Feature/variable importance for Keras model using Lime - r

I have a two-class classification Keras model with multi-type input data where I predict class A and B based on 1 continuous and 3 categorical input data. In the below dummy example, continuous1, categorical1 and categorical2 are 1D tensors the categorical3 is a 2D tensor of shape (samples, indices) with length num_index=20 and are one-hot encoded. I then want to use e.g. Lime to analyze which data inputs contributed more than others to the prediction. I'm following this tutorial, but as I have multi-type input data, I encounter some difficulties.
set.seed(666)
#Dummy data
dat <- data.frame(samples=c(rep(paste0("A_",1:9800)),rep(paste0("B_",9801:10000))))
dat$label <- c(rep("A",9800),rep("B",200))
dat$continuous1 <- c(rnorm(9800, 100, 45),rnorm(200, 0, 25))
dat$continuous1[dat$continuous1<0] <- 0
dat$categorical1 <- c(rep(1:100,98),rep(1:100,2))
dat$categorical2 <- c(rep(1:98,100),rep(99:100,100))
pool_A <- factor(1:15,levels=1:20)
pool_B <- factor(16:20,levels=1:20)
dat_categorical3 <- vector("list",10000)
names(dat_categorical3) <- c(as.character(dat[dat$label=="A",]$samples),as.character(dat[dat$label=="B",]$samples))
for(i in 1:9800){
dat_categorical3[[i]] <- (as.numeric(table(sample(pool_A, 20, replace=T))) > 0) + 0L
}
for(i in 9801:10000){
dat_categorical3[[i]] <- (as.numeric(table(sample(pool_B, 20, replace=T))) > 0) + 0L
}
dat_categorical3_tensor <- do.call(rbind,dat_categorical3)
## Split data for training-validating-testing
# As we have much fewer Bs than As, each partition has to have a more or less equal number of Bs(?)
training_Bs <- sample(x=as.character(dat[dat$label=="B",]$samples), size=67, replace=F)
validating_Bs <- sample(x=setdiff(as.character(dat[dat$label=="B",]$samples),training_Bs), size=67, replace=F)
testing_Bs <- setdiff(as.character(dat[dat$label=="B",]$samples),c(training_Bs,validating_Bs))
# We also parition the data containing As equally, though this could probably be done in e.g., 80-10-10
training_As <- sample(x=as.character(dat[dat$label=="A",]$samples), size=3267, replace=F)
validating_As <- sample(x=setdiff(as.character(dat[dat$label=="A",]$samples),training_As), size=3267, replace=F)
testing_As <- setdiff(as.character(dat[dat$label=="A",]$samples),c(training_As,validating_As))
# Put together
training_dat <- dat[dat$samples %in% c(training_As,training_Bs),]
training_categorical3_tensor <- dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(training_As,training_Bs),]
#training_categorical3_tensor <- as.matrix(data.frame(dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(training_As,training_Bs),]))
training_labels <- ifelse(training_dat$label=="A",0,1)
training_dat2 <- as.matrix(training_dat[,c(3:5)]) #use this
validating_dat <- dat[dat$samples %in% c(validating_As,validating_Bs),]
validating_categorical3_tensor <- dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(validating_As,validating_Bs),]
#validating_categorical3_tensor <- as.matrix(data.frame(dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(validating_As,validating_Bs),]))
validating_labels <- ifelse(validating_dat$label=="A",0,1)
validating_dat2 <- as.matrix(validating_dat[,c(3:5)]) #use this
testing_dat <- dat[dat$samples %in% c(testing_As,testing_Bs),]
testing_categorical3_tensor <- dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(testing_As,testing_Bs),]
