Removing axis labelling for one geom when multiple geoms are present - r

All I want is this R code to display the names of players inside the "topName" while hiding the names inside the "otherNames" by plotting both of them using two different geom_col().
epldata <- read.csv(file = 'epldata.csv')
epldata$srno <- c(1:461)
attach(epldata)
points <- epldata[order(-fpl_points),]
detach(epldata)
topNames[24:461]<-NA epldata$topNames <- topNames
topPoints[24:461]<-NA epldata$topPoints <- topPoints
epldata$otherNames <- NA epldata$otherNames[24:461] <-
as.character(points$name[c(24:461)]) epldata$otherPoints <- NA
epldata$otherPoints[24:461] <-
as.numeric(points$fpl_points[c(24:461)])
ggplot(data = epldata)+ geom_col(aes(x=epldata$topNames,
y=epldata$topPoints), fill = "red", alpha = 1) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
annotate("text", x=epldata$topNames, y=-50, #epldata$topPoints,
label = epldata$topNames, fontface = 1, size = 2, hjust = 0)+ geom_col(aes(x=epldata$otherNames, y=epldata$otherPoints), fill
= "gray", alpha = 0.3)+ theme(legend.position = "none")+ #theme(axis.text.x = element_text(angle = 90, hjust = 1))+ xlab("Player Names")+ ylab("FPL Points")+ guides(fill=FALSE,
color=FALSE, guide = FALSE) + coord_flip() + theme(axis.text.y =
element_blank(),
axis.ticks.y = element_blank())
This is the kind of output I am looking for but without using the Annotate Hack that I am currently using but directly plotting the names on the axis.
Update : have added the entire code and the link to the data set is below :
https://drive.google.com/open?id=1KTitWDcLIBmeBsz8mLcHXDIyhQLZnlhS

Once you've created a list of topNames, you can use scale_x_continuous to display only these axis labels:
scale_x_discrete(breaks = topNames)
Also, rather than using two separate geom_col() geometries, you can create a new "highlight" column in the dataframe and use that with the fill and alpha aesthetics:
library(dplyr)
library(ggplot2)
# read data from google drive
id <- "1KTitWDcLIBmeBsz8mLcHXDIyhQLZnlhS" #google file ID
epldata <- read.csv(sprintf("https://docs.google.com/uc?id=%s&export=download", id),
stringsAsFactors = FALSE)
N <- 24 #number of players to highlight
#get list of names of top N players
topNames <- epldata %>%
arrange(-fpl_points) %>%
head(N) %>%
pull(name)
#> Warning: package 'bindrcpp' was built under R version 3.5.1
# make variable for highlighting
epldata <- epldata %>%
mutate(highlight = ifelse(name %in% topNames, TRUE, FALSE))
ggplot(data = epldata,
aes(x = name, y = fpl_points, fill = highlight, alpha = highlight)) +
geom_col() +
scale_fill_manual(guide = FALSE,
values = c("gray", "red")) +
scale_alpha_manual(guide = FALSE,
values = c(0.4, 1)) +
scale_x_discrete(breaks = topNames) + #use breaks to determine axis labels
coord_flip() +
ylab("FPL Points") +
theme_classic() +
theme(axis.ticks.y = element_blank(),
axis.title.y = element_blank())
Created on 2018-09-19 by the reprex package (v0.2.1)

Related

Create a split violin plot with paired points and proper orientation

With ggplot2, I can create a violin plot with overlapping points, and paired points can be connected using geom_line().
library(datasets)
library(ggplot2)
library(dplyr)
iris_edit <- iris %>% group_by(Species) %>%
mutate(paired = seq(1:length(Species))) %>%
filter(Species %in% c("setosa","versicolor"))
ggplot(data = iris_edit,
mapping = aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_violin() +
geom_line(mapping = aes(group = paired),
position = position_dodge(0.1),
alpha = 0.3) +
geom_point(mapping = aes(fill = Species, group = paired),
size = 1.5, shape = 21,
position = position_dodge(0.1)) +
theme_classic() +
theme(legend.position = "none",
axis.text.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.title.x = element_blank(),
axis.text.y = element_text(size = 10))
The see package includes the geom_violindot() function to plot a halved violin plot alongside its constituent points. I've found this function helpful when plotting a large number of points so that the violin is not obscured.
