This question already has answers here:
Create discrete color bar with varying interval widths and no spacing between legend levels
(5 answers)
Closed last year.
I'd like to break the legend into categories rather than having a continuous range of colours. Could someone kindly help me for the specific example I am using here? Below is my current trial with colour breaks at 40, 60 and 80. Thank you very much!
library(raster)
library(ggplot2)
library(maptools)
data("wrld_simpl")
#sample raster
r <- raster(ncol=10, nrow=20)
r[] <- 1:ncell(r)
extent(r) <- extent(c(-180, 180, -70, 70))
#plotting
var_df <- as.data.frame(rasterToPoints(r))
p <- ggplot() +
geom_polygon(data = wrld_simpl[wrld_simpl#data$UN!="10",],
aes(x = long, y = lat, group = group),
colour = "black", fill = "grey")
p <- p + geom_raster(data = var_df, aes(x = x, y = y, fill = layer))
p <- p + coord_equal() + theme_bw() +labs(x="", y="")
p <- p + theme(legend.key=element_blank(),
axis.text.y =element_text(size=16),
axis.text.x =element_text(size=16),
legend.text =element_text(size=12),
legend.title=element_text(size=12))
# p <- p + scale_fill_gradientn(colours = rev(terrain.colors(10)))
p <- p + scale_colour_manual(values = c("red", "blue", "green","yellow"),
breaks = c("40", "60", "80", max(var_df$layer)),
labels = c("1-40", "40-60", "60-80", "80+"))
p <- p + geom_polygon(data = wrld_simpl[wrld_simpl#data$UN!="10",],
aes(x = long, y = lat, group = group),
colour = "black", fill = NA)
p
Current continuous legend:
Example of legend with breaks:
Here you go. I took the plot_discrete_cbar() function written by #AF7 from here
library(raster)
library(ggplot2)
library(maptools)
# Plot discrete colorbar function
plot_discrete_cbar = function (
# Vector of breaks. If +-Inf are used, triangles will be added to the sides of the color bar
breaks,
palette = "Greys", # RColorBrewer palette to use
# Alternatively, manually set colors
colors = RColorBrewer::brewer.pal(length(breaks) - 1, palette),
direction = 1, # Flip colors? Can be 1 or -1
spacing = "natural", # Spacing between labels. Can be "natural" or "constant"
border_color = NA, # NA = no border color
legend_title = NULL,
legend_direction = "horizontal", # Can be "horizontal" or "vertical"
font_size = NULL,
expand_size = 1, # Controls spacing around legend plot
spacing_scaling = 1, # Multiplicative factor for label and legend title spacing
width = 0.1, # Thickness of color bar
triangle_size = 0.1 # Relative width of +-Inf triangles
) {
require(ggplot2)
if (!(spacing %in% c("natural", "constant"))) stop("Spacing must be either 'natural' or 'constant'")
if (!(direction %in% c(1, -1))) stop("Direction must be either 1 or -1")
if (!(legend_direction %in% c("horizontal", "vertical"))) {
stop("Legend_direction must be either 'horizontal' or 'vertical'")
}
breaks = as.numeric(breaks)
new_breaks = sort(unique(breaks))
if (any(new_breaks != breaks)) warning("Wrong order or duplicated breaks")
breaks = new_breaks
if (class(colors) == "function") colors = colors(length(breaks) - 1)
if (length(colors) != length(breaks) - 1) {
stop("Number of colors (", length(colors), ") must be equal to number of breaks (",
length(breaks), ") minus 1")
}
if (!missing(colors)) {
warning("Ignoring RColorBrewer palette '", palette, "', since colors were passed manually")
}
if (direction == -1) colors = rev(colors)
inf_breaks = which(is.infinite(breaks))
if (length(inf_breaks) != 0) breaks = breaks[-inf_breaks]
plotcolors = colors
n_breaks = length(breaks)
labels = breaks
if (spacing == "constant") {
breaks = 1:n_breaks
}
r_breaks = range(breaks)
if(is.null(font_size)) {
print("Legend key font_size not set. Use default value = 5")
font_size <- 5
} else {
print(paste0("font_size = ", font_size))
