Related
I have an shiny dashboard that contains multiple tabpanels, boxes that has datatable and plots.
With in the first panel tab, I have a datatable followed by two plot objects. I have put the plots into separate collapsible boxes. The issue I have is the plot is overlapping. I tried adjusting the heights to the box/tab box but I still get the overlapping plot.
I am looking at the 'Drug' tabpanel and the two plot objects are: plotlyOutput("drug_cleveland_plot") and plotOutput("drug_forest_plot").
I set the height of the box : height = 3000
Height of the plot that is overlapping: height = 1000
UI:
tabItem(
tabName = "comorbidities",
box(title = p("Medical History",
div(class = "qv_buttons",
actionButton("run_med_history", "Generate Report", icon = icon("refresh")),
shinyWidgets::radioGroupButtons("med_history_pop", label = NULL,
choices = list(#"Previously & Newly Diagnosed",
"Previously Diagnosed",
"Newly Diagnosed"),
selected = "Previously Diagnosed")
)
),
status = "success",
solidHeader = TRUE,
width = 12,
box(
width = 12 ,
height = 3000,
br(),
tabBox(
id = "med_history_tab",
tabPanel(
"Drug",
pickerInput(
inputId = "drug_class_selection",
label = "Drug Class:",
choices = c('ATC 1st', 'ATC 2nd', 'ATC 3rd', 'ATC 4th', 'ATC 5th', 'Ingredient'),
width = '50%'
),
DT::dataTableOutput("truven_med_history_drug_table", width = "850px"),
box(title = "Expected vs Observed Proportion Cleveland Plot",
collapsible = TRUE,collapsed = TRUE, plotlyOutput("drug_cleveland_plot"),width = "100%"),
box(title = "Expected vs Observed Proportion Odds Ratio",
collapsible = TRUE,collapsed = TRUE, plotOutput("drug_forest_plot"),width = "100%")),
tabPanel(
"Condition",
pickerInput(
inputId = "condition_hrc_selection",
label = "Condition Level:",
choices = c(0,1),
choicesOpt = list(subtext = c(" : Acual"," : 1 Level Higher")),
width = '50%'
),
#verbatimTextOutput('sel.cond'),
DT::dataTableOutput("truven_med_history_condition_table"),
actionButton('resetSelection', label = "Click to reset row selection"),
plotlyOutput('cond_cleveland_plot')
),
tabPanel(
"Procedure",
pickerInput(
inputId = "procedure_hrc_selection",
label = "Procedure Level:",
choices = c(0,1),
choicesOpt = list(subtext = c(" : Acual"," : 1 Level Higher")),
width = '50%'
),
#verbatimTextOutput('sel.proc'),
DT::dataTableOutput("truven_med_history_procedure_table")
),
tabPanel(
"Charlson Cormobidity",
DT::dataTableOutput("truven_med_history_cci_table"),
plotlyOutput("truv_cci_bar_plotly"),
br(),
plotlyOutput("cci_bar_plotly")
),
#plotOutput("truven_atc1_plot"),
#plotOutput("truven_icd3_plot")#,
#DT::dataTableOutput("truven_med_history_drug_table")
width = 12,
height = 3000
)
)
Code to create the plot
Server:
# drug cleaveland plot
output$drug_cleveland_plot = renderPlotly({
df <- df_drug_plot()
df <- sqldf("select distinct concept_name,w_cond_rate as rate,'Diagnosed' as grp from df
union
select distinct concept_name,w_exp_rate as rate,'Expected' as grp from df
")
df <- df %>%
arrange(rate) %>% mutate(grp = factor(grp)) %>%
mutate(concept_name=factor(concept_name))
p <- df %>%
arrange(grp, rate, desc(concept_name)) %>%
ggplot(aes(rate, fct_inorder(concept_name))) +
geom_line(aes(group = concept_name)) +
geom_point(aes(color = grp)) +
scale_x_continuous(breaks = seq(0, 1.1, by = 0.1)) +
theme_bw() +
theme(panel.grid.major.x = element_line( linetype = "dotted", size = 0.2, color = 'grey' )) +
scale_colour_manual(values=c("#d91e4a", "#939597")) +
theme (legend.title=element_blank())
m <- list(
l = 200,
r = 100,
b = 100,
t = 100,
pad = 5
)
fig <- ggplotly(p,width = 1500, height = 1000) %>% layout(title = "Drugs: Observed vs Expected Proportion",
autosize = F,
margin = m,
yaxis = list(title = "",
automargin = TRUE),
legend = list(title=list(text='<b> Group </b>')))
fig
})
I'm having issues with a filter option in my R shinydashboard app. I'm able to filter a dataframe column (padj < 1) but when I incorporate this same filter into the app the data is missing padj rows that are very tiny like 1.41103072458963E-14. I get all rows up to 4 decimal places (0.00011014) but not rows with padj smaller than that. This cuts off dozens of wanted rows.