library(see)
ggplot(data = iris_edit,
mapping = aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_violindot(dots_size = 0.8,
position_dots = position_dodge(0.1)) +
theme_classic() +
theme(legend.position = "none",
axis.text.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.title.x = element_blank(),
axis.text.y = element_text(size = 10))
Now, I would like to add geom_line() to geom_violindot() in order to connect paired points, as in the first image. Ideally, I would like the points to be inside and the violins to be outside so that the lines do not intersect the violins. geom_violindot() includes the flip argument, which takes a numeric vector specifying the geoms to be flipped.
ggplot(data = iris_edit,
mapping = aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_violindot(dots_size = 0.8,
position_dots = position_dodge(0.1),
flip = c(1)) +
geom_line(mapping = aes(group = paired),
alpha = 0.3,
position = position_dodge(0.1)) +
theme_classic() +
theme(legend.position = "none",
axis.text.x = element_text(size = 15),
axis.title.y = element_text(size = 15),
axis.title.x = element_blank(),
axis.text.y = element_text(size = 10))
As you can see, invoking flip inverts the violin half, but not the corresponding points. The see documentation does not seem to address this.
Questions
How can you create a geom_violindot() plot with paired points, such that the points and the lines connecting them are "sandwiched" in between the violin halves? I suspect there is a solution that uses David Robinson's GeomFlatViolin function, though I haven't been able to figure it out.
In the last figure, note that the lines are askew relative to the points they connect. What position adjustment function should be supplied to the position_dots and position arguments so that the points and lines are properly aligned?
Not sure about using geom_violindot with see package. But you could use a combo of geom_half_violon and geom_half_dotplot with gghalves package and subsetting the data to specify the orientation:
library(gghalves)
ggplot(data = iris_edit[iris_edit$Species == "setosa",],
mapping = aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_half_violin(side = "l") +
geom_half_dotplot(stackdir = "up") +
geom_half_violin(data = iris_edit[iris_edit$Species == "versicolor",],
aes(x = Species, y = Sepal.Length, fill = Species), side = "r")+
geom_half_dotplot(data = iris_edit[iris_edit$Species == "versicolor",],
aes(x = Species, y = Sepal.Length, fill = Species),stackdir = "down") +
geom_line(data = iris_edit, mapping = aes(group = paired),
alpha = 0.3)
As a note, the lines in the pairing won't properly align because the dotplot is binning each observation then lengthing out the dotline-- the paired lines only correspond to x-value as defined in aes, not where the dot is in the line.
As per comment - this is not a direct answer to your question, but I believe that you might not get the most convincing visualisation when using the "slope graph" optic. This becomes quickly convoluted (so many dots/ lines overlapping) and the message gets lost.
To show change between paired observations (treatment 1 versus treatment 2), you can also (and I think: better) use a scatter plot. You can show each observation and the change becomes immediately clear. To make it more intuitive, you can add a line of equality.
I don't think you need to show the estimated distribution (left plot), but if you want to show this, you could make use of a two-dimensional density estimation, with geom_density2d (right plot)
library(tidyverse)
## patchwork only for demo purpose
library(patchwork)
iris_edit <- iris %>% group_by(Species) %>%
## use seq_along instead
mutate(paired = seq_along(Species)) %>%
filter(Species %in% c("setosa","versicolor")) %>%
## some more modificiations
select(paired, Species, Sepal.Length) %>%
pivot_wider(names_from = Species, values_from = Sepal.Length)
lims <- c(0, 10)
p1 <-
ggplot(data = iris_edit, aes(setosa, versicolor)) +
geom_abline(intercept = 0, slope = 1, lty = 2) +
geom_point(alpha = .7, stroke = 0, size = 2) +
cowplot::theme_minimal_grid() +
coord_equal(xlim = lims, ylim = lims) +
labs(x = "Treatment 1", y = "Treatment 2")
p2 <-
ggplot(data = iris_edit, aes(setosa, versicolor)) +
geom_abline(intercept = 0, slope = 1, lty = 2) +
geom_density2d(color = "Grey") +
geom_point(alpha = .7, stroke = 0, size = 2) +
cowplot::theme_minimal_grid() +
coord_equal(xlim = lims, ylim = lims) +
labs(x = "Treatment 1", y = "Treatment 2")
p1+ p2
Created on 2021-12-18 by the reprex package (v2.0.1)

R Windrose percent label on figure

I am using the windrose function posted here: Wind rose with ggplot (R)?