font_size <- font_size
}
cbar_df = data.frame(stringsAsFactors = FALSE,
y = breaks,
yend = c(breaks[-1], NA),
color = as.character(1:n_breaks)
)[-n_breaks,]
xmin = 1 - width/2
xmax = 1 + width/2
cbar_plot = ggplot(cbar_df, aes(xmin = xmin, xmax = xmax,
ymin = y, ymax = yend, fill = color)) +
geom_rect(show.legend = FALSE,
color = border_color)
if (any(inf_breaks == 1)) { # Add < arrow for -Inf
firstv = breaks[1]
polystart = data.frame(
x = c(xmin, xmax, 1),
y = c(rep(firstv, 2), firstv - diff(r_breaks) * triangle_size)
)
plotcolors = plotcolors[-1]
cbar_plot = cbar_plot +
geom_polygon(data = polystart, aes(x = x, y = y),
show.legend = FALSE,
inherit.aes = FALSE,
fill = colors[1],
color = border_color)
}
if (any(inf_breaks > 1)) { # Add > arrow for +Inf
lastv = breaks[n_breaks]
polyend = data.frame(
x = c(xmin, xmax, 1),
y = c(rep(lastv, 2), lastv + diff(r_breaks) * triangle_size)
)
plotcolors = plotcolors[-length(plotcolors)]
cbar_plot = cbar_plot +
geom_polygon(data = polyend, aes(x = x, y = y),
show.legend = FALSE,
inherit.aes = FALSE,
fill = colors[length(colors)],
color = border_color)
}
if (legend_direction == "horizontal") { # horizontal legend
mul = 1
x = xmin
xend = xmax
cbar_plot = cbar_plot + coord_flip()
angle = 0
legend_position = xmax + 0.1 * spacing_scaling
} else { # vertical legend
mul = -1
x = xmax
xend = xmin
angle = -90
legend_position = xmax + 0.2 * spacing_scaling
}
cbar_plot = cbar_plot +
geom_segment(data = data.frame(y = breaks, yend = breaks),
aes(y = y, yend = yend),
x = x - 0.05 * mul * spacing_scaling, xend = xend,
inherit.aes = FALSE) +
annotate(geom = 'text', x = x - 0.1 * mul * spacing_scaling, y = breaks,
label = labels,
size = font_size) +
scale_x_continuous(expand = c(expand_size, expand_size)) +
scale_fill_manual(values = plotcolors) +
theme_void()
if (!is.null(legend_title)) { # Add legend title
cbar_plot = cbar_plot +
annotate(geom = 'text', x = legend_position, y = mean(r_breaks),
label = legend_title,
angle = angle,
size = font_size)
}
return(cbar_plot)
}
Cut data into bins for the discrete colorbar
myvalues <- c(seq(0, 200, 40), Inf)
var_df$cuts <- cut(var_df$layer, myvalues, include.lowest = TRUE)
levels(var_df$cuts)
#> [1] "[0,40]" "(40,80]" "(80,120]" "(120,160]" "(160,200]" "(200,Inf]"
Plot the raster
p <- ggplot() +
geom_polygon(data = wrld_simpl[wrld_simpl#data$UN != "10", ],
aes(x = long, y = lat, group = group),
colour = "black", fill = "grey")
p <- p + geom_raster(data = var_df, aes(x = x, y = y, fill = cuts)) # matching cuts & fill
p <- p + coord_equal() + theme_minimal() + labs(x="", y="")
p <- p + theme(legend.key =element_blank(),
axis.text.y =element_text(size=16),
axis.text.x =element_text(size=16),
legend.text =element_text(size=12),
legend.title=element_text(size=12))
p <- p + scale_fill_brewer("Layer", palette = "YlGnBu", drop = FALSE)
p <- p + geom_polygon(data = wrld_simpl[wrld_simpl#data$UN != "10", ],
aes(x = long, y = lat, group = group),
colour = "black", fill = NA)
p <- p + theme(legend.position = "none")
Plot the discrete colorbar
dbar <- plot_discrete_cbar(myvalues,
palette = "YlGnBu",
legend_title = NULL,
spacing = "natural")
# reduce top and bottom margins
p1 <- p + theme(plot.margin = unit(c(10, 10, -35, 10), "pt"))
dbar <- dbar + theme(plot.margin = unit(c(-35, 10, -30, 10), "pt"))
Combine two plots together
# devtools::install_github('baptiste/egg')
library(egg)
ggarrange(p1, dbar, nrow = 2, ncol = 1, heights = c(1, 0.4))
Created on 2018-10-18 by the reprex package (v0.2.1.9000)
Related
I am trying to reproduce this kind of Figure, with two densities, a first one pointing upwards and a second one pointing downwards. I would also like to have some blank space between the two densities.