I may be coding something wrong and have tried searching for similar issues but haven't found any.
The select input I chose is:
pickerInput("FDR", "False Discovery Rate", choices = c(1, 0.1, 0.05, 0.01))
when I try to filter using above input:
genes1 <- reactive({
genes <- DEG2 %>% dplyr::filter(padj <= input$FDR) %>% dplyr::filter(log2FoldChange >= input$FC | log2FoldChange <= -input$FC)
})
Any help/advice is greatly appreciated.
data to be loaded here:
datafile.
See below for the app code.
library(shinydashboard)
library(dashboardthemes)
library(shiny)
library(shinythemes)
library(shinyWidgets)
library(shinycssloaders)
library(shinyjs)
library(htmlTable)
library(DT)
library(dplyr)
library(ggpubr)
library(ggplot2)
library(htmlwidgets)
library(plotly)
library(table1)
# load dataset
DEG2 <- read.csv("DEG2.csv")
# to add color to the spinner
options(spinner.color="#287894")
#############################################
### HEADER #################################
#############################################
header <- dashboardHeader(title = tagList(
tags$span(class = "logo-mini", "Cell"),
tags$span( class = "logo-lg", "My 1st App" )),
titleWidth = 300)
#############################################
### SIDEBAR #################################
#############################################
sidebar <- dashboardSidebar(width = 300, sidebarMenu(id = "sidebar", # id important for updateTabItems
menuItem("Pipeline", tabName = "pipe", icon = icon("bezier-curve")),
menuItem("Something", tabName = "plot", icon = icon("braille")),
menuItem("Something else", tabName = "pathways", icon = icon("connectdevelop")),
menuItem("Contact", tabName = "contact", icon = icon("address-card"))
)
)
#############################################
### BODY #################################
#############################################
body <- dashboardBody(
useShinyjs(), # Set up shinyjs
# changing theme
shinyDashboardThemes(theme = "blue_gradient"),
tabItems(
######### Tab 1 #########################################
tabItem("pipe",
fluidPage(
h2("Pipeline"),
#### STEP 1 ####
box(width = 12, title = "Step1: Filter for DEGs", collapsible = TRUE, collapsed = FALSE, status = "primary", solidHeader = TRUE,
fluidRow(
column(4, offset = 0,
sliderTextInput("FC", "Fold-Change (absolute value)", choices = seq(from= 0, to= 5, by=0.5), grid = TRUE),
pickerInput("FDR", "False Discovery Rate", choices = c(1, 0.1, 0.05, 0.01)),
setSliderColor(color = '#EE9B00', sliderId = 1),),
column(6, offset= 1,
valueBoxOutput("genes_filtered", width = 4))),
br(),
fluidRow(
column(10, offset =0,
DT::dataTableOutput("genetable") %>% withSpinner(type = 8, size=1))),
br(),
actionBttn("step1", "Select to advance:step 2", color = "warning", style = "fill", icon = icon("angle-double-down" ))
)),
#### STEP 2 ####
conditionalPanel(
condition = "input.step1 == 1",
fluidPage(
box(width = 12, title = "Step2: Filter for gene regulation", collapsible = TRUE, collapsed = FALSE, status = "primary", solidHeader = TRUE,
"Choose to subset the genes that are up or down regulated",
br(),
br(),
fluidRow(
column(6, offset = 0,
prettyRadioButtons("reg", "Choose:", choices = c("Up-regulated", "Down-regulated", "All"), status = "success", fill=TRUE, inline = TRUE))
),
br(),
fluidRow(
column(6, offset = 0,
valueBoxOutput("value", width = 6)))
) # box
)
) # conditional panel
)# end tab3
) # end tabItems
)#dashboardBody
ui <- dashboardPage(header = header,
sidebar = sidebar,
body = body
)
server <- function(input, output, session) {
############################################
###### TAB1 ##################
############################################
# step 1
genes1 <- reactive({
genes <- DEG2 %>% dplyr::filter(padj <= input$FDR) %>% dplyr::filter(log2FoldChange >= input$FC | log2FoldChange <= -input$FC)
})
output$genes_filtered <- renderValueBox({
valueBox(value=length(genes1()$symbol), subtitle = "Filtered genes", color = "purple", icon=icon("filter"))