I need to have the percents on the figure showing on the individual lines (rather than on the left side), but so far I have not been able to figure out how. (see figure below for depiction of goal)
Here is the code that makes the figure:
p.windrose <- ggplot(data = data,
aes(x = dir.binned,y = (..count..)/sum(..count..),
fill = spd.binned)) +
geom_bar()+
scale_y_continuous(breaks = ybreaks.prct,labels=percent)+
ylab("")+
scale_x_discrete(drop = FALSE,
labels = waiver()) +
xlab("")+
coord_polar(start = -((dirres/2)/360) * 2*pi) +
scale_fill_manual(name = "Wind Speed (m/s)",
values = spd.colors,
drop = FALSE)+
theme_bw(base_size = 12, base_family = "Helvetica")
I marked up the figure I have so far with what I am trying to do! It'd be neat if the labels either auto-picked the location with the least wind in that direction, or if it had a tag for the placement so that it could be changed.
I tried using geom_text, but I get an error saying that "aesthetics must be valid data columns".
Thanks for your help!
One of the things you could do is to make an extra data.frame that you use for the labels. Since the data isn't available from your question, I'll illustrate with mock data below:
library(ggplot2)
# Mock data
df <- data.frame(
x = 1:360,
y = runif(360, 0, 0.20)
)
labels <- data.frame(
x = 90,
y = scales::extended_breaks()(range(df$y))
)
ggplot(data = df,
aes(x = as.factor(x), y = y)) +
geom_point() +
geom_text(data = labels,
aes(label = scales::percent(y, 1))) +
scale_x_discrete(breaks = seq(0, 1, length.out = 9) * 360) +
coord_polar() +
theme(axis.ticks.y = element_blank(), # Disables default y-axis
axis.text.y = element_blank())
#teunbrand answer got me very close! I wanted to add the code I used to get everything just right in case anyone in the future has a similar problem.
# Create the labels:
x_location <- pi # x location of the labels
# Get the percentage
T_data <- data %>%
dplyr::group_by(dir.binned) %>%
dplyr::summarise(count= n()) %>%
dplyr::mutate(y = count/sum(count))
labels <- data.frame(x = x_location,
y = scales::extended_breaks()(range(T_data$y)))
# Create figure
p.windrose <- ggplot() +
geom_bar(data = data,
aes(x = dir.binned, y = (..count..)/sum(..count..),
fill = spd.binned))+
geom_text(data = labels,
aes(x=x, y=y, label = scales::percent(y, 1))) +
scale_y_continuous(breaks = waiver(),labels=NULL)+
scale_x_discrete(drop = FALSE,
labels = waiver()) +
ylab("")+xlab("")+
coord_polar(start = -((dirres/2)/360) * 2*pi) +
scale_fill_manual(name = "Wind Speed (m/s)",
values = spd.colors,
drop = FALSE)+
theme_bw(base_size = 12, base_family = "Helvetica") +
theme(axis.ticks.y = element_blank(), # Disables default y-axis
axis.text.y = element_blank())

Alignment of y axis labels in faced_grid and ggplot?