#testing_categorical3_tensor <- as.matrix(data.frame(dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(testing_As,testing_Bs),]))
testing_labels <- ifelse(testing_dat$label=="A",0,1)
testing_dat2 <- as.matrix(testing_dat[,c(3:5)]) #use this
## Keras model
library(keras)
# Input layers
all_dat_input <- layer_input(shape = 3, dtype = 'float32', name = 'all_dat_input')
categorical3_indices_input <- layer_input(shape = 20, dtype = 'float32', name = 'categorical3_input')
input_tensor <- c(all_dat_input, categorical3_indices_input)
# Output layers
all_dat_out <- all_dat_input %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5)
categorical3_indices_out <- categorical3_indices_input %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5)
output_tensor <- layer_concatenate(c(all_dat_out, categorical3_indices_out)) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units=1, activation="sigmoid")
model <- keras_model(inputs=input_tensor, outputs=output_tensor)
# Compile
model %>% compile(
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = "accuracy"
)
# Fit
history <- model %>% fit(
x=list(training_dat2,training_categorical3_tensor),
y=training_labels,
batch_size=256,
epochs=20,
validation_data=list(list(validating_dat2,validating_categorical3_tensor),validating_labels)
)
# Compare with put aside testing data
results <- model %>% evaluate(list(testing_dat2,testing_categorical3_tensor),testing_labels)
results
$loss
[2] 1.984114e-07
$acc
[2] 1
# Using the trained network to generate predictions on new data
predictions <- model %>% predict(list(testing_dat2,testing_categorical3_tensor))
head(predictions[3267:3332])
[2] 0.9999994 0.9999999 1.0000000 0.9999999 1.0000000 0.9999832
# the network correctly identifies Bs as Bs with a confidence above >99%
As the error message I get from lime::explain() seems to indicate some mismatch/missing variable names/labels, I created and tried different inputs (all generated the same error);
input_test1 <- data.frame(training_dat2,training_categorical3_tensor)
#input_test2 <- data.frame(all_dat_input=training_dat2,categorical3_indices_input=training_categorical3_tensor)
#input_test3 <- data.frame(all_dat_input=training_dat2, categorical3_input=training_categorical3_tensor)
## Feature/variable importance using Lime
library(lime)
explainer <- lime(input_test1, model, bin_continuous = F) #try different input_test1/input_test2/input_test3
explanation <- explain(input_test1, explainer=explainer, n_labels=2, n_features = 4) ##try different input_test1/input_test2/input_test3
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: No data provided for "all_dat_input". Need data for each key in: ['all_dat_input', 'categorical3_input']
All three input_test lead to the above error. I also tried making sure of that the actual data, specifically the categorical3_tensor column names matched those of the input_test (i.e., X1, X2, X3 etc), but that did not help either.
training_categorical3_tensor <- as.matrix(data.frame(dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(training_As,training_Bs),]))
validating_categorical3_tensor <- as.matrix(data.frame(dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(validating_As,validating_Bs),]))
testing_categorical3_tensor <- as.matrix(data.frame(dat_categorical3_tensor[rownames(dat_categorical3_tensor) %in% c(testing_As,testing_Bs),]))
Any advice/help is highly appreciated!