})
output$genetable <- DT::renderDataTable({
genes1() }, server = FALSE, extensions =c("Responsive", "Buttons"), rownames = FALSE, options = list(dom = 'Blfrtip', buttons = list('copy', list(extend = "collection",
buttons = c("csv", "excel", "pdf"),
text = "Download")))
)
# step 2
genes2 <- reactive({
g2 <- if (input$reg == "Up-regulated"){
genes1() %>% filter(log2FoldChange > 0)
} else if (input$reg == "Down-regulated"){
genes1() %>% filter(log2FoldChange < 0)
} else {
genes1()
}
})
output$value <- renderValueBox({
if (input$reg == "Up-regulated"){
valueBox(value = length(genes2()$symbol), subtitle = "Up-regulated genes", color = "red", icon = icon("hand-point-up"))
} else if (input$reg == "Down-regulated"){
valueBox(value = length(genes2()$symbol), subtitle = "Down-regulated genes", color = "blue", icon = icon("hand-point-down"))
} else {
valueBox(value = length(genes2()$symbol), subtitle = "All genes", color = "orange", icon = icon("record-vinyl"))
}
})
} #server
shinyApp(ui, server)
Try as.numeric(input$FDR) in your filter as shown below.
genes <- DEG2 %>% dplyr::filter(padj <= as.numeric(input$FDR))
Thanks for taking your valuable time to pitch in into this question. :-)
I'm building a shiny app that would take user inputs through rhandsontable and save it as a .rds file for data persistence.
The code is as follows:
Global.r
library(shiny)
library(shinydashboard)
library(shinycssloaders
library(rhandsontable)
library(htmltools)
library(plotly)
library(shinyjs)
library(tidyverse)
library(DT)
# Reads the data stored already
raw_data_projects <- readRDS("Projects.rds")
# code to refresh app so as to display the newly added data
jsResetCode <- "shinyjs.reset = function() {history.go(0)}"
ui.R
dashboardPage(skin = "black",
dashboardHeader(dropdownMenuOutput("dropdownmenu"),title = "PMO Dashboard",
tags$li(div(img(src = 'TechM_logo.png',
height = "35px"),
style = "padding-top:10px; padding-bottom:10px;"),
class = "dropdown"),dropdownMenuOutput("msgOutput")) ,
dashboardSidebar(
sidebarMenu(
menuItem("Home", tabName = "home", icon = icon("home")),
menuItem("Projects", tabName = "pros", icon = icon("briefcase")),
menuItem("About Team", tabName = "teamstr", icon = icon("user-friends")),
menuItem("Training & Skills",tabName = "skills",icon = icon("book"))
)),
dashboardBody(
useShinyjs(), # Include shinyjs in the UI
extendShinyjs(text = jsResetCode),
tags$link(rel = "stylesheet", type = "text/css", href = "style_2.css"),
tabItems(
tabItem(tabName = "pros",
fluidPage(tabBox(width = "500px",
tabPanel("Metrics",
fluidRow(
valueBoxOutput("Completed", width = 3),
valueBoxOutput("WIP", width = 3),
valueBoxOutput("Delayed", width = 3),
valueBoxOutput("OnHold", width = 3)
),
fluidRow(
box(plotlyOutput("Project_category"), width = 4,solidHeader = TRUE, status = "primary", title = "Project Category", collapsible = TRUE),
box(plotlyOutput("Project_status"), width = 8,solidHeader = TRUE, status = "primary", title = "Project Status", collapsible = TRUE),
box(plotlyOutput("Complexity"), width = 4,solidHeader = TRUE, status = "primary", title = "Project Complexity", collapsible = TRUE),
box(plotlyOutput("Audits"), width = 4,solidHeader = TRUE, status = "primary", title = "Audit Status", collapsible = TRUE)
)),
tabPanel("Data",
box(withSpinner(rHandsontableOutput("Projects")), width = 12),
actionButton("saveBtnProjects", "Save Projects", icon = icon("save")),
actionButton("BtnResetProjects", "Reset Filters", icon = icon("eraser")))))
)))
server.r
shinyServer(function(input, output, session){
dt_projects <- reactive({ raw_data_projects })
vals <- reactiveValues()
output$Projects <- renderRHandsontable({
rhandsontable(dt_projects(), readOnly = FALSE, search = TRUE, selectCallback = TRUE ) %>%
hot_cols(columnSorting = TRUE, manualColumnMove = TRUE, manualColumnResize = TRUE ) %>%
hot_table(highlightRow = TRUE, highlightCol = TRUE) %>%