By using ggplot and faced_grid functions I'm trying to make a heatmap. I have a categorical y axis, and I want y axis labels to be left aligned. When I use theme(axis.text.y.left = element_text(hjust = 0)), each panels' labels are aligned independently. Here is the code:
#data
set.seed(1)
gruplar <- NA
for(i in 1:20) gruplar[i] <- paste(LETTERS[sample(c(1:20),sample(c(1:20),1),replace = T) ],
sep="",collapse = "")
gruplar <- cbind(gruplar,anagruplar=rep(1:4,each=5))
tarih <- data.frame(yil= rep(2014:2019,each=12) ,ay =rep_len(1:12, length.out = 72))
gruplar <- gruplar[rep(1:nrow(gruplar),each=nrow(tarih)),]
tarih <- tarih[rep_len(1:nrow(tarih),length.out = nrow(gruplar)),]
grouped <- cbind(tarih,gruplar)
grouped$value <- rnorm(nrow(grouped))
#plot
p <- ggplot(grouped,aes(ay,gruplar,fill=value))
p <- p + facet_grid(anagruplar~yil,scales = "free",
space = "free",switch = "y")
p <- p + theme_minimal(base_size = 14) +labs(x="",y="") +
theme(strip.placement = "outside",
strip.text.y = element_text(angle = 90))
p <- p + geom_raster(aes(fill = value), na.rm = T)
p + theme(axis.text.y.left = element_text(hjust = 0, size=14))
I know that by putting spaces and using a mono-space font I can solve the problem, but I have to use the font 'Calibri Light'.
Digging into grobs isn't my favourite hack, but it can serve its purpose here:
# generate plot
# (I used a smaller base_size because my computer screen is small)
p <- ggplot(grouped,aes(ay,gruplar,fill=value)) +
geom_raster(aes(fill = value),na.rm = T) +
facet_grid(anagruplar~yil,scales = "free",space = "free",switch = "y") +
labs(x="", y="") +
theme_minimal(base_size = 10) +
theme(strip.placement = "outside",
strip.text.y = element_text(angle = 90),
axis.text.y.left = element_text(hjust = 0, size=10))
# examine ggplot object: alignment is off
p
# convert to grob object: alignment is unchanged (i.e. still off)
gp <- ggplotGrob(p)
dev.off(); grid::grid.draw(gp)
# change viewport parameters for left axis grobs
for(i in which(grepl("axis-l", gp$layout$name))){
gp$grobs[[i]]$vp$x <- unit(0, "npc") # originally 1npc
gp$grobs[[i]]$vp$valid.just <- c(0, 0.5) # originally c(1, 0.5)
}
# re-examine grob object: alignment has been corrected
dev.off(); grid::grid.draw(gp)
I guess one option is to draw the labels on the right-hand side, and move that column in the gtable,
p <-ggplot(grouped,aes(ay,gruplar,fill=value)) +
facet_grid(anagruplar~yil,scales = "free",space = "free",switch = "y") +
geom_raster(aes(fill = value),na.rm = T) +
theme_minimal(base_size = 12) + labs(x="",y="") +
scale_y_discrete(position='right') +
theme(strip.placement = "outside", strip.text.y = element_text(angle = 90))+
theme(axis.text.y.left = element_text(hjust = 0,size=14))
g <- ggplotGrob(p)
id1 <- unique(g$layout[grepl("axis-l", g$layout$name),"l"])
id2 <- unique(g$layout[grepl("axis-r", g$layout$name),"l"])
g2 <- gridExtra::gtable_cbind(g[,seq(1,id1-1)],g[,id2], g[,seq(id1+1, id2-1)], g[,seq(id2+1, ncol(g))])
library(grid)
grid.newpage()
grid.draw(g2)
This seems like a bug in ggplot2, or at least what I consider an undesirable / unexpected behavior. You may have seen the approach suggested here, which uses string padding on a mono-space font to achieve the alignment.
