GSF, NA 45, 34, NA 45, 46, NA RKS, GLO, NA
4 14B 7 04/08/2021 GDS 2 TRE 55 HHS 34 25 MTK
Another tidyverse-based solution, with a pivot_longer followed by a pivot_wider:
library(tidyverse)
# Note that my dataframe does not contain column Row
df %>%
mutate(across(starts_with("Dose"), as.character)) %>%
pivot_longer(!c(PID, Date, Age, Place),names_to = "trm") %>%
group_by(PID, Date) %>%
fill(Age, Place) %>%
mutate(trm = paste(trm,1:n(),sep="_")) %>%
ungroup %>%
pivot_wider(c(PID, Date, Age, Place), names_from = trm) %>%
rename_with(~ paste0("Drug",1:length(.x)), starts_with("Drug")) %>%
rename_with(~ paste0("Dose",1:length(.x)), starts_with("Dose")) %>%
mutate(across(starts_with("Dose"), as.numeric))
#> # A tibble: 5 × 16
#> PID Date Age Place Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Drug4 Dose4 Drug5
#> <chr> <chr> <int> <chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr>
#> 1 11A 25/10… 45 PMk RPG 12 NAT 34 QRT 5 BET 10 SET
#> 2 12B 20/10… 56 GTL ATY 13 LTP 3 CRT 3 <NA> NA <NA>
#> 3 13A 22/10… 45 RKS GGS 7 GSF 12 ERE 45 DFS 5 <NA>
#> 4 13A 26/10… 46 GLO BRT 9 ARR 4 GSF 34 <NA> NA <NA>
#> 5 14B 04/08… 25 MTK GDS 2 TRE 55 HHS 34 <NA> NA <NA>
#> # … with 3 more variables: Dose5 <dbl>, Drug6 <chr>, Dose6 <dbl>
a data.table approach
library(data.table)
DT <- fread("Row PID Date Drug1 Dose1 Drug2 Dose2 Drug3 Dose3 Age Place
1 11A 25/10/2021 RPG 12 NAT 34 QRT 5 45 PMk
2 11A 25/10/2021 BET 10 SET 43 BLT 45
3 12B 20/10/2021 ATY 13 LTP 3 CRT 3 56 GTL
4 13A 22/10/2021 GGS 7 GSF 12 ERE 45 45 RKS
5 13A 26/10/2021 BRT 9 ARR 4 GSF 34 46 GLO
6 13A 22/10/2021 DFS 5
7 14B 04/08/2021 GDS 2 TRE 55 HHS 34 25 MTK")
dcast(DT)
DT
# Melt to long format
ans <- melt(DT, id.vars = c("PID", "Date"),
measure.vars = patterns(drug = "^Drug", dose = "^Dose"),
na.rm = TRUE)
# Paste and Collapse, use ; as separator
ans <- ans[, lapply(.SD, paste0, collapse = ";"), by = .(PID, Date)]
# Split string on ;
ans[, paste0("Drug", 1:length(tstrsplit(ans$drug, ";"))) := tstrsplit(drug, ";")]
ans[, paste0("Dose", 1:length(tstrsplit(ans$dose, ";"))) := tstrsplit(dose, ";")]
#join Age + Place data
ans[DT[!is.na(Age), ], `:=`(Age = i.Age, Place = i.Place), on = .(PID, Date)]
ans[, -c("variable", "drug", "dose")]
# PID Date Drug1 Drug2 Drug3 Drug4 Drug5 Drug6 Dose1 Dose2 Dose3 Dose4 Dose5 Dose6 Age Place
# 1: 11A 25/10/2021 RPG BET NAT SET QRT BLT 12 10 34 43 5 45 45 PMk
# 2: 12B 20/10/2021 ATY LTP CRT <NA> <NA> <NA> 13 3 3 <NA> <NA> <NA> 56 GTL
# 3: 13A 22/10/2021 GGS DFS GSF ERE <NA> <NA> 7 5 12 45 <NA> <NA> 45 RKS
# 4: 13A 26/10/2021 BRT ARR GSF <NA> <NA> <NA> 9 4 34 <NA> <NA> <NA> 46 GLO
# 5: 14B 04/08/2021 GDS TRE HHS <NA> <NA> <NA> 2 55 34 <NA> <NA> <NA> 25 MTK
Another answer to the festival.
Reading data from this page
require(rvest)
require(tidyverse)
d = read_html("https://stackoverflow.com/q/69787018/694915") %>%
html_nodes("table") %>%
html_table(fill = TRUE)
List of dose per PID and DATE
# primera tabla
d[[1]] -> df
df %>%
pivot_longer(
cols = starts_with("Drug"),
values_to = "Drug"
) %>%
select( !name ) %>%
pivot_longer(
cols = starts_with("Dose"),
values_to = "Dose"
) %>%
select( !name ) %>%
drop_na() %>%
pivot_wider(
names_from = Drug,
values_from = Dose ,
values_fill = list(0)
) -> dose
Variable dose contains this data
(https://i.stack.imgur.com/lc3iN.png)
Not that elegant as previous ones, but is an idea to see the whole treatment per PID.