#hot_col("PROJECT.STATUS", renderer = text_renderer, type = "autocomplete") %>%
hot_rows(fixedRowsTop = 1)
})
# on click of button the file will be saved to the working directory
observeEvent(input$saveBtnProjects,
#write.csv(hot_to_r(input$Projects), file = "./Data/project_tracker.csv",row.names = FALSE)
saveRDS(hot_to_r(input$Projects),"Projects.rds")
)
# refresh the page
observeEvent(input$saveBtnProjects, {js$reset()})
})
So when I run the app I get the table I desire as below:
As we can see, as I was inserting values to the first column, all the other columns greyed out and I couldn't insert any values into it. Please help me with this issue.
Also please suggest if my code will display the data reactively as soon as I save the data by pressing Save Projects button.
Thanks a ton in advance!!
P.S : I have included the server code only for the table considering the length of the question leaving the code of other tabs. But still this code is reproducible.
This question already has answers here:
Sort (order) data frame rows by multiple columns
(19 answers)
Closed 4 years ago.
I created a shiny app and need some help with the subset of my data. I insert a dateRangeInput where the client can filter between a start and end date. This filter is included into my ggplot code, so that the plot always automatically changes when a different date is selected. My problem is it does not filter based on the selected date, the data of partC. The problem is this line of code: geom_line(aes(x = Date, y = OLS.Data[partC]), color="red"). partC is a variable that connects to selectinputs to have access to my dataframe. Example: Client selects input1 = Informed and input2 = Full, partC makes InformedFull (which is the name of one column of my dataset) and so on. So partC is just a a connector of the two inputs, and this is my problem. If I put into my geom_line this code e.g geom_line(aes(x = Date, y = InformedFull), color="red"), instead the above everything works perfect, but I need it with partC.
Here is my ui.R code (only necessary part):
box(
title = "Controls-0",
status = "primary",
solidHeader = TRUE,
width = 3,
height = 142,
dateRangeInput("daterange", "SELECT DATE:", start = min(OLS.Data$Date), end = max(OLS.Data$Date))
),
box(
title = "Investor Control",
status = "primary",
solidHeader = TRUE,
width = 3,
selectInput("investor", label="Select Investor", choices = list("Informed" = "Informed", "Noise" = "Noise"), selected = "Informed")
),
box(
title = "Category Control",
status = "primary",
solidHeader = TRUE,
width = 3,
selectInput("category", label="Select Category", choices = list("Full" = "Full", "Fact" = "Fact", "Fact Positive" = "Fact.Pos", "Fact Negative" = "Fact.Neg", "Emotions" = "Emotions", "Emotions Fact" = "EmotionsFact"), selected = "Full")
),
Update server.R with ggplot:
server <- function(input, output) {
partC = NULL
makeReactiveBinding("partC")
observeEvent(input$investor, {
partA<<-input$investor
partA<<-as.character(partA)
})
observeEvent(input$category, {
partB<<-input$category
partB<<-as.character(partB)
})
OLS.Data$InformedEmotionsFact <- as.numeric(as.character(OLS.Data$InformedEmotionsFact))
OLS.Data$NoiseEmotionsFact <- as.numeric(as.character(OLS.Data$NoiseEmotionsFact))
output$myPlotVisu <- renderPlot({
partC<-as.character(paste(partA,partB,sep=""))
OLS.Data %>%
select(partC, NYSE,Date,Sector) %>%
filter(Date >= input$daterange[1], Date <= input$daterange[2]) %>%
ggplot(aes(x = Date, y = NYSE)) +
geom_line() +
ggtitle(paste(input$investor,input$category,sep = "")) +
theme(plot.title = element_text(hjust = 0.5,face="bold")) +
labs(x="Time",y="Return S&P500") +
geom_line(aes(x = Date, y = OLS.Data[partC]), color="red")
})
I dont know why you assign partA/partB to the global environment, and even twice. You dont need to do that. I created an reactiveValues object instead, where you store the values (partA, partB and partC). Then you can use them wherever you want in your app.