Here is the code I am currently using.
library(hrbrthemes)
library(tidyverse)
library(RWiener)
# generating data
df <- rwiener(n = 1e2, alpha = 2, tau = 0.3, beta = 0.5, delta = 0.5)
df %>%
ggplot(aes(x = q) ) +
geom_density(
data = . %>% filter(resp == "upper"),
aes(y = ..density..),
colour = "steelblue", fill = "steelblue",
outline.type = "upper", alpha = 0.8, adjust = 1, trim = TRUE
) +
geom_density(
data = . %>% filter(resp == "lower"),
aes(y = -..density..), colour = "orangered", fill = "orangered",
outline.type = "upper", alpha = 0.8, adjust = 1, trim = TRUE
) +
# stimulus onset
geom_vline(xintercept = 0, lty = 1, col = "grey") +
annotate(
geom = "text",
x = 0, y = 0,
# hjust = 0,
vjust = -1,
size = 3, angle = 90,
label = "stimulus onset"
) +
# aesthetics
theme_ipsum_rc(base_size = 12) +
theme(axis.text.y = element_blank() ) +
labs(x = "Reaction time (in seconds)", y = "") +
xlim(0, NA)
Which results in something like...
How could I add some vertical space between the two densities to reproduce the above Figure?
If you want to try without faceting, you're probably best to just plot the densities as polygons with adjusted y values according to your desired spacing:
s <- 0.25 # set to change size of the space
ud <- density(df$q[df$resp == "upper"])
ld <- density(df$q[df$resp == "lower"])
x <- c(ud$x[1], ud$x, ud$x[length(ud$x)],
ld$x[1], ld$x, ld$x[length(ld$x)])
y <- c(s, ud$y + s, s, -s, -ld$y - s, -s)
df2 <- data.frame(x = x, y = y,
resp = rep(c("upper", "lower"), each = length(ud$x) + 2))
df2 %>%
ggplot(aes(x = x, y = y, fill = resp, color = resp) ) +
geom_polygon(alpha = 0.8) +
scale_fill_manual(values = c("steelblue", "orangered")) +
scale_color_manual(values = c("steelblue", "orangered"), guide = guide_none()) +
geom_vline(xintercept = 0, lty = 1, col = "grey") +
annotate(
geom = "text",
x = 0, y = 0,
# hjust = 0,
vjust = -1,
size = 3, angle = 90,
label = "stimulus onset"
) +
# aesthetics
theme_ipsum_rc(base_size = 12) +
theme(axis.text.y = element_blank() ) +
labs(x = "Reaction time (in seconds)", y = "")
you can try facetting
set.seed(123)
q=rbeta(100, 0.25, 1)
df_dens =data.frame(gr=1,
x=density(df$q)$x,
y=density(df$q)$y)
df_dens <- rbind(df_dens,
data.frame(gr=2,
x=density(df$q)$x,
y=-density(df$q)$y))
ggplot(df_dens, aes(x, y, fill = factor(gr))) +
scale_x_continuous(limits = c(0,1)) +
geom_area(show.legend = F) +
facet_wrap(~gr, nrow = 2, scales = "free_y") +
theme_minimal() +
theme(strip.background = element_blank(),
strip.text.x = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank())
The space between both plots can be increased using panel.spacing = unit(20, "mm"). Instead of facet_grid you can also try facet_grid(gr~., scales = "free_y")
I am plotting the same data once as geom_point() and once as geom_boxplot(), but the width of my boxplots seems to be off. The largest x is at 292, but the corresponding box is smaller than 285. How can i get this to the correct size?