This is pretty hacky, but if you need to achieve alignment using a particular font, you might replace the axis labels altogether with geom_text. I have a mostly-working solution, but it is ugly, in that each step seems to break something else!
library(ggplot2); library(dplyr)
# To add a blank facet before 2014, I convert to character
grouped$yil = as.character(grouped$yil)
# I add some rows for the dummy facet, in year "", to use for labels
grouped <- grouped %>%
bind_rows(grouped %>%
group_by(gruplar) %>%
slice(1) %>%
mutate(yil = "",
value = NA_real_) %>%
ungroup())
p <- ggplot(grouped,
aes(ay,gruplar,fill=value)) +
geom_raster(aes(fill = value),na.rm = T) +
scale_x_continuous(breaks = 4*0:3) +
facet_grid(anagruplar~yil,
scales = "free",space = "free",switch = "y") +
theme_minimal(base_size = 14) +
labs(x="",y="") +
theme(strip.placement = "outside",
strip.text.y = element_text(angle = 90),
axis.text.y.left = element_blank(),
panel.grid = element_blank()) +
geom_text(data = grouped %>%
filter(yil == ""),
aes(x = -40, y = gruplar, label = gruplar), hjust = 0) +
scale_fill_continuous(na.value = "white")
p
(The last problem with this plot that I can see is that it shows an orphaned "0" on the x axis of the dummy facet. Need another hack to get rid of that!)

How to add axis text in this negative and positive bars differently using ggplot2?

I've drawed bar graph with negative and positive bars which is familiar to the research. However, my code seems extremely inconvenient and verbose usinggraphics::plot() and graphics::text() as showed below. Try as I may, I could find the solution using element_text to fulfill in ggplot2. Please help or try to give some ideas how to achieve this in ggplot2.Thanks in advance.
# my data
df <- data.frame(genus=c("Prevotella","Streptococcus","YRC22","Phascolarctobacterium","SMB53","Epulopiscium",
"CF231","Anaerovibrio","Paludibacter","Parabacteroides","Desulfovibrio","Sutterella",
"Roseburia","Others__0_5_","Akkermansia","Bifidobacterium","Campylobacter","Fibrobacter",
"Coprobacillus","Bulleidia","f_02d06","Dorea","Blautia","Enterococcus","Eubacterium",
"p_75_a5","Clostridium","Coprococcus","Oscillospira","Escherichia","Lactobacillus"),
class=c(rep("groupA",18),rep("groupB",13)),
value=c(4.497311,4.082377,3.578472,3.567310,3.410453,3.390026,
3.363542,3.354532,3.335634,3.284165,3.280838,3.218053,
3.071454,3.026663,3.021749,3.004152,2.917656,2.811455,
-2.997631,-3.074314,-3.117659,-3.151276,-3.170631,-3.194323,
-3.225207,-3.274281,-3.299712,-3.299875,-3.689051,-3.692055,
-4.733154)
)
# bar graph
tiff(file="lefse.tiff",width=2000,height=2000,res=400)
par(mar=c(5,2,1,1))
barplot(df[,3],horiz=T,xlim=c(-6,6),xlab="LDA score (log 10)",
col=c(rep("forestgreen",length(which(df[,2]=="groupA"))),
rep("goldenrod",length(which(df[,2]=="groupB")))))
axis(1,at=seq(-6,6,by=1))
# add text
text(0.85,36.7,label=df[,1][31],cex=0.6);text(0.75,35.4,label=df[,1][30],cex=0.6)
text(0.75,34.1,label=df[,1][29],cex=0.6);text(0.85,33.0,label=df[,1][28],cex=0.6)
text(0.75,31.8,label=df[,1][27],cex=0.6);text(0.6,30.6,label=df[,1][26],cex=0.6)
text(0.8,29.5,label=df[,1][25],cex=0.6);text(0.85,28.3,label=df[,1][24],cex=0.6)