Maybe the following example will help you with your code. I created some dummy data for it.
library(shiny)
library(shinydashboard)
library(ggplot2)
## DATA #######################
DateSeq = seq(as.Date("1910/1/1"), as.Date("1911/1/1"), "days")
OLS.Data = data.frame(
ID = 1:length(DateSeq),
Date = DateSeq,
NoiseEmotionsFact = sample(1:100,length(DateSeq), T),
InformedEmotionsFact = sample(100:1000,length(DateSeq), T),
InformedFull = sample(10:1000,length(DateSeq), T),
NoiseFull = sample(50:5000,length(DateSeq), T),
NoiseFact = sample(1:15,length(DateSeq), T),
NoiseFact.Pos = sample(100:110,length(DateSeq), T),
NoiseFact.Pos = sample(10:200,length(DateSeq), T)
)
## UI #######################
ui <- {dashboardPage(
dashboardHeader(),
dashboardSidebar(),
dashboardBody(
plotOutput("myPlot"),
box(
title = "Controls-0",
status = "primary",
solidHeader = TRUE,
width = 3,
height = 142,
dateRangeInput("daterange", "SELECT DATE:", start = min(OLS.Data$Date), end = max(OLS.Data$Date))
),
box(
title = "Alpha",
sliderInput("alphaVisu", label = "Alpha :", min = 0, max = 1, value = 0.4, step = 0.1)
),
box(
title = "Investor Control",
status = "primary",
solidHeader = TRUE,
width = 3,
selectInput("investor", label="Select Investor",
choices = list("Informed" = "Informed", "Noise" = "Noise"), selected = "Informed")
),
box(
title = "Category Control",
status = "primary",
solidHeader = TRUE,
width = 3,
selectInput("category", label="Select Category",
choices = list("Full" = "Full", "Fact" = "Fact", "Fact Positive" = "Fact.Pos",
"Fact Negative" = "Fact.Neg", "Emotions" = "Emotions",
"Emotions Fact" = "EmotionsFact"), selected = "Full")
)
)
)}
## SERVER #######################
server <- function(input, output) {
## Reactive Values ############
parts <- reactiveValues(partA=NULL, partB=NULL, partC=NULL)
## Observe Events ############
observeEvent(input$investor, {
parts$partA <- as.character(input$investor)
})
observeEvent(input$category, {
parts$partB <- as.character(input$category)
})
## Plot ############
output$myPlot <- renderPlot({
parts$partC <- as.character(paste(parts$partA, parts$partB,sep=""))
OLS.Data.filtered <- OLS.Data %>%
filter(Date >= input$daterange[1], Date <= input$daterange[2])
req(OLS.Data.filtered)
OLS.Data.filtered %>%
ggplot(aes(x = Date, y = ID)) +
geom_line() +
ggtitle(paste("input$investor","input$category",sep = "")) +
theme(plot.title = element_text(hjust = 0.5,face="bold")) +
labs(x="Time",y="Return S&P500") +
geom_line(aes(x = Date, y = OLS.Data.filtered[parts$partC]), color="red",
alpha = rep(as.numeric(input$alphaVisu), nrow(OLS.Data.filtered[parts$partC])))
})
}
shinyApp(ui, server)
I am doing some timeseries analysis and have created a shiny app where when the app starts sample timeseries data is uploaded or the user can upload csv dataset from his local directory....