Here is a minimal example of my data:
x = data.frame(cluster = c("c1","c2","c3","c4","c5","c6"),
elements = c(292,277,170,160,153,141),
divergence = c(0.08344564,0.12130600,0.05564219,0.12826086,0.05386341,0.09620389))
x.160 = x[x$elements >= 160,]
x.160$Size = "160+"
x.60 = x[x$elements >= 60 & x$elements < 160,]
x.60$Size = "60-160"
binnedX = rbind(x.60,x.160)
p1a = ggplot(data = binnedX, aes(x = elements, y = divergence, group = Size))+
geom_hline(yintercept = mean(binnedX$divergence), color = "black", linetype=2)+
geom_point(aes(color = Size))+
scale_x_continuous(breaks = c(seq(0,300,15))) +
scale_y_continuous(breaks = seq(0.00,0.25,0.05))+
scale_color_brewer(palette = "Spectral") +
ggtitle("element sequence divergence by cluster [clustalO, 100bp]") +
labs(x="Elements per cluster", y="Divergence")+
theme_linedraw(base_size = 18)+
theme(plot.title = element_text(hjust = 0.5),
axis.title.x = element_text(margin = margin(15,15,15,15,"pt")),
axis.title.y = element_text(margin = margin(15,15,15,15,"pt")))
p2a = ggplot(data = binnedX, aes(x = elements, y = divergence, group = Size))+
geom_hline(yintercept = mean(binnedX$divergence), color = "Red", linetype=2)+
geom_boxplot(aes(fill = Size)) +
scale_x_continuous(breaks = c(seq(0,300,15)))+
scale_y_continuous(breaks = seq(0.00,0.25,0.05))+
scale_fill_brewer(palette = "Spectral") +
labs(x="Elements per cluster", y="Divergence")+
theme_linedraw(base_size = 18)+
theme(plot.title = element_text(hjust = 0.5),
axis.title.x = element_text(margin = margin(15,15,15,15,"pt")),
axis.title.y = element_text(margin = margin(15,15,15,15,"pt")),
axis.text.x = element_text(angle=0))
multiplot(p1a,p2a)
When we create box plots by group, the width of each box is hard coded as 90% of the group's data range. We can see this from the compute_group() function in StatBoxplot:
# reproducing lines 87-88 of stat-boxplot.r
if (length(unique(data$x)) > 1)
width <- diff(range(data$x)) * 0.9
We can override this by defining a modified compute_group() function based on StatBoxplot$compute_group:
modified.function <- function(data, scales, width = NULL, na.rm = FALSE, coef = 1.5) {
qs <- c(0, 0.25, 0.5, 0.75, 1)
if (!is.null(data$weight)) {
mod <- quantreg::rq(y ~ 1, weights = weight, data = data, tau = qs)
stats <- as.numeric(stats::coef(mod))
}
else {
stats <- as.numeric(stats::quantile(data$y, qs))
}
names(stats) <- c("ymin", "lower", "middle", "upper", "ymax")
iqr <- diff(stats[c(2, 4)])
outliers <- data$y < (stats[2] - coef * iqr) | data$y > (stats[4] + coef * iqr)
if (any(outliers)) {
stats[c(1, 5)] <- range(c(stats[2:4], data$y[!outliers]), na.rm = TRUE)
}
if (length(unique(data$x)) > 1)
width <- diff(range(data$x)) * 1 # instead of 0.9
df <- as.data.frame(as.list(stats))
df$outliers <- list(data$y[outliers])
if (is.null(data$weight)) {
n <- sum(!is.na(data$y))
}
else {
n <- sum(data$weight[!is.na(data$y) & !is.na(data$weight)])
}
df$notchupper <- df$middle + 1.58 * iqr/sqrt(n)
df$notchlower <- df$middle - 1.58 * iqr/sqrt(n)
df$x <- if (is.factor(data$x))
data$x[1]
else mean(range(data$x))
df$width <- width
df$relvarwidth <- sqrt(n)
df}
Create a modified stat class based off StatBoxplot, as well as the corresponding layer function for it based off stat_boxplot:
StatBoxplot2 <- ggproto(`_class` = "StatBoxplot2", # class name
`_inherit` = StatBoxplot, # inherit from StatBoxplot
compute_group = modified.function) # override its compute_group function
stat_boxplot2 <- function(mapping = NULL, data = NULL, geom = "boxplot", position = "dodge2", ...,
coef = 1.5, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE){
layer(data = data, mapping = mapping,
stat = StatBoxplot2, # use StatBoxplot2 rather than StatBoxplot
geom = geom, position = position,
show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, coef = coef, ...))