text(0.45,27.1,label=df[,1][23],cex=0.6);text(0.4,25.9,label=df[,1][22],cex=0.6)
text(0.55,24.7,label=df[,1][21],cex=0.6);text(0.55,23.5,label=df[,1][20],cex=0.6)
text(0.85,22.3,label=df[,1][19],cex=0.6);text(-0.75,21.1,label=df[,1][18],cex=0.6)
text(-1,19.9,label=df[,1][17],cex=0.6);text(-1,18.8,label=df[,1][16],cex=0.6)
text(-0.85,17.6,label=df[,1][15],cex=0.6);text(-0.85,16.3,label=df[,1][14],cex=0.6)
text(-0.7,15.1,label=df[,1][13],cex=0.6);text(-0.65,13.9,label=df[,1][12],cex=0.6)
text(-0.85,12.7,label=df[,1][11],cex=0.6);text(-1.05,11.5,label=df[,1][10],cex=0.6)
text(-0.85,10.3,label=df[,1][9],cex=0.6);text(-0.85,9.1,label=df[,1][8],cex=0.6)
text(-0.47,7.9,label=df[,1][7],cex=0.6);text(-0.85,6.7,label=df[,1][6],cex=0.6)
text(-0.49,5.5,label=df[,1][5],cex=0.6);text(-1.44,4.3,label=df[,1][4],cex=0.6)
text(-0.49,3.1,label=df[,1][3],cex=0.6);text(-0.93,1.9,label=df[,1][2],cex=0.6)
text(-0.69,0.7,label=df[,1][1],cex=0.6)
# add lines
segments(0,-1,0,40,lty=3,col="grey")
segments(2,-1,2,40,lty=3,col="grey")
segments(4,-1,4,40,lty=3,col="grey")
segments(6,-1,6,40,lty=3,col="grey")
segments(4,-1,4,40,lty=3,col="grey")
segments(-2,-1,-2,40,lty=3,col="grey")
segments(-4,-1,-4,40,lty=3,col="grey")
segments(-6,-1,-6,40,lty=3,col="grey")
legend("topleft",bty="n",cex=0.65,inset=c(0.01,-0.02),ncol=2,
legend=c("groupA","groupB"),
col=c("forestgreen", "goldenrod"),pch=c(15,15))
dev.off()
Here's a solution using dplyr to create some extra columns for the label position and the justification, and then theming the plot to match reasonably closely what you originally had:
library("dplyr")
library("ggplot2")
df <- df %>%
mutate(
genus = factor(genus, levels = genus[order(value, decreasing = TRUE)]),
label_y = ifelse(value < 0, 0.2, -0.2),
label_hjust = ifelse(value < 0, 0, 1)
)
my_plot <- ggplot(df, aes(x = genus, y = value, fill = class)) +
geom_bar(stat = "identity", col = "black") +
geom_text(aes(y = label_y, label = genus, hjust = label_hjust)) +
coord_flip() +
scale_fill_manual(values = c(groupA = "forestgreen", groupB = "goldenrod")) +
theme_minimal() +
theme(axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.title.y = element_blank(),
legend.position = "top",
legend.justification = 0.05,
legend.title = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_line(colour = "grey80", linetype = "dashed"),
panel.grid.minor.x = element_blank()) +
scale_y_continuous(expression(log[10](italic("LDA score"))),
breaks = -6:6, limits = c(-6, 6))
print(my_plot)
ggsave("lefse.tiff", width = 5, height = 5, dpi = 400, my_plot)
I would try this:
library(ggplot2)
# change the factor levels so it will be displayed in correct order
df$genus <- factor(df$genus, levels = as.character(df$genus))
ggplot(df, aes(x = genus, y = value)) +
geom_bar(aes(fill = class), stat = 'identity') + # color by class
coord_flip() + # horizontal bars
geom_text(aes(y = 0, label = genus, hjust = as.numeric(value > 0))) + # label text based on value
theme(axis.text.y = element_blank())
In the above, hjust will change the direction of the text relative to its y position (flipped to x now), which is similar to pos parameter in base R plot. So you code could also be simplified with a vector for pos argument to text function.