How to split a data set with duplicated informations based on date

I have this situation:
ID date Weight
1 2014-12-02 23
1 2014-10-02 25
2 2014-11-03 27
2 2014-09-03 45
3 2014-07-11 56
3 NA 34
4 2014-10-05 25
4 2014-08-09 14
5 NA NA
5 NA NA
And I would like split the dataset in this, like this:
1-
ID date Weight
1 2014-12-02 23
1 2014-10-02 25
2 2014-11-03 27
2 2014-09-03 45
4 2014-10-05 25
4 2014-08-09 14
2- Lowest Date
ID date Weight
3 2014-07-11 56
3 NA 34
5 NA NA
5 NA NA
I tried this for second dataset:
dt <- dt[order(dt$ID, dt$date), ]
dt.2=dt[duplicated(dt$ID), ]
but didn't work
Get the ID's for which date are NA and then subset based on that
NA_ids <- unique(df$ID[is.na(df$date)])
subset(df, !ID %in% NA_ids)
# ID date Weight
#1 1 2014-12-02 23
#2 1 2014-10-02 25
#3 2 2014-11-03 27
#4 2 2014-09-03 45
#7 4 2014-10-05 25
#8 4 2014-08-09 14
subset(df, ID %in% NA_ids)
# ID date Weight
#5 3 2014-07-11 56
#6 3 <NA> 34
#9 5 <NA> NA
#10 5 <NA> NA
Using dplyr, we can create a new column which has TRUE/FALSE for each ID based on presence of NA and then use group_split to split into list of two.
library(dplyr)
df %>%
group_by(ID) %>%
mutate(NA_ID = any(is.na(date))) %>%
ungroup %>%
group_split(NA_ID, keep = FALSE)
The above dplyr logic can also be implemented in base R by using ave and split
df$NA_ID <- with(df, ave(is.na(date), ID, FUN = any))
split(df[-4], df$NA_ID)

R: Calculating New Variable R Code

I have
id_1 id_2 name count total
1 001 111 a 15
2 001 111 b 3
3 001 111 sum 28 28
4 002 111 a 7
5 002 111 b 33
6 002 111 sum 48 48
I want the rows that share the same id_1 and id_2 to share the total, like
id_1 id_2 name count total
1 001 111 a 15 28
2 001 111 b 3 28
3 001 111 sum 28 28
4 002 111 a 7 48
5 002 111 b 33 48
6 002 111 sum 48 48
We can use fill from tidyr.
library(tidyr)
dat2 <- dat %>% fill(total, .direction = "up")
dat2
# id_1 id_2 name count total
# 1 1 111 a 15 28
# 2 1 111 b 3 28
# 3 1 111 sum 28 28
# 4 2 111 a 7 48
# 5 2 111 b 33 48
# 6 2 111 sum 48 48
DATA
dat <- read.table(text = " id_1 id_2 name count total
1 001 111 a 15 NA
2 001 111 b 3 NA
3 001 111 sum 28 28
4 002 111 a 7 NA
5 002 111 b 33 NA
6 002 111 sum 48 48",
header = TRUE, stringsAsFactors = FALSE)
Consider base R's ave calculating group max (na.rm to handle NA):
df$total <- ave(df$total, df$id_1, df$_id_2, FUN=function(i) max(i, na.rm=na.omit))
df
# id_1 id_2 name count total
# 1 1 111 a 15 28
# 2 1 111 b 3 28
# 3 1 111 sum 28 28
# 4 2 111 a 7 48
# 5 2 111 b 33 48
# 6 2 111 sum 48 48
Using zoo and data.table:
df <- read.table(text = "id_1 id_2 name count total
001 111 a 15 NA
001 111 b 3 NA
001 111 sum 28 28
002 111 a 7 NA
002 111 b 33 NA
002 111 sum 48 48",
header = TRUE, stringsAsFactors = FALSE)# create data
library(zoo)# load packages
library(data.table)
setDT(df)[, total := na.locf(na.locf(total, na.rm=FALSE), na.rm=FALSE, fromLast=TRUE), by = c("id_1", "id_2")]# convert df to data.table and carry forward and backward total by ids
Output:
id_1 id_2 name count total
1: 1 111 a 15 28
2: 1 111 b 3 28
3: 1 111 sum 28 28
4: 2 111 a 7 48
5: 2 111 b 33 48
6: 2 111 sum 48 48
Simple approach using the normal dplyr way:
dat %>% group_by(id_1, id_2) %>% mutate(total=count[name == "sum"])
Alternatively:
dat %>% group_by(id_1, id_2) %>% mutate(total=na.omit(total)[1])
id_1 id_2 name count total
<int> <int> <chr> <int> <int>
1 1 111 a 15 28
2 1 111 b 3 28
3 1 111 sum 28 28
4 2 111 a 7 48
5 2 111 b 33 48
6 2 111 sum 48 48