Related

ValueError: Input 0 of layer "sequential_3" is incompatible with the layer: expected shape=(None, 60), found shape=(None, 59)

I am getting an error using the following R code. The dataset is https://archive.ics.uci.edu/ml/datasets/online+news+popularity. I am trying to build a dense neural network in order to solve a regression problem. I am attempting to predict the value of the variable "shares" using all the other variables"
Thank you in advance
#Loading libraries
library(keras)
library(mlbench)
library(ggplot2)
library(neuralnet)
library(tidymodels)
library(tidyverse)
library(magrittr)
#Loading the dataset
df <- read.csv("/Users/prathamdave/Desktop/OnlineNewsPopularity.csv")
#Inspecting the dataset
str(df)
glimpse(df)
#Preliminary data cleaning
data <- df[2:61]
str(df)
data %<>% mutate_if(is.integer, as.numeric)
#Preparing data
#Matrix
data <- as.matrix(data)
dimnames(data) <- NULL
#Partition
set.seed(1234)
ind <- sample(2, nrow(data), replace = T, prob = c(0.7,.03))
training <- data[ind==1, 1:59]
test <- data[ind==2, 1:59]
trainingtarget <- data[ind==1, 60]
testtarget <- data[ind==2, 60]
#Normalizing data
m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
test <- scale(test, center = m, scale = s)
#Creating the model specification
model <- keras_model_sequential()
model %>%
layer_dense(units = 41, activation = 'relu', input_shape = c(60)) %>%
layer_dense(units = 1)
#Compile
model %>% compile(loss = 'mse',
optimizer = 'rmsprop',
metrics = 'mae')
#Fit Model
mymodel <- model %>%
fit(
training,
trainingtarget,
epochs = 180,
batch_size = 32,
validation_split = 0.2
)
output
Epoch 1/180
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: in user code:
<... omitted ...>te/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step **
outputs = model.train_step(data)
File "/Users/prathamdave/Library/r-miniconda/envs/r-reticulate/lib/python3.8/site-packages/keras/engine/training.py", line 889, in train_step
y_pred = self(x, training=True)
File "/Users/prathamdave/Library/r-miniconda/envs/r-reticulate/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/Users/prathamdave/Library/r-miniconda/envs/r-reticulate/lib/python3.8/site-packages/keras/engine/input_spec.py", line 264, in assert_input_compatibility
raise ValueError(f'Input {input_index} of layer "{layer_name}" is '
ValueError: Input 0 of layer "sequential_3" is incompatible with the layer: expected shape=(None, 60), found shape=(None, 59)
See `reticulate::py_last_error()` for details
Your data has 59 features and 1 target. So you need to have an input_shape of 59 instead of 60. You can use the following reproducible code:
#Loading libraries
library(keras)
library(mlbench)
library(ggplot2)
library(neuralnet)
library(tidymodels)
library(tidyverse)
library(magrittr)
#Loading the dataset
df <- read.csv("OnlineNewsPopularity/OnlineNewsPopularity.csv")
#Inspecting the dataset
str(df)
glimpse(df)
#Preliminary data cleaning
data <- df[2:61]
str(df)
data %<>% mutate_if(is.integer, as.numeric)
#Preparing data
#Matrix
data <- as.matrix(data)
dimnames(data) <- NULL
#Partition
set.seed(1234)
ind <- sample(2, nrow(data), replace = T, prob = c(0.7,.03))
training <- data[ind==1, 1:59]
test <- data[ind==2, 1:59]
trainingtarget <- data[ind==1, 60]
testtarget <- data[ind==2, 60]
#Normalizing data
m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
test <- scale(test, center = m, scale = s)
#Creating the model specification
model <- keras_model_sequential()
model %>%
layer_dense(units = 41, activation = 'relu', input_shape = c(59)) %>%
layer_dense(units = 1)
#Compile
model %>% compile(loss = 'mse',
optimizer = 'rmsprop',
metrics = 'mae')
#Fit Model
mymodel <- model %>%
fit(
training,
trainingtarget,
epochs = 180,
batch_size = 32,
validation_split = 0.2
)
Output:

Deep learning, neural network

I have a question regarding applying a neural network in categorical data.
1- I have one output which is numeric (Connection.Duration)
2- I have 5 inputs, 4 of them (EVSE.ID, User.ID, Fee, Day) are categorical and 1 (Time) is numeric.
I want to apply a neural network to predict the Connection.Duration. I do not know the correct command to use for categorical data. I used model.matrix but I did not how to continue with the new data frame (m) which contains the categorical data.
I would like to ask for help please.
data$Fee <- as.factor(data$Fee)
data$EVSE.ID <- as.factor(data$EVSE.ID)
data$User.ID <- as.factor(data$User.ID)
data$Day <- as.factor(data$Day)
data$Time <- as.factor(data$Time)
data$Connection.Duration <- as.factor(data$Connection.Duration)
m <- model.matrix(Connection.Duration ~ EVSE.ID+Time+Day+Fee+User.ID,
data= data)
# Neural Networks
n <- neuralnet(Connection.Duration ~ EVSE.ID+Time+Day+Fee+User.ID,
data = m,
hidden=c(100,60))
# Data partition
set.seed(1234)
ind <- sample(2, nrow(m), replace = TRUE, prob = c(0.7, 0.3))
training <- m[ind==1,1:5]
testing <- m[ind==2,1:5]
trainingtarget <- m[ind==1, 6]
testingtarget <- m[ind==2, 6]
# Normalize
m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
testing <- scale(testing, center = m, scale = s)
# Create Model
model <- keras_model_sequential()
model %>%
layer_dense(units = 5, activation = 'relu', input_shape = c(5)) %>%
layer_dense(units = 1)
# Compile
model %>% compile(loss= 'mse',
optimizer= 'rmsprop',
metrics='mae')
# Fit model
mymodel <- model %>%
fit(training,
trainingtarget,
epochs= 100,
batch_size = 32,
validation_split = 0.2)
# Evaluate
model %>% evaluate(testing, testingtarget)
pred <- model %>% predict(testing)
mean(testingtarget- pred^2)
plot(testingtarget, pred)
# Fine-tune Model
model <- keras_model_sequential()
model %>%
layer_dense(units = 100, activation = 'relu', input_shape = c(5)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 60, activation = 'relu', input_shape = c(5)) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 1)
# Compile
model %>% compile(loss= 'mse',
optimizer= optimizer_rmsprop(lr=0.0001),
metrics='mae')
# Fit model
mymodel <- model %>%
fit(training,
trainingtarget,
epochs= 100,
batch_size = 32,
validation_split = 0.2)
# Evaluate
model %>% evaluate(testing, testingtarget)
pred <- model %>% predict(testing)
mean(testingtarget- pred^2)
plot(testingtarget, pred)
What you're looking for is called "one hot encoding". There are functions in tensorflow/keras to help out with the encoding.
But otherwise, I would try to do it up front. I would not rely on model.matrix as it doesn't give you quite what you want.
You can easily write your own function, but here's an example using the mltools package:
library(data.table)
library(mltools)
one_hot(data.table(x = factor(letters), n = 1:26))
Note: it requires data.table rather than data.frame but you can convert your data back and forth.

Generator function in keras for mixed data input (image, csv) - R

I want to build a generator function to input Image Data together with the corresponding metadata. There are more than 20 k Images and that is why I can't just read them into memory. I have tried also to use flow_from_dataframe but in the multi-input case it's getting complicated.
The generator function looks like this:
data_files_generator_train <- function(dir) {
files <- list.files(dir ,pattern = "jpg$")
next_file <- 0
function() {
next_file <<- next_file + 1
if (next_file > length(files))
{next_file <<- 1}
# determine the file name
file <- files[[next_file]]
image <- image_load(file, target_size = c(150,150)) %>%
image_to_array() %>%
array_reshape(dim = c(150, 150, 3)) %>%
imagenet_preprocess_input()
x_image <- image/ 255
x_attr <- paintings_attributes_train %>% filter(path == file) %>% select(-c(target, path))
y <- paintings_attributes_train %>% filter(path == file) %>% select(target)
x_attr <- matrix(x_attr, ncol = 16)
y <- matrix(y)
return(list(list(x_image, x_attr), y))
}}
I get the following error:
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[0.00769116, 0.17699115, 0.1436
the model definition looks as follows:
vision_model <- keras_model_sequential()
vision_model %>%
layer_conv_2d(filters = 64,
kernel_size = c(3, 3),
activation = 'relu',
padding = 'same',
input_shape = c(150, 150, 3)) %>%
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten()
# tensor with the output of our vision model:
image_input <- layer_input(shape = c(150, 150, 3))
encoded_image <- image_input %>% vision_model
tabular_input <- layer_input(shape = 16, dtype = 'float32')
mlp_model <- tabular_input %>%
layer_dense(
units = 16,
kernel_initializer = "uniform",
activation = "relu")
# concatenate the metadata vector and the image vector then
# train a linear regression on it
output <- layer_concatenate(c(mlp_model, encoded_image)) %>%
layer_dense(units = 1, activation='linear')
# This is our final model:
vqa_model <- keras_model(inputs = c(tabular_input, image_input), outputs = output)
The Question is related to Create a mixed data generator (images,csv) in keras.
Thanks for any help!