}
Compare a boxplot that uses the default stat = "boxplot", with one that uses our modified stat = "boxplot2":
# Base plot with vertical dashed lines to indicate each point's position, & theme_classic for a
# less cluttered background. I also changed the palette as Spectral's yellow was really hard to see.
p <- ggplot(data = binnedX,
aes(x = elements, y = divergence, fill = Size))+
geom_point(aes(color = Size), size = 3) +
geom_vline(aes(xintercept = elements), linetype = "dashed") +
scale_fill_brewer(palette = "Set1") +
scale_color_brewer(palette = "Set1", guide = FALSE) +
theme_classic()
gridExtra::grid.arrange(p + ggtitle("original") + geom_boxplot(alpha = 0.5),
p + ggtitle("modified") + geom_boxplot(alpha = 0.5, stat = "boxplot2"))
I am very intrigued by the following visulization (Decile term)
And I wonder how it would be possible to do it in R.
There is of course histograms and density plots, but they do not make such a nice visualization. Especially, I would like to know if it possible to do it with ggplot/tidyverse.
edit in response to the comment
library(dplyr)
library(ggplot2)
someData <- data_frame(x = rnorm(1000))
ggplot(someData, aes(x = x)) +
geom_histogram()
this produces a histogram (see http://www.r-fiddle.org/#/fiddle?id=LQXazwMY&version=1)
But how I can get the coloful bars? How to implement the small rectangles? (The arrows are less relevant).
You have to define a number of breaks, and use approximate deciles that match those histogram breaks. Otherwise, two deciles will end up in one bar.
d <- data_frame(x = rnorm(1000))
breaks <- seq(min(d$x), max(d$x), length.out = 50)
quantiles <- quantile(d$x, seq(0, 1, 0.1))
quantiles2 <- sapply(quantiles, function(x) breaks[which.min(abs(x - breaks))])
d$bar <- as.numeric(as.character(cut(d$x, breaks, na.omit((breaks + dplyr::lag(breaks)) / 2))))
d$fill <- cut(d$x, quantiles2, na.omit((quantiles2 + dplyr::lag(quantiles2)) / 2))
ggplot(d, aes(bar, y = 1, fill = fill)) +
geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1])
Or with more distinct colors:
ggplot(d, aes(bar, y = 1, fill = fill)) +
geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1]) +
scale_fill_brewer(type = 'qual', palette = 3) # The only qual pallete with enough colors
Add some styling and increase the breaks to 100:
ggplot(d, aes(bar, y = 1, fill = fill)) +
geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1], size = 0.3) +
scale_fill_brewer(type = 'qual', palette = 3) +
theme_classic() +
coord_fixed(diff(breaks)[1], expand = FALSE) + # makes square blocks
labs(x = 'x', y = 'count')
And here is a function to make that last one:
decile_histogram <- function(data, var, n_breaks = 100) {
breaks <- seq(min(data[[var]]), max(data[[var]]), length.out = n_breaks)
quantiles <- quantile(data[[var]], seq(0, 1, 0.1))
quantiles2 <- sapply(quantiles, function(x) breaks[which.min(abs(x - breaks))])
data$bar <- as.numeric(as.character(
cut(data[[var]], breaks, na.omit((breaks + dplyr::lag(breaks)) / 2)))
)
data$fill <- cut(data[[var]], quantiles2, na.omit((quantiles2 + dplyr::lag(quantiles2)) / 2))
ggplot2::ggplot(data, ggplot2::aes(bar, y = 1, fill = fill)) +
ggplot2::geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1], size = 0.3) +
ggplot2::scale_fill_brewer(type = 'qual', palette = 3) +
ggplot2::theme_classic() +
ggplot2::coord_fixed(diff(breaks)[1], expand = FALSE) +
ggplot2::labs(x = 'x', y = 'count')
}
Use as:
d <- data.frame(x = rnorm(1000))
decile_histogram(d, 'x')
I have created pyramid like plot and I want to add labels for each side of the plot (something like facet labels).