Two options:
library(ggplot2)
# my data
df <- data.frame(genus=c("Prevotella","Streptococcus","YRC22","Phascolarctobacterium","SMB53","Epulopiscium",
"CF231","Anaerovibrio","Paludibacter","Parabacteroides","Desulfovibrio","Sutterella",
"Roseburia","Others__0_5_","Akkermansia","Bifidobacterium","Campylobacter","Fibrobacter",
"Coprobacillus","Bulleidia","f_02d06","Dorea","Blautia","Enterococcus","Eubacterium",
"p_75_a5","Clostridium","Coprococcus","Oscillospira","Escherichia","Lactobacillus"),
class=c(rep("groupA",18),rep("groupB",13)),
value=c(4.497311,4.082377,3.578472,3.567310,3.410453,3.390026,
3.363542,3.354532,3.335634,3.284165,3.280838,3.218053,
3.071454,3.026663,3.021749,3.004152,2.917656,2.811455,
-2.997631,-3.074314,-3.117659,-3.151276,-3.170631,-3.194323,
-3.225207,-3.274281,-3.299712,-3.299875,-3.689051,-3.692055,
-4.733154)
)
ggplot(df, aes(reorder(genus, -value), value, fill = class)) +
geom_bar(stat = "identity") +
coord_flip() +
geom_text(aes(label = genus,
y = ifelse(value < 1, 1.5, -1.5)), size = 2.5) +
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
Or this:
library(ggplot2)
# my data
df <- data.frame(genus=c("Prevotella","Streptococcus","YRC22","Phascolarctobacterium","SMB53","Epulopiscium",
"CF231","Anaerovibrio","Paludibacter","Parabacteroides","Desulfovibrio","Sutterella",
"Roseburia","Others__0_5_","Akkermansia","Bifidobacterium","Campylobacter","Fibrobacter",
"Coprobacillus","Bulleidia","f_02d06","Dorea","Blautia","Enterococcus","Eubacterium",
"p_75_a5","Clostridium","Coprococcus","Oscillospira","Escherichia","Lactobacillus"),
class=c(rep("groupA",18),rep("groupB",13)),
value=c(4.497311,4.082377,3.578472,3.567310,3.410453,3.390026,
3.363542,3.354532,3.335634,3.284165,3.280838,3.218053,
3.071454,3.026663,3.021749,3.004152,2.917656,2.811455,
-2.997631,-3.074314,-3.117659,-3.151276,-3.170631,-3.194323,
-3.225207,-3.274281,-3.299712,-3.299875,-3.689051,-3.692055,
-4.733154)
)
ggplot(df, aes(reorder(genus, -value), value, fill = class)) +
geom_bar(stat = "identity") +
coord_flip() +
xlab("genus")

Closing the lines in a ggplot2 radar / spider chart

I need a flexible way to make radar / spider charts in ggplot2. From solutions I've found on github and the ggplot2 group, I've come this far:
library(ggplot2)
# Define a new coordinate system
coord_radar <- function(...) {
structure(coord_polar(...), class = c("radar", "polar", "coord"))
}
is.linear.radar <- function(coord) TRUE
# rescale all variables to lie between 0 and 1
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars) # add model names as a variable
as.data.frame(melt(scaled,id.vars="model")) -> mtcarsm
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)))
which works, except for the fact that lines are not closed.
I thougth that I would be able to do this:
mtcarsm <- rbind(mtcarsm,subset(mtcarsm,variable == names(scaled)[1]))
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)))
in order to join the lines, but this does not work. Neither does this:
closes <- subset(mtcarsm,variable == names(scaled)[c(1,11)])
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8))) + geom_path(data=closes)
which does not solve the problem, and also produces lots of
"geom_path: Each group consist of only one observation. Do you need to
adjust the group aesthetic?"
messages. Som, how do I go about closing the lines?
/Fredrik
Using the new ggproto mechanism available in ggplot2 2.0.0, coord_radar can be defined as:
coord_radar <- function (theta = "x", start = 0, direction = 1)
{
theta <- match.arg(theta, c("x", "y"))
r <- if (theta == "x")
"y"
else "x"
ggproto("CoordRadar", CoordPolar, theta = theta, r = r, start = start,
direction = sign(direction),
is_linear = function(coord) TRUE)
}
Not sure if the syntax is perfect but it is working...
