I was preforming expand.grid() on subdb, how to tackle this?
full <- with(subdb, expand.grid(sort(unique(UserId), sort(unique(ProductId))))
Error in eval(substitute(expr), data, enclos = parent.frame()) :
invalid 'envir' argument of type 'character'
Why I am getting this error?
subdb is a data frame holding 'UserId', 'ProductId', and 'Score'.
You miss a parenthesis in the first call to sort(), namely it should be sort(unique(UserId)) not sort(unique(UserId).
For example, the following works for me:
subdb <- data.frame("UserId" = sample(1:10, 200, replace = TRUE),
"ProductId" = sample(LETTERS[1:8], 200, replace = TRUE))
full <- with(subdb, expand.grid(sort(unique(UserId)),
sort(unique(ProductId))))
full
Related
I would like to ask you for help. I am trying to perform MICE imputation of missing values in my dataset. Here is part of the code:
imputed_Data <- mice(data, m=5, maxit = 10, method = "PMM", seed = 200)
Unfortunately, this code returns the following error:
Error in parse(text = x, keep.source = FALSE) :
<text>:1:15: unexpected symbol
1: ID ~ 0+Offset Length
^
Does anybody knows where the mistake is? "ID" and "Offset Length" are variables in my dataset.
Thank you,
Blanka
I want to perform basket analysis and draw a paracoord plot however I receive an error.
Content of this error is: :
Error in m[j, i] : subscript out of bounds.In addition: Warning message:
In cbind(pl, pr) :
number of rows of result is not a multiple of vector length (arg 2)
I am using data from: Link.
First I am transforming this to fit basket analysis, name of the original excel files is Online_Retail:
library(arules)
library(arulesViz)
library(plyr)
items <- ddply(Online_Retail, c("CustomerID", "InvoiceDate"), function(df1)paste(df1$Description, collapse = ","))
items1 <- items["V1"]
write.csv(items1, "groceries1.csv", quote=FALSE, row.names = FALSE, col.names = FALSE)
trans1 <- read.transactions("groceries1.csv", format = "basket", sep=",",skip=1)
And to draw paracoord I have created such a code:
rules.trans2<-apriori(data=trans1, parameter=list(supp=0.001,conf = 0.05),
appearance=list(default="rhs", lhs="ROSES REGENCY TEACUP AND SAUCER"), control=list(verbose=F))
sorted.plot <- sort(rules.trans2, by="support", decreasing = TRUE)
plot(sorted.plot, method="paracoord", control=list(reorder=TRUE, verbose = TRUE))
Why my code for paracoord is not working? how can I fix it? What should I change?
This is, unfortunately, a bug in arulesViz. This will be fixed in the next release (arulesViz 1.3-3). The fix is already available in the development version on GitHub: https://github.com/mhahsler/arulesViz
I am using Titanic dataset, to extract some data out of it.
and then I tried to extract the rules based on Aprior :
library(arules)
rules<- apriori(df)
Then I asked for two metrics lift, and oddsRatio
metrics <- interestMeasure(rules, c("oddsRatio","lift"),transactions = df)
rules<-sort(rules, decreasing = TRUE, by = "lift")
inspect(head(rules ))
head(metrics)
But, I need to sort the results based on oddsRatio, so I did
dataFramedRules <-quality(rules)
rules<-cbind(dataFramedRules,metrics)
Everything was well before the last line
rules<-sort(rules, decreasing = TRUE, by = "oddsRatio")
but in the last line it complains with:
Error in [.data.frame(x, order(x, na.last = na.last, decreasing = decreasing)) :
undefined columns selected
it seems that it cannot recognized the binded column oddsRatio.
How can I fix it?
The problem get solved by the following code:
quality(rules) <- cbind(quality(rules), oddsRatio = interestMeasure(rules, measure ="oddsRatio", df))
inspect(head(sort(rules, by = "oddsRatio")))
I am currently facing an error mentioned below which is related to NULL values being coerced to a data frame. The data set does contain nulls, however I have tried both is.na() and is.null() functions to replace the null values with something else. The data is stored on hdfs and is stored in a pig.hive format. I have also attached the code below. The code works fine if I remove v[,25] from the key.