Sample Dataset:
df
month passengers
1 01-01-2000 2072798
2 01-02-2000 2118150
3 01-03-2000 2384907
4 01-04-2000 2260620
5 01-05-2000 2386165
6 01-06-2000 2635018
7 01-07-2000 2788843
8 01-08-2000 2942082
9 01-09-2000 2477000
10 01-10-2000 2527969
11 01-11-2000 2161170
12 01-12-2000 2175314
13 01-01-2001 2307525
14 01-02-2001 2196415
15 01-03-2001 2545863
library(signal)
library(shiny)
library(AnomalyDetection) #devtools::install_github("twitter/AnomalyDetection")
library(ggplot2)
# Define UI for application that draws a histogram
library(shinydashboard)
library(shinycssloaders)
library(googleVis)
shinyUI(dashboardPage(skin = "green",
dashboardHeader(title = "Anomaly Detection in Time series",
titleWidth = 350),
dashboardSidebar(
sidebarUserPanel("Nishant Upadhyay",
image = "nishantcofyshop.jpg"
),
sidebarMenu(
menuItem("Data", tabName = "data", icon = icon("database")),
menuItem("Filters", tabName = "filter", icon = icon("filter")),
menuItem("Anomalies", tabName = "anomaly", icon = icon("check")),
#menuItem("Save Data", tabName = "save", icon = icon("save"))
menuItem("About The App", tabName = "Help", icon = icon("info-circle"))
)
),
dashboardBody(
tabItems(
tabItem(tabName = "data",
fluidRow(
box(
title = "Data scatter Chart",
status = "primary",
solidHeader = T,
collapsible = T,
width = 12,
shinycssloaders::withSpinner(htmlOutput("dataChart"),type = getOption("spinner.type", default = 8),color = "red")
)
),
fluidRow(
box(
radioButtons(
"data_input","",
choices = list("Load sample data" = 1,
"Upload csv file" = 2
)
),
conditionalPanel(
condition = "input.data_input=='1'",
h5("Sample dataset of Lebron James basketball shots over the years")
),
conditionalPanel(
condition = "input.data_input=='2'",
fileInput('file1', 'Choose file to upload',
accept = c(
'text/csv',
'text/comma-separated-values',
'text/tab-separated-values',
'text/plain',
'.csv',
'.tsv'
)),
checkboxInput('header', 'Header', TRUE),
radioButtons('sep', 'Separator',
c(Comma=',',
Semicolon=';',
Tab='\t'),','),
radioButtons('quote', 'Quote',
c('None'='',
'Double Quote'='"',
'Single Quote'="'"),
'')
),
title = "Select Dataset",
status = "info",
solidHeader = T,
collapsible = T
),
box(
title = "Data",
status = "info",
solidHeader = T,
collapsible = T,
shinycssloaders::withSpinner(htmlOutput('contents'),type = getOption("spinner.type", default = 8),color = "red")
)# end of box
)## end of Fluid row
), ## end of tab item
tabItem(
tabName = "filter",
fluidRow(
box(
title = "Data Chart",
status = "primary",
solidHeader = T,
collapsible = T,
width = 12,
shinycssloaders::withSpinner(htmlOutput('dataChartFiltered'),type = getOption("spinner.type", default = 8),color = "red")
)
),
fluidRow(
box(
title = "Filters",
status = "info",
solidHeader = T,
collapsible = T,
width = 4,
radioButtons("filt", NULL,
c("None" = "none",
"Butterworth" = "butt",
"Type-II Chebyshev" = "cheby2")),
submitButton("Filter")
),
box(
title = "Butterworth",
status = "info",
solidHeader = T,
collapsible = T,
width = 4,
textInput("buttern", label = "Filter Order", value = "3"),
textInput("butterf", label = "Critical Frequencies", value = "0.1"),
radioButtons("buttert", "Type",
c("Low-Pass" = "low",
"High-Pass" = "high"))
),
box(
title = "Chebyshev",
status = "info",
solidHeader = T,
collapsible = T,
width = 4,
textInput("chebyn", label = "Filter Order", value = "5"),
textInput("chebyd", label = "dB of Pass Band", value = "20"),
textInput("chebyf", label = "Critical Frequencies", value = "0.2"),
radioButtons("chebyt", "Type",
c("Low-Pass" = "low",
"High-Pass" = "high"))
)
)
)
) ## end of tab items
) ## end of Dashboard
)
)
shinyServer(function(input, output){
dataframe<-reactive({
if (input$data_input == 1) {
tab <- read.csv("df.csv",header = T,stringsAsFactors = F)
} else if (input$data_input == 2) {
inFile <- input$file1
if (is.null(inFile))
return(data.frame(x = "Select your datafile"))
tab = read.csv(inFile$datapath, header = input$header,
sep = input$sep, quote = input$quote)
}
tt <- tryCatch(as.POSIXct(tab[,1]),error=function(e) e, warning=function(w) w)
