smooth.spline in glm with NAs in dataset - r

I am trying to use a smooth.spline transformation for my explanatory variables in glm (logit regression).
I get the error because smooth.spline cannot work with NAs.
Here is my code:
LogitModel <- glm(dummy~ smooth.spline(A) + B + C
,family = binomial(link = "logit"), data = mydata)
How can I handle that (without changing mydata?)

You can use generalized additive models (GAM) which include splines naturally. For example, you can use gam package, as a side-effect they are handling NA's. Please see the code below:
library(gam)
set.seed(123)
data(kyphosis)
# simulation of NA
NAs <- matrix(c(sample(81, 4), 1:4), byrow = FALSE, ncol = 2)
kyphosis_NA[NAs] <- NA
# gam
m_NA <- gam(Kyphosis ~ s(Age,4) + Number + Start, family = binomial, data=kyphosis_NA)
summary(m_NA)
Output:
Call: gam(formula = Kyphosis ~ s(Age, 4) + Number + Start, family = binomial,
data = kyphosis)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.21622 -0.50581 -0.24260 -0.06758 2.36573
(Dispersion Parameter for binomial family taken to be 1)
Null Deviance: 83.2345 on 80 degrees of freedom
Residual Deviance: 53.452 on 74 degrees of freedom
AIC: 67.452
Number of Local Scoring Iterations: 9
Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)
s(Age, 4) 1 0.037 0.0368 0.0442 0.834140
Number 1 4.682 4.6816 5.6109 0.020460 *
Start 1 8.869 8.8694 10.6301 0.001683 **
Residuals 74 61.743 0.8344
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Anova for Nonparametric Effects
Npar Df Npar Chisq P(Chi)
(Intercept)
s(Age, 4) 3 5.8327 0.12
Number
Start

Related

How can I use my principle component 1 (from PCA) as an axis in a hierchical regression analysis?

I am looking to use my PC1 from a PCA in a hierarchical regression analysis to account for additional variation in R. Is this possible?
I ran my pca with the code below in R
pca<- prcomp(my.data[,c(57:62)], center = TRUE,scale. = TRUE)
summary(pca)
str(pca)
fviz_eig(pca)
fviz_pca_ind(pca,
col.ind = "cos2", # Color by the quality of representation
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE # Avoid text overlapping
)
ggbiplot(pca)
print(pca)
#some results!
Rotation (n x k) = (4 x 4):
PC1 PC2 PC3
EC 0.5389823 -0.4785188 0.0003197419
temp 0.4787782 0.3590390 0.7913858440
pH 0.5495125 -0.3839466 -0.2673991595
DO. 0.4222624 0.7033461 -0.5497326925
PC4
EC 0.6931938
temp -0.1247834
pH -0.6921840
DO. 0.1574569
Now I hope to use the PC1 as a variable in my models
Somthing like this
m0<- lm(Rel.abund.rotifers~turb+chl.a+PC1,data=my.data)
Any help is very appreciated!
Extract the component scores using pca$x, add them to your dataframe using cbind(), then run your model. Example using mtcars:
pca <- prcomp(mtcars[, 3:6])
mtcars2 <- cbind(mtcars, pca$x)
m0 <- lm(mpg ~ cyl + PC1, data = mtcars2)
summary(m0)
Call:
lm(formula = mpg ~ cyl + PC1, data = mtcars2)
Residuals:
Min 1Q Median 3Q Max
-4.1424 -2.0289 -0.7483 1.3613 6.9373
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.99508 4.80433 5.827 2.56e-06 ***
cyl -1.27749 0.77169 -1.655 0.1086
PC1 -0.02275 0.01010 -2.251 0.0321 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.008 on 29 degrees of freedom
Multiple R-squared: 0.7669, Adjusted R-squared: 0.7508
F-statistic: 47.71 on 2 and 29 DF, p-value: 6.742e-10