Text classification with own word embeddings using Neural Networks in R

This is a rather lengthy one, so please bear with me, unfortunately enough the error occurs right at the very end...I cannot predict on the unseen test set!
I would like to perform text classification with word embeddings (that I have trained on my data set) that are embedded into neural networks.
I simply have column with textual descriptions = input and four different price classes = target.
For a reproducible example, here are the necessary data set and the word embedding:
DF: https://www.dropbox.com/s/it0jsbv8e7nkryt/DF.csv?dl=0
WordEmb: https://www.dropbox.com/s/ia5fmio2e0plwkr/WordEmb.txt?dl=0
And here my code:
set.seed(2077)
DF = read.delim("DF.csv", header = TRUE, sep = ",",
dec = ".", stringsAsFactors = FALSE)
DF <- DF[,-1]
# parameters
max_num_words = 9000 # simply see number of observations
validation_split = 0.3
embedding_dim = 300
##### Data Preparation #####
# split into training and test set
set.seed(2077)
n <- nrow(DF)
shuffled <- DF[sample(n),]
# Split the data in train and test
train <- shuffled[1:round(0.7 * n),]
test <- shuffled[(round(0.7 * n) + 1):n,]
rm(n, shuffled)
# predictor/target variable
x_train <- train$Description
x_test <- test$Description
y_train <- train$Price_class
y_test <- test$Price_class
### encode target variable ###
# One hot encode training target values
trainLabels <- to_categorical(y_train)
trainLabels <- trainLabels[, 2:5]
# One hot encode test target values
testLabels <- keras::to_categorical(y_test)
testLabels <- testLabels[, 2:5]
### encode predictor variable ###
# pad sequences
tokenizer <- text_tokenizer(num_words = max_num_words)
# finally, vectorize the text samples into a 2D integer tensor
set.seed(2077)
tokenizer %>% fit_text_tokenizer(x_train)
train_data <- texts_to_sequences(tokenizer, x_train)
tokenizer %>% fit_text_tokenizer(x_test)
test_data <- texts_to_sequences(tokenizer, x_test)
# determine average length of document -> set as maximal sequence length
seq_mean <- stri_count(train_data, regex="\\S+")
mean((seq_mean))
max_sequence_length = 70
# This turns our lists of integers into a 2D integer tensor of shape`(samples, maxlen)`
x_train <- keras::pad_sequences(train_data, maxlen = max_sequence_length)
x_test <- keras::pad_sequences(test_data, maxlen = max_sequence_length)
word_index <- tokenizer$word_index
Encoding(names(word_index)) <- "UTF-8"
#### PREPARE EMBEDDING MATRIX ####
embeddings_index <- new.env(parent = emptyenv())
lines <- readLines("WordEmb.txt")
for (line in lines) {
values <- strsplit(line, ' ', fixed = TRUE)[[1]]
word <- values[[1]]
coefs <- as.numeric(values[-1])
embeddings_index[[word]] <- coefs
}
embedding_dim <- 300
embedding_matrix <- array(0,c(max_num_words, embedding_dim))
for(word in names(word_index)){
index <- word_index[[word]]
if(index < max_num_words){
embedding_vector <- embeddings_index[[word]]
if(!is.null(embedding_vector)){
embedding_matrix[index+1,] <- embedding_vector
}
}
}
##### Convolutional Neural Network #####
# load pre-trained word embeddings into an Embedding layer
# note that we set trainable = False so as to keep the embeddings fixed
num_words <- min(max_num_words, length(word_index) + 1)
embedding_layer <- keras::layer_embedding(
input_dim = num_words,
output_dim = embedding_dim,
weights = list(embedding_matrix),
input_length = max_sequence_length,
trainable = FALSE
)
# train a 1D convnet with global maxpooling
sequence_input <- layer_input(shape = list(max_sequence_length), dtype='int32')
preds <- sequence_input %>%
embedding_layer %>%
layer_conv_1d(filters = 128, kernel_size = 1, activation = 'relu') %>%
layer_max_pooling_1d(pool_size = 5) %>%
layer_conv_1d(filters = 128, kernel_size = 1, activation = 'relu') %>%
layer_max_pooling_1d(pool_size = 5) %>%
layer_conv_1d(filters = 128, kernel_size = 1, activation = 'relu') %>%
layer_max_pooling_1d(pool_size = 2) %>%
layer_flatten() %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dense(units = 4, activation = 'softmax')
model <- keras_model(sequence_input, preds)
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = c('acc')
)
model %>% keras::fit(
x_train,
trainLabels,
batch_size = 1024,
epochs = 20,
validation_split = 0.3
)
Now here is where I get stuck:
I cannot use the results of the NN to predict on the unseen test data set:
# Predict the classes for the test data
classes <- model %>% predict_classes(x_test, batch_size = 128)
I get this error:
Error in py_get_attr_impl(x, name, silent) :
AttributeError: 'Model' object has no attribute 'predict_classes'
Afterwards, I'd proceed like this:
# Confusion matrix
table(y_test, classes)
# Evaluate on test data and labels
score <- model %>% evaluate(x_val, testLabels, batch_size = 128)
# Print the score
print(score)
For now the actual accuracy does not really matter since this is only a small example of my data set.
I know this is a long one but AAANNY help would be very muuuch appreciated.