Code:
AM = c("AN");
UK = c("PP");
sample.map <- function(k,v){
key <- data.frame(acc = v[!which(is.na(v[,1],1],
year = substr(v[!which(is.na(v[,1]),2],1,4),
month = substr(v[!which(is.na(v[,1]),2],5,6))
value <- data.frame(v[,3],count=1)
keyval(key,value)
}
sample.reduce <- function(key,v){
AT <- sum(v[which(v[,1] %in% AM=="TRUE"),2])
UnknownT <- sum(v[which(v[,1] %in% UK=="TRUE"),2])
Total <- AT + UnknownT
d <- data.frame(AT,UnknownT,Total)
keyval(key,d)
}
out <- mapreduce(input ="/user/hduser/input",
output = "/user/hduser/output",
input.format = make.input.format("pig.hive", sep = "\u0001")
output.format = make.output.format("csv", sep = ","),
map= sample.map)
reduce = sample.reduce)
Error:
Warning in asMethod(object) : NAs introduced by coercion
Warning in split.default(1:rmr.length(y), unique(ind), drop = TRUE) : data length is not a multiple of split variable
Warning in rmr.split(x, x, FALSE, keep.rownames = FALSE) : number of items to replace is not a multiple of replacement length Warning in split.default(1:rmr.length(y), unique(ind), drop = TRUE) :
data length is not a multiple of split variable
Warning in rmr.split(v, ind, lossy = lossy, keep.rownames = TRUE) : number of items to replace is not a multiple of replacement length
Error in as(x, class(k)) :
no method or default for coercing “NULL” to “data.frame”
Calls: <Anonymous> ... apply.reduce -> c.keyval -> reduce.keyval -> lapply -> FUN -> as No traceback available
UPDATE
I have added the sample data and edited the code above. Hope this helps!
Sample Data:
NULL,"2014-03-14","PP"
345689202,"2014-03-14","AN"
234539390,"2014-03-14","PP"
123125444,"2014-03-14","AN"
NULL,"2014-03-14","AN"
901828393,"2014-03-14","AN"
There are some issues with as which have been identified recently. I don't see why as can't handle this by default, but you can modify coerce which handles the conversion with an S4 method to call as.data.frame.
setMethod("coerce",c("NULL","data.frame"), function(from, to, strict=TRUE) as.data.frame(from))
[1] "coerce"
as(NULL,"data.frame")
data frame with 0 columns and 0 rows
library(nnet)
set.seed(9850)
train1<- sample(1:155,110)
test1 <- setdiff(1:110,train1)
ideal <- class.ind(hepatitis$class)
hepatitisANN = nnet(hepatitis[train1,-20], ideal[train1,], size=10, softmax=TRUE)
j <- predict(hepatitisANN, hepatitis[test1,-20], type="class")
hepatitis[test1,]$class
table(predict(hepatitisANN, hepatitis[test1,-20], type="class"),hepatitis[test1,]$class)
confusionMatrix(hepatitis[test1,]$class, j)
Error:
Error in nnet.default(hepatitis[train1, -20], ideal[train1, ], size = 10, :
NA/NaN/Inf in foreign function call (arg 2)
In addition: Warning message:
In nnet.default(hepatitis[train1, -20], ideal[train1, ], size = 10, :
NAs introduced by coercion
hepatitis variable consists of the hepatitis dataset available on UCI.
This error message is because you have character values in your data.
Try reading the hepatitis dataset with na.strings = "?". This is defined in the description of the dataset on the uci page.
headers <- c("Class","AGE","SEX","STEROID","ANTIVIRALS","FATIGUE","MALAISE","ANOREXIA","LIVER BIG","LIVER FIRM","SPLEEN PALPABLE","SPIDERS","ASCITES","VARICES","BILIRUBIN","ALK PHOSPHATE","SGOT","ALBUMIN","PROTIME","HISTOLOGY")
hepatitis <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/hepatitis/hepatitis.data", header = FALSE, na.strings = "?")
names(hepatitis) <- headers
library(nnet)
set.seed(9850)
train1<- sample(1:155,110)
test1 <- setdiff(1:110,train1)
ideal <- class.ind(hepatitis$Class)
# will give error due to missing values
# 1st column of hepatitis dataset is the class variable
hepatitisANN <- nnet(hepatitis[train1,-1], ideal[train1,], size=10, softmax=TRUE)
This code will not give your error, but it will give an error on missing values. You will need to do address those before you can continue.
Also be aware that the class variable is the first variable in the dataset straight from the UCI data repository
Edit based on comments:
The na.action only works if you use the formula notation of nnet.
So in your case:
hepatitisANN <- nnet(class.ind(Class)~., hepatitis[train1,], size=10, softmax=TRUE, na.action = na.omit)