Logistic regression from R returning values greater than one

I have run a logistic regression in R using glm to predict the likelihood that an individual in 1993 will have arthritis in 2004 (Arth2004) based on gender (Gen), smoking status (Smoke1993), hypertension (HT1993), high cholesterol (HC1993), and BMI (BMI1993) status in 1993. My sample size is n=7896. All variables are binary with 0 and 1 for false and true except BMI, which is continuous numeric. For gender, male=1 and female=0.
When I run the regression in R, I get good p-values, but when I actually use the regression for prediction, I get values greater than one quite often for very standard individuals. I apologize for the large code block, but I thought more information may be helpful.
library(ResourceSelection)
library(MASS)
data=read.csv(file.choose())
data$Arth2004 = as.factor(data$Arth2004)
data$Gen = as.factor(data$Gen)
data$Smoke1993 = as.factor(data$Smoke1993)
data$HT1993 = as.factor(data$HT1993)
data$HC1993 = as.factor(data$HC1993)
data$BMI1993 = as.numeric(data$BMI1993)
logistic <- glm(Arth2004 ~ Gen + Smoke1993 + BMI1993 + HC1993 + HT1993, data=data, family="binomial")
summary(logistic)
hoslem.test(logistic$y, fitted(logistic))
confint(logistic)
min(data$BMI1993)
median(data$BMI1993)
max(data$BMI1993)
e=2.71828
The output is as follows:
Call:
glm(formula = Arth2004 ~ Gen + Smoke1993 + BMI1993 + HC1993 +
HT1993, family = "binomial", data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.0362 -1.0513 -0.7831 1.1844 1.8807
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.346104 0.158043 -14.845 < 2e-16 ***
Gen1 -0.748286 0.048398 -15.461 < 2e-16 ***
Smoke19931 -0.059342 0.064606 -0.919 0.358
BMI1993 0.084056 0.006005 13.997 < 2e-16 ***
HC19931 0.388217 0.047820 8.118 4.72e-16 ***
HT19931 0.341375 0.058423 5.843 5.12e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10890 on 7895 degrees of freedom
Residual deviance: 10309 on 7890 degrees of freedom
AIC: 10321
Number of Fisher Scoring iterations: 4
Hosmer and Lemeshow goodness of fit (GOF) test
data: logistic$y, fitted(logistic)
X-squared = 18.293, df = 8, p-value = 0.01913
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) -2.65715966 -2.03756775
Gen1 -0.84336906 -0.65364134
Smoke19931 -0.18619647 0.06709748
BMI1993 0.07233866 0.09588198
HC19931 0.29454661 0.48200673
HT19931 0.22690608 0.45595006
[1] 18
[1] 26
[1] 43
A non-smoking female w/ median BMI (26), hypertension, and high cholesterol yields the following:
e^(26*0.084056+1*0.388217+1*0.341375-0*0.748286-0*0.059342-2.346104)
[1] 1.7664
I think the issue is related somehow to BMI considering that is the only variable that is numeric. Does anyone know why this regression produces probabilities greater than 1?
By default, family = "binomial" uses the logit link function (see ?family). So the probability you're looking for is 1.7664 / (1+1.7664).

linear models with contrasts including every possible comparison

Does anyone know if it is possible to use lmFit or lm in R to calculate a linear model with categorical variables while including all possible comparisons between the categories? For example in the test data created here:
set.seed(25)
f <- gl(n = 3, k = 20, labels = c("control", "low", "high"))
mat <- model.matrix(~f, data = data.frame(f = f))
beta <- c(12, 3, 6) #these are the simulated regression coefficient
y <- rnorm(n = 60, mean = mat %*% beta, sd = 2)
m <- lm(y ~ f)
I get the summary:
summary(m)
Call:
lm(formula = y ~ f)
Residuals:
Min 1Q Median 3Q Max
-4.3505 -1.6114 0.1608 1.1615 5.2010
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.4976 0.4629 24.840 < 2e-16 ***
flow 3.0370 0.6546 4.639 2.09e-05 ***
fhigh 6.1630 0.6546 9.415 3.27e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.07 on 57 degrees of freedom
Multiple R-squared: 0.6086, Adjusted R-squared: 0.5949
F-statistic: 44.32 on 2 and 57 DF, p-value: 2.446e-12
which is because the contrasts term ("contr.treatment") compares "high" to "control" and "low" to "control".
Is it possible to get also the comparison between "high" and "low"?
If you use aov instead of lm, you can use the TukeyHSD function from the stats package:
fit <- aov(y ~ f)
TukeyHSD(fit)
# Tukey multiple comparisons of means
# 95% family-wise confidence level
# Fit: aov(formula = y ~ f)
# $f
# diff lwr upr p adj
# low-control 3.036957 1.461707 4.612207 6.15e-05
# high-control 6.163009 4.587759 7.738259 0.00e+00
# high-low 3.126052 1.550802 4.701302 3.81e-05
If you want to use an lm object, you can use the TukeyHSD function from the mosaic package:
library(mosaic)
TukeyHSD(m)
Or, as #ben-bolker suggests,
library(emmeans)
e1 <- emmeans(m, specs = "f")
pairs(e1)
# contrast estimate SE df t.ratio p.value
# control - low -3.036957 0.6546036 57 -4.639 0.0001
# control - high -6.163009 0.6546036 57 -9.415 <.0001
# low - high -3.126052 0.6546036 57 -4.775 <.0001
# P value adjustment: tukey method for comparing a family of 3 estimates
With lmFit:
library(limma)
design <- model.matrix(~0 + f)
colnames(design) <- levels(f)
fit <- lmFit(y, design)
contrast.matrix <- makeContrasts(control-low, control-high, low-high,
levels = design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
round(t(rbind(fit2$coefficients, fit2$t, fit2$p.value)), 5)
# [,1] [,2] [,3]
# control - low -3.03696 -4.63938 2e-05
# control - high -6.16301 -9.41487 0e+00
# low - high -3.12605 -4.77549 1e-05
Also see Multiple t-test comparisons for more information.