if (is(tt,"warning") | is(tt,"error")) {
tab$Old = tab[,1]
tab[,1] = as.POSIXct(1:nrow(tab), origin = Sys.time())
} else {
tab[,1] = as.POSIXct(tab[,1])
}
tab
})
output$dataChart <- renderGvis({
if (!is.null(dataframe()))
gvisLineChart(dataframe()[,c(1,2)], xvar = colnames(dataframe())[1], yvar = colnames(dataframe())[2],
options = list(
crosshair.trigger = 'selection',
enableInteractivity = TRUE,
hAxis.maxTextLines = 10,
tooltip.trigger = 'none'
))
})
output$contents <- renderGvis({
if (!is.null(dataframe()))
gvisTable(dataframe(),
options = list(page='enable'))
})
output$dataChartFiltered <- renderGvis({
if (input$filt == "none") {
return(NULL)
} else if (input$filt == "butt") {
bf <- butter(as.numeric(input$buttern), as.numeric(input$butterf), type = input$buttert)
filtered = data.frame(timestamp = dataframe()[,1],
count = as.numeric(filter(bf, dataframe()[,2])))
gvisLineChart(filtered, xvar = colnames(filtered)[1], yvar = colnames(filtered)[2],
options = list(
crosshair.trigger = 'selection',
enableInteractivity = TRUE,
hAxis.maxTextLines = 10,
tooltip.trigger = 'none'
))
} else if (input$filt == "cheby2") {
ch <- cheby2(as.numeric(input$chebyn), as.numeric(input$chebyd),
as.numeric(input$chebyf), type = input$chebyt)
filtered = data.frame(timestamp = dataframe()[,1],
count = as.numeric(filter(ch, dataframe()[,2])))
gvisLineChart(filtered, xvar = colnames(filtered)[1], yvar = colnames(filtered)[2],
options = list(
crosshair.trigger = 'selection',
enableInteractivity = TRUE,
hAxis.maxTextLines = 10,
tooltip.trigger = 'none'
))
}
})
})
The problem i am facing is that once the shiny app is executed , the sample data is loaded properly as the this data is placed in the app folder in the directory (one can use R inbuilt data set or use the data i gave in the start) and subsequently all steps gets executed properly.
But if i want to upload some other csv file from local directory, the upload button selection does not get activated even after selecting it.But,in fact, if one goes to the second menu item in the sidebar panel i.e. filter tab and clicks on the filter button (under Filters box ) and then if i go back to Data menu in the sidebar panel again, i can see that now my upload csv file button has got activated and now i can browse the csv file in local directory and upload the same into the app and now everything works fine.
It seems somewhere the condition that makes the upload file button is not getting active initially when the app opens....
Need help to sort out the issue...Sorry for posting large chunk of code....
conditionalPanel and submitButton do not work well together. Replace your submitButton("Filter") with actionButton("Filter", "").
EDIT:
As per the comment, for the plot to be generated only after the actionButton is clicked you can put output$dataChartFiltered inside observeEvent of Filter with isolate for `input objects as follows:
observeEvent(input$Filter,{
output$dataChartFiltered <- renderGvis({
if (isolate(input$filt) == "none") {
return(NULL)
} else if (isolate(input$filt) == "butt") {
bf <- butter(as.numeric(isolate(input$buttern)), as.numeric(isolate(input$butterf)), type = isolate(input$buttert))
filtered = data.frame(timestamp = dataframe()[,1],
count = as.numeric(filter(bf, dataframe()[,2])))
gvisLineChart(filtered, xvar = colnames(filtered)[1], yvar = colnames(filtered)[2],
options = list(
crosshair.trigger = 'selection',
enableInteractivity = TRUE,
hAxis.maxTextLines = 10,
tooltip.trigger = 'none'
))
} else if (isolate(input$filt) == "cheby2") {
ch <- cheby2(as.numeric(isolate(input$chebyn)), as.numeric(isolate(input$chebyd)),
as.numeric(isolate(input$chebyf)), type = isolate(input$chebyt))
filtered = data.frame(timestamp = dataframe()[,1],
count = as.numeric(filter(ch, dataframe()[,2])))
gvisLineChart(filtered, xvar = colnames(filtered)[1], yvar = colnames(filtered)[2],
options = list(
crosshair.trigger = 'selection',
enableInteractivity = TRUE,
hAxis.maxTextLines = 10,
tooltip.trigger = 'none'
))
}
})
})