My data:
dt <- data.frame(Answer = factor(x = rep(x = c(1:3), times = 2),
labels = c("Yes", "No", "Maybe")),
Gender = factor(x = rep(x = c(1:2), each = 3),
labels = c("Female", "Male")),
Prc = c(74.4, 25.0, 0.6, 61.3, 35.5, 3.2),
label = c("74.4%", "25.0%", "0.6%", "61.3%", "35.5%", "3.2%"))
My plot:
My code for plot generation:
xmi <- -70
xma <- 80
library(ggplot2)
ggplot(data = dt, aes(x = Answer, fill = Gender)) +
geom_bar(stat = "identity", subset = .(Gender == "Female"), aes(y = Prc)) +
geom_text(subset = .(Gender == "Female"), aes(y = Prc, label = label), size = 4, hjust = -0.1) +
geom_bar(stat = "identity", subset = .(Gender == "Male"), aes(y=Prc * (-1)) ) +
geom_text(subset = .(Gender == "Male"), aes(y = Prc * (-1), label = label), size = 4, hjust = 1) +
scale_y_continuous(limits = c(xmi, xma), breaks=seq(xmi, xma,10),labels=abs(seq(xmi, xma,10))) +
theme(axis.text = element_text(colour = "black"),
plot.title = element_text(lineheight=.8) ) +
coord_flip() +
annotate("text", x = 3.3, y = -50, label = "Male", fontfacet = "bold") +
annotate("text", x = 3.3, y = 50, label = "Female", fontfacet = "bold") +
ylab("") + xlab("") + guides(fill=FALSE)
rm(xmi, xma)
And the facet labels labels example:
And the question is:
1. How to add facet labels to the pyramid like plot;
OR
2. Maybe there are the better way to make pyramid like plots.
A few possibilities. The first two construct a strip (i.e., facet labels) from scratch. The two differ in the way they position the strip grob. The third is a pyramid plot, similar to the one constructed here, but with a little more tidying up.
library(ggplot2)
dt <- data.frame(Answer = factor(x = rep(x = c(1:3), times = 2),
labels = c("Yes", "No", "Maybe")),
Gender = factor(x = rep(x = c(1:2), each = 3),
labels = c("Female", "Male")),
Prc = c(74.4, 25.0, 0.6, 61.3, 35.5, 3.2),
label = c("74.4%", "25.0%", "0.6%", "61.3%", "35.5%", "3.2%"))
xmi <- -100
xma <- 100
p = ggplot(data = dt, aes(x = Answer, fill = Gender)) +
geom_bar(stat = "identity", data = subset(dt, Gender == "Female"), aes(y = Prc)) +
geom_text(data = subset(dt, Gender == "Female"), aes(y = Prc, label = label),
size = 4, hjust = -0.1) +
geom_bar(stat = "identity", data = subset(dt, Gender == "Male"), aes(y=Prc * (-1)) ) +
geom_text(data = subset(dt, Gender == "Male"), aes(y = Prc * (-1), label = label),
size = 4, hjust = 1.1) +
scale_y_continuous(limits = c(xmi, xma), breaks = seq(xmi, xma, 10), labels = abs(seq(xmi, xma, 10))) +
theme(axis.text = element_text(colour = "black")) +
coord_flip() +
ylab("") + xlab("") + guides(fill = FALSE) +
theme(plot.margin = unit(c(2, 1, 1, 1), "lines"))
## Method 1
# Construct the strip
library(grid)
strip = gTree(name = "Strip",
children = gList(
rectGrob(gp = gpar(col = NA, fill = "grey85")),
textGrob("Female", x = .75, gp = gpar(fontsize = 8.8, col = "grey10")),
textGrob("Male", x = .25, gp = gpar(fontsize = 8.8, col = "grey10")),
linesGrob(x = .5, gp = gpar(col = "grey95"))))
# Position strip using annotation_custom
p1 = p + annotation_custom(strip, xmin = Inf, xmax = 3.75, ymax = Inf, ymin = -Inf)
g = ggplotGrob(p1)