The codes here seem outdated for ggplot2: 2.0.0
Try my package zmisc: devtools:install_github("jerryzhujian9/ezmisc")
After you install it, you will be able to run:
df = mtcars
df$model = rownames(mtcars)
ez.radarmap(df, "model", stats="mean", lwd=1, angle=0, fontsize=0.6, facet=T, facetfontsize=1, color=id, linetype=NULL)
ez.radarmap(df, "model", stats="none", lwd=1, angle=0, fontsize=1.5, facet=F, facetfontsize=1, color=id, linetype=NULL)
if you are curious about what's inside, see my codes at github:
The main codes were adapted from http://www.cmap.polytechnique.fr/~lepennec/R/Radar/RadarAndParallelPlots.html
solution key factor
add duplicated mpg row after melt by rbind
inherit CoordPolar on ggproto
set is_linear = function() TRUE on ggproto
especially is_linear = function() TRUE is important,
since if not you will get plot like this...
with is_linear = function() TRUE settings you can get,
library(dplyr)
library(data.table)
library(ggplot2)
rm(list=ls())
scale_zero_to_one <-
function(x) {
r <- range(x, na.rm = TRUE)
min <- r[1]
max <- r[2]
(x - min) / (max - min)
}
scaled.data <-
mtcars %>%
lapply(scale_zero_to_one) %>%
as.data.frame %>%
mutate(car.name=rownames(mtcars))
plot.data <-
scaled.data %>%
melt(id.vars='car.name') %>%
rbind(subset(., variable == names(scaled.data)[1]))
# create new coord : inherit coord_polar
coord_radar <-
function(theta='x', start=0, direction=1){
# input parameter sanity check
match.arg(theta, c('x','y'))
ggproto(
NULL, CoordPolar,
theta=theta, r=ifelse(theta=='x','y','x'),
start=start, direction=sign(direction),
is_linear=function() TRUE)
}
plot.data %>%
ggplot(aes(x=variable, y=value, group=car.name, colour=car.name)) +
geom_path() +
geom_point(size=rel(0.9)) +
coord_radar() +
facet_wrap(~ car.name, nrow=4) +
theme_bw() +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.title.x = element_blank(),
legend.position = 'none') +
labs(title = "Cars' Status")
final result
Sorry, I was beeing stupid. This seems to work:
library(ggplot2)
# Define a new coordinate system
coord_radar <- function(...) {
structure(coord_polar(...), class = c("radar", "polar", "coord"))
}
is.linear.radar <- function(coord) TRUE
# rescale all variables to lie between 0 and 1
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars) # add model names as a variable
as.data.frame(melt(scaled,id.vars="model")) -> mtcarsm
mtcarsm <- rbind(mtcarsm,subset(mtcarsm,variable == names(scaled)[1]))
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)))
It turns out than geom_polygom still produces a polygon in the polar coordinates so that
# rescale all variables to lie between 0 and 1
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars) # add model names as a variable
# melt the dataframe
mtcarsm <- reshape2::melt(scaled)
# plot it as using the polygon geometry in the polar coordinates
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_polygon(aes(group = model), color = "black", fill = NA, size = 1) +
coord_polar() + facet_wrap( ~ model) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)),
axis.ticks.y = element_blank(),
axis.text.y = element_blank()) +
xlab("") + ylab("")
works perfectly...
Thank you guys for the help but it did not cover all of my needs. I used two series of data to be compared so I took the subset of mtcars for Mazda:
nobody mentioned about order of the x variable and ggplot2 sorts this variable for the plot but does not sort the data and it made my chart wrong at the first attempt. Apply sorting function for me it was dplyr::arrange(plot.data, x.variable.name)
I needed to annotate the chart with values and ggplot2::annotate() works fine but it was not included in the recent answers
the above code did not work fine for my data until adding ggplot2::geom_line
Finally this code chunk did my chart:
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars)
mtcarsm <- scaled %>%
filter(grepl('Mazda', model)) %>%
gather(variable, value, mpg:carb) %>%
arrange(variable)
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_polygon(aes(group = model, color = model), fill = NA, size = 1) +
geom_line(aes(group = model, color = model), size = 1) +
annotate("text", x = mtcarsm$variable, y = (mtcarsm$value + 0.05), label = round(mtcarsm$value, 2), size = 3) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(1.2)),
axis.ticks.y = element_blank(),
axis.text.y = element_blank()) +
xlab("") + ylab("") +
guides(color = guide_legend()) +
coord_radar()
Hopefully usefull for somebody

Resources