Shape error in image classification model in Keras R

I am having trouble with one area of code and it prevents me from finishing my research paper. I am new to Machine Learning and R, but I have learned a lot so far. Here is my code:
# Install packages and libraries
install.packages("keras")
source("http://bioconductor.org/biocLite.R")
library(keras)
library(EBImage)
# Read images
setwd('C:/Users/ebarn/Desktop/DataSet')
pics <- c('p1.jpg', 'p2.jpg', 'p3.jpg', 'p4.jpg', 'p5.jpg',
'p6.jpg','c1.jpg', 'c2.jpg', 'c3.jpg', 'c4.jpg', 'c5.jpg',
'c6.jpg')
mypic <- list()
for (i in 1:12) {mypic[[i]] <- readImage(pics[i])}
# Explore
print(mypic[[1]])
display(mypic[[1]])
display(mypic[[8]])
summary(mypic[[1]])
hist(mypic[[12]])
str(mypic)
# Resize
for (i in 1:12) {mypic[[i]] <- resize(mypic[[i]], 28, 28)}
str(mypic)
# Reshape
28*28*3
for (i in 1:12) {mypic[[i]] <- array_reshape(mypic[[i]], c(28,
28, 3))}
str(mypic)
# Row Bind
trainx <- NULL
for(i in 1:5) {trainx <- rbind(trainx, mypic[[i]])}
str(trainx)
for(i in 7:11) {trainx <- rbind(trainx, mypic[[i]])}
str(trainx)
testx <- rbind(mypic[[6]], mypic[[12]])
trainy <- c(0,0,0,0,0,1,1,1,1,1)
testy <- c(0, 1)
# One Hot Encoding
trainLabels <- to_categorical(trainy)
testLabels <- to_categorical(testy)
trainLabels
# Model
model <- keras_model_sequential()
model %>%
layer_dense(units = 256, activation = 'relu', input_shape =
c(2352))
%>%
layer_dense(units = 128, activation = 'relu')
%>%
layer_dense(units = 2, activation = 'softmax')
summary(model)
# Compile
model %>%
compile(loss = 'sparse_categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = c('accuracy'))
# model.add(Dense(10, activation = 'softmax'))
# Fit Model
history <- model %>%
fit(trainx, trainLabels, epochs = 30, batch_size = 32,
validation_split = 0.2)
plot(history)
# Evaluation & Prediction - train data
model %>% evaluate(trainx, trainLabels)
The Fit Model method will not print out my graph. Here is the error it gives me:
ValueError: Error when checking target: expected dense _1 to have shape (1,) but got array with shape (2,)
You are one-hot encoding the labels:
# One Hot Encoding
trainLabels <- to_categorical(trainy)
testLabels <- to_categorical(testy)
Therefore, they are no longer sparse labels and you need to use categorical_crossentropy as the loss function instead of sparse_categorical_crossentropy. Alternatively, you can comment the one-hot encoding lines.

Resources