# The strip is positioned outside the panel,
# therefore turn off clipping to the panel.
g$layout[g$layout$name=='panel', "clip"] = "off"
# Draw it
grid.newpage()
grid.draw(g)
## Method 2
# Construct the strip
# Note the viewport; in particular its position and justification
library(gtable)
fontsize = 8.8
gp = gpar(fontsize = fontsize, col = "grey10")
textGrobF = textGrob("Female", x = .75, gp = gp)
textGrobM = textGrob("Male", x = .25, gp = gp)
strip = gTree(name = "Strip",
vp = viewport(y = 1, just = "bottom", height = unit(2.5, "grobheight", textGrobF)),
children = gList(
rectGrob(gp = gpar(col = NA, fill = "grey85")),
textGrobF,
textGrobM,
linesGrob(x = .5, gp = gpar(col = "grey95"))))
g = ggplotGrob(p)
# Position strip using the gtable function, gtable_add_grob
# Strip is positioned in the plot panel,
# but because of the justification of strip's viewport,
# the strip is drawn outside the panel
# First, get the panel's position in the layout
pos = g$layout[grepl("panel", g$layout$name), c("t","l")]
g = gtable_add_grob(g, strip, t = pos$t, l = pos$l, clip = "off")
grid.newpage()
grid.draw(g)
## Method 3
# Pyramid plot
library(ggplot2)
library(scales)
library(stringr)
library(gtable)
library(grid)
df = dt
# Common theme
theme = theme(panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
plot.title = element_text(size = 10, hjust=0.5))
#### 1. "male" plot - to appear on the right
ggM <- ggplot(data = subset(df, Gender == 'Male'), aes(x = Answer)) +
geom_bar(aes(y = .01*Prc), stat = "identity", fill = "skyblue", width = .5) +
geom_text(data = subset(dt, Gender == "Male"), aes(y = .01*Prc, label = label), hjust = -.1, size = 4) +
scale_y_continuous('', limits = c(0, 1), expand = c(0, 0), labels = percent) +
labs(x = NULL) +
ggtitle("Male") +
coord_flip() + theme +
theme(plot.margin= unit(c(1, 1, 0, 0), "lines"))
# get ggplot grob
gtM <- ggplotGrob(ggM)
#### 2. "female" plot - to appear on the left -
# reverse the 'Percent' axis using trans = "reverse"
ggF <- ggplot(data = subset(df, Gender == 'Female'), aes(x = Answer)) +
geom_bar(aes(y = .01*Prc), stat = "identity", fill = "salmon", width = .5) +
geom_text(data = subset(dt, Gender == "Female"), aes(y = .01*Prc, label = label), hjust = 1.1, size = 4) +
scale_y_continuous('', limits = c(1, 0), trans = "reverse", expand = c(0, 0), labels = percent) +
labs(x = NULL) +
ggtitle("Female") +
coord_flip() + theme +
theme(plot.margin= unit(c(1, 0, 0, 1), "lines"))
# get ggplot grob
gtF <- ggplotGrob(ggF)
## Swap the tick marks to the right side of the plot panel
# Get the row number of the left axis in the layout
rn <- which(gtF$layout$name == "axis-l")
# Extract the axis (tick marks and axis text)
axis.grob <- gtF$grobs[[rn]]
axisl <- axis.grob$children[[2]] # Two children - get the second
# axisl # Note: two grobs - text and tick marks
# Get the tick marks - NOTE: tick marks are second
yaxis = axisl$grobs[[2]]
yaxis$x = yaxis$x - unit(1, "npc") + unit(2.75, "pt") # Reverse them
# Add them to the right side of the panel
# Add a column to the gtable
gtF <- gtable_add_cols(gtF, gtF$widths[3], length(gtF$widths) - 1)
# Add the grob
pos = gtF$layout[grepl("panel", gtF$layout$name), "t"]
gtF <- gtable_add_grob(gtF, yaxis, t = pos, length(gtF$widths) - 1)
# Remove original left axis
gtF = gtF[,-c(2,3)]
#### 3. Answer labels - create a plot using geom_text - to appear down the middle
fontsize = 3
ggC <- ggplot(data = subset(df, Gender == 'Male'), aes(x=Answer)) +
geom_bar(stat = "identity", aes(y = 0)) +
geom_text(aes(y = 0, label = Answer), size = fontsize) +
ggtitle("Answer") +
coord_flip() + theme_bw() + theme +
theme(panel.border = element_rect(colour = NA))
# get ggplot grob
gtC <- ggplotGrob(ggC)
# Get the title
Title = gtC$grobs[[which(gtC$layout$name == "title")]]
# Get the plot panel
gtC = gtC$grobs[[which(gtC$layout$name == "panel")]]
#### 4. Arrange the components
## First, combine "female" and "male" plots
gt = cbind(gtF, gtM, size = "first")
## Second, add the labels (gtC) down the middle
# Add column to gtable
maxlab = df$Answer[which(str_length(df$Answer) == max(str_length(df$Answer)))]
gt = gtable_add_cols(gt, sum(unit(1, "grobwidth", textGrob(maxlab, gp = gpar(fontsize = fontsize*72.27/25.4))), unit(5, "mm")),
pos = length(gtF$widths))
# Add the Answer grob
gt = gtable_add_grob(gt, gtC, t = pos, l = length(gtF$widths) + 1)
# Add the title; ie the label 'Answer'
gt = gtable_add_grob(gt, Title, t = 3, l = length(gtF$widths) + 1)
### 5. Draw the plot
grid.newpage()
grid.draw(gt)
Any solution for drawing a scale bar and north arrow on map with ggplot2
library(mapdata); library(ggplot2);
nl.map=data.frame(map('worldHires', 'Netherlands')[c('x', 'y')])
ggplot(nl.map, aes(x, y))+geom_path()
Thanks for your time.