How to remove subjects with missing yearly observations in R?

num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
6 2 B 2011 20 -8484
7 3 C 2015 23 -120836
8 4 D 2011 3 -26523
9 4 D 2012 4 9923
10 4 D 2013 5 82432
I have the data which is represented by various subjects in 5 years. I need to remove all the subjects, which are missing any of years from 2011 to 2015. How can I accomplish it, so in given data only subject A is left?
Using data.table:
A data.table solution might look something like this:
library(data.table)
dt <- as.data.table(df)
dt[, keep := identical(unique(year), 2011:2015), by = Name ][keep == T, ][,keep := NULL]
# num Name year age X
#1: 1 A 2011 68 116292
#2: 1 A 2012 69 46132
#3: 1 A 2013 70 7042
#4: 1 A 2014 71 -100425
#5: 1 A 2015 72 6493
This is more strict in that it requires that the unique years be exactly equal to 2011:2015. If there is a 2016, for example that person would be excluded.
A less restrictive solution would be to check that 2011:2015 is in your unique years. This should work:
dt[, keep := all(2011:2015 %in% unique(year)), by = Name ][keep == T, ][,keep := NULL]
Thus, if for example, A had a 2016 year and a 2010 year it would still keep all of A. But if anyone is missing a year in 2011:2015 this would exclude them.
Using base R & aggregate:
Same option, but using aggregate from base R:
agg <- aggregate(df$year, by = list(df$Name), FUN = function(x) all(2011:2015 %in% unique(x)))
df[df$Name %in% agg[agg$x == T, 1] ,]
Here is a slightly more straightforward tidyverse solution.
First, expand the dataframe to include all combinations of Name + year:
df %>% complete(Name, year)
# A tibble: 20 x 5
Name year num age X
<fctr> <int> <int> <int> <int>
1 A 2011 1 68 116292
2 A 2012 1 69 46132
3 A 2013 1 70 7042
4 A 2014 1 71 -100425
5 A 2015 1 72 6493
6 B 2011 2 20 -8484
7 B 2012 NA NA NA
8 B 2013 NA NA NA
9 B 2014 NA NA NA
10 B 2015 NA NA NA
...
Then extend the pipe to group by "Name", and filter to keep only those with 0 NA values:
df %>% complete(Name, year) %>%
group_by(Name) %>%
filter(sum(is.na(age)) == 0)
# A tibble: 5 x 5
# Groups: Name [1]
Name year num age X
<fctr> <int> <int> <int> <int>
1 A 2011 1 68 116292
2 A 2012 1 69 46132
3 A 2013 1 70 7042
4 A 2014 1 71 -100425
5 A 2015 1 72 6493
Just check which names have the right number of entries.
## Reproduce your data
df = read.table(text=" num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
6 2 B 2011 20 -8484
7 3 C 2015 23 -120836
8 4 D 2011 3 -26523
9 4 D 2012 4 9923
10 4 D 2013 5 82432",
header=TRUE)
Tab = table(df$Name)
Keepers = names(Tab)[which(Tab == 5)]
df[df$Name %in% Keepers,]
num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
Here is a somewhat different approach using tidyverse packages:
library(tidyverse)
df <- read.table(text = " num Name year age X
1 1 A 2011 68 116292
2 1 A 2012 69 46132
3 1 A 2013 70 7042
4 1 A 2014 71 -100425
5 1 A 2015 72 6493
6 2 B 2011 20 -8484
7 3 C 2015 23 -120836
8 4 D 2011 3 -26523
9 4 D 2012 4 9923
10 4 D 2013 5 82432")
df2 <- spread(data = df, key = Name, value = year)
x <- colSums(df2[, 4:7], na.rm = TRUE) > 10000
df3 <- select(df2, num, age, X, c(4:7)[x])
df4 <- na.omit(df3)
All steps can of course be constructed as one single pipe with the %>% operator.

Resources