emmip (emmeans) with quadratic term

Is it possible to plot with emmip the marginal (log odds) means from a geeglm model when you have a quadratic term? I have repeated measures data and the model fits better with a treatment x time squared term in addition to an interaction term with linear time.
I just want to be able to visualise the predicted curve in the data. If it's possible I don't know how to specify it. I've tried:
mod3 <- geeglm(outcome ~ treatment*time + treatment*time_sq, data = dat, id = id, family = "binomial", corstr = "exchangeable"))
mod3a.rg <- ref_grid(mod3, at = list(time = c(1,2,3,4,5,6), time_sq = c(1,4,9,16,25,36)))
emmip(mod3a.rg, treatment ~ time)
I don't think your mod3 is including your quadratic term correctly (hard to tell since you did not include reproducible code). This will let you include your squared term for time correctly:
mod3 <- geeglm(outcome ~ treatment*time + treatment*I(time^2), data =
dat, id = id, family = "binomial", corstr = "exchangeable"))
The add plotit = TRUE to your call to emmip():
emmip(mod3a.rg, treatment ~ time, plotit = TRUE)
Here's a simple reproducible example with the savings dataset in the MASS, faraway package for comparison
library(MASS)
data(savings, package="faraway")
#fit model with polynomial term
mod <- lm(sr ~ ddpi+I(ddpi^2))
summary(mod)
The summary produces this output, note the additonal coefficient for your quadratic term
> Call: lm(formula = sr ~ ddpi + I(ddpi^2), data = savings)
>
> Residuals:
> Min 1Q Median 3Q Max
> -8.5601 -2.5612 0.5546 2.5735 7.8080
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
>(Intercept) 5.13038 1.43472 3.576 0.000821 ***
>ddpi 1.75752 0.53772 3.268 0.002026 **
>I(ddpi^2) -0.09299 0.03612 -2.574 0.013262 *
> --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Residual standard error: 4.079 on 47 degrees of freedom Multiple
> R-squared: 0.205, Adjusted R-squared: 0.1711 F-statistic: 6.059 on
> 2 and 47 DF, p-value: 0.004559
If you don't enclose the quadratic term with I() your summary will only include the term for ddpi.
mod2 <- lm(sr ~ ddpi+ddpi^2)
summary(mod2)
produces the following summary with a coefficient only for ddpi
> lm(formula = sr ~ ddpi + ddpi^2, data = savings)
>
> Residuals:
> Min 1Q Median 3Q Max
> -8.5535 -3.7349 0.9835 2.7720 9.3104
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
>(Intercept) 7.8830 1.0110 7.797 4.46e-10 ***
>ddpi 0.4758 0.2146 2.217 0.0314 *
> --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> Residual standard error: 4.311 on 48 degrees of freedom Multiple
> R-squared: 0.0929, Adjusted R-squared: 0.074 F-statistic: 4.916 on
> 1 and 48 DF, p-value: 0.03139

Extract data from Partial least square regression on R

I want to use the partial least squares regression to find the most representative variables to predict my data.
Here is my code:
library(pls)
potion<-read.table("potion-insomnie.txt",header=T)
potionTrain <- potion[1:182,]
potionTest <- potion[183:192,]
potion1 <- plsr(Sommeil ~ Aubepine + Bave + Poudre + Pavot, data = potionTrain, validation = "LOO")
The summary(lm(potion1)) give me this answer:
Call:
lm(formula = potion1)
Residuals:
Min 1Q Median 3Q Max
-14.9475 -5.3961 0.0056 5.2321 20.5847
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.63931 1.67955 22.410 < 2e-16 ***
Aubepine -0.28226 0.05195 -5.434 1.81e-07 ***
Bave -1.79894 0.26849 -6.700 2.68e-10 ***
Poudre 0.35420 0.72849 0.486 0.627
Pavot -0.47678 0.52027 -0.916 0.361
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.845 on 177 degrees of freedom
Multiple R-squared: 0.293, Adjusted R-squared: 0.277
F-statistic: 18.34 on 4 and 177 DF, p-value: 1.271e-12
I deduced that only the variables Aubepine et Bave are representative. So I redid the model just with this two variables:
potion1 <- plsr(Sommeil ~ Aubepine + Bave, data = potionTrain, validation = "LOO")
And I plot:
plot(potion1, ncomp = 2, asp = 1, line = TRUE)
Here is the plot of predicted vs measured values:
The problem is that I see the linear regression on the plot, but I can not know its equation and R². Is it possible ?
Is the first part is the same as a multiple regression linear (ANOVA)?
pacman::p_load(pls)
data(mtcars)
potion <- mtcars
potionTrain <- potion[1:28,]
potionTest <- potion[29:32,]
potion1 <- plsr(mpg ~ cyl + disp + hp + drat, data = potionTrain, validation = "LOO")
coef(potion1) # coefficeints
scores(potion1) # scores
## R^2:
R2(potion1, estimate = "train")
## cross-validated R^2:
R2(potion1)
## Both:
R2(potion1, estimate = "all")

Resources