A few years back I produced some code that could draw a scalebar (see also this post on r-sig-geo), this is the code I wrote back then. You could give it a go:
First some support functions:
makeNiceNumber = function(num, num.pretty = 1) {
# Rounding provided by code from Maarten Plieger
return((round(num/10^(round(log10(num))-1))*(10^(round(log10(num))-1))))
}
createBoxPolygon = function(llcorner, width, height) {
relativeCoords = data.frame(c(0, 0, width, width, 0), c(0, height, height, 0, 0))
names(relativeCoords) = names(llcorner)
return(t(apply(relativeCoords, 1, function(x) llcorner + x)))
}
And the real function:
addScaleBar = function(ggplot_obj, spatial_obj, attribute, addParams =
list()) {
addParamsDefaults = list(noBins = 5, xname = "x", yname = "y", unit = "m",
placement = "bottomright", sbLengthPct = 0.3, sbHeightvsWidth = 1/14)
addParams = modifyList(addParamsDefaults, addParams)
range_x = max(spatial_obj[[addParams[["xname"]]]]) - min(spatial_obj[[addParams[["xname"]]]])
range_y = max(spatial_obj[[addParams[["yname"]]]]) - min(spatial_obj[[addParams[["yname"]]]])
lengthScalebar = addParams[["sbLengthPct"]] * range_x
## OPTION: use pretty() instead
widthBin = makeNiceNumber(lengthScalebar / addParams[["noBins"]])
heightBin = lengthScalebar * addParams[["sbHeightvsWidth"]]
lowerLeftCornerScaleBar = c(x = max(spatial_obj[[addParams[["xname"]]]]) - (widthBin * addParams[["noBins"]]), y = min(spatial_obj[[addParams[["yname"]]]]))
scaleBarPolygon = do.call("rbind", lapply(0:(addParams[["noBins"]] - 1), function(n) {
dum = data.frame(createBoxPolygon(lowerLeftCornerScaleBar + c((n * widthBin), 0), widthBin, heightBin))
if(!(n + 1) %% 2 == 0) dum$cat = "odd" else dum$cat = "even"
return(dum)
}))
scaleBarPolygon[[attribute]] = min(spatial_obj[[attribute]])
textScaleBar = data.frame(x = lowerLeftCornerScaleBar[[addParams[["xname"]]]] + (c(0:(addParams[["noBins"]])) * widthBin), y = lowerLeftCornerScaleBar[[addParams[["yname"]]]],
label = as.character(0:(addParams[["noBins"]]) * widthBin))
textScaleBar[[attribute]] = min(spatial_obj[[attribute]])
return(ggplot_obj +
geom_polygon(data = subset(scaleBarPolygon, cat == "odd"), fill = "black", color = "black", legend = FALSE) +
geom_polygon(data = subset(scaleBarPolygon, cat == "even"), fill = "white", color = "black", legend = FALSE) +
geom_text(aes(label = label), color = "black", size = 6, data = textScaleBar, hjust = 0.5, vjust = 1.2, legend = FALSE))
}
And some example code:
library(ggplot2)
library(sp)
data(meuse)
data(meuse.grid)
ggobj = ggplot(aes(x = x, y = y, color = zinc), data = meuse) + geom_point()
# Make sure to increase the graphic device a bit
addScaleBar(ggobj, meuse, "zinc", addParams = list(noBins = 5))
There is a library called ggsn, which allows you to customize the scale bar and north arrow.
ggplot() +
geom_path(aes(long, lat, group=group), data=worldUk, color="black", fill=NA) +
coord_equal() +
ggsn::scalebar(worldUk, dist = 100, st.size=3, height=0.01, dd2km = TRUE, model = 'WGS84')