I am using sample 2D functions for optimization with MetaModelUnStructuredComp.
Below is a code snippet. The computational time spent for training increases considerably as I increase the number of sample points. I am not sure if this much increase is expected or am I doing something wrong.
The problem is 2D and predicting 1 output below is some performance time;
45 sec for 900 points*
14 sec for 625 points
3.7 sec for 400 points
*points represent the dimension of each training input
Will decreasing this be a focus of openMDAO development team in the future? (keep reading for the edited version)
import numpy as np
from openmdao.api import Problem, IndepVarComp
from openmdao.api import ScipyOptimizeDriver
from openmdao.api import MetaModelUnStructuredComp, FloatKrigingSurrogate,MetaModelUnStructuredComp
from openmdao.api import CaseReader, SqliteRecorder
import time
t0 = time.time()
class trig(MetaModelUnStructuredComp):
def setup(self):
ii=3
nx, ny = (10*ii, 10*ii)
print(nx*ny)
xx = np.linspace(-3,3, nx)
yy = np.linspace(-2,2, ny)
x, y = np.meshgrid(xx, yy)
# z = np.sin(x)**10 + np.cos(10 + y) * np.cos(x)
# z=4+4.5*x-4*y+x**2+2*y**2-2*x*y+x**4-2*x**2*y
term1 = (4-2.1*x**2+(x**4)/3) * x**2;
term2 = x*y;
term3 = (-4+4*y**2) * y**2;
z = term1 + term2 + term3;
self.add_input('x', training_data=x.flatten())
self.add_input('y', training_data=y.flatten())
self.add_output('meta_out', surrogate=FloatKrigingSurrogate(),
training_data=z.flatten())
prob = Problem()
inputs_comp = IndepVarComp()
inputs_comp.add_output('x', 1.5)
inputs_comp.add_output('y', 1.5)
prob.model.add_subsystem('inputs_comp', inputs_comp)
#triginst=
prob.model.add_subsystem('trig', trig())
prob.model.connect('inputs_comp.x', 'trig.x')
prob.model.connect('inputs_comp.y', 'trig.y')
prob.driver = ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['tol'] = 1e-8
prob.driver.options['disp'] = True
prob.model.add_design_var('inputs_comp.x', lower=-3, upper=3)
prob.model.add_design_var('inputs_comp.y', lower=-2, upper=2)
prob.model.add_objective('trig.meta_out')
prob.setup(check=True)
prob.run_model()
print(prob['inputs_comp.x'])
print(prob['inputs_comp.y'])
print(prob['trig.meta_out'])
t1 = time.time()
total = t1-t0
print(total)
Following the answers below i am adding a code snippet of an explicit component that uses SMT toolbox for surrogate. I guess this is one way to use the toolbox's capabilities.
import numpy as np
from smt.surrogate_models import RBF
from openmdao.api import ExplicitComponent
from openmdao.api import Problem, ScipyOptimizeDriver
from openmdao.api import Group, IndepVarComp
import smt
# Sample problem with SMT Toolbox and OpenMDAO Explicit Comp
#Optimization of SIX-HUMP CAMEL FUNCTION with 2 global optima
class MetaCompSMT(ExplicitComponent):
def initialize(self):
self.options.declare('sm', types=smt.surrogate_models.rbf.RBF)
def setup(self):
self.add_input('x')
self.add_input('y')
self.add_output('z')
# self.declare_partials(of='z', wrt=['x','y'], method='fd')
self.declare_partials(of='*', wrt='*')
def compute(self, inputs, outputs):
# sm = self.options['sm'] # seems like this is not needed
sta=np.column_stack([inputs[i] for i in inputs])
outputs['z'] =sm.predict_values(sta).flatten()
def compute_partials(self, inputs, partials):
sta=np.column_stack([inputs[i] for i in inputs])
print(sta)
for i,invar in enumerate(inputs):
partials['z', invar] =sm.predict_derivatives(sta,i)
# SMT SURROGATE IS TRAINED IN ADVANCE AND PASSED TO THE COMPONENT AS GLOBAL INPUT
# Training Data
ii=3 # "incerases the domain size"
nx, ny = (10*ii, 5*ii)
x, y = np.meshgrid(np.linspace(-3,3, nx), np.linspace(-2,2, ny))
term1 = (4-2.1*x**2+(x**4)/3) * x**2;
term2 = x*y;
term3 = (-4+4*y**2) * y**2;
z = term1 + term2 + term3;
# Surrogate training
xt=np.column_stack([x.flatten(),y.flatten()])
yt=z.flatten()
#sm = KPLSK(theta0=[1e-2])
sm=RBF(d0=-1,poly_degree=-1,reg=1e-13,print_global=False)
sm.set_training_values(xt, yt)
sm.train()
prob = Problem() # Start the OpenMDAO optimization problem
prob.model = model = Group() # Assemble a group within the problem. In this case single group.
"Independent component ~ single Design variable "
inputs_comp = IndepVarComp() # OpenMDAO approach for the design variable as independent component output
inputs_comp.add_output('x', 2.5) # Vary initial value for finding the second global optimum
inputs_comp.add_output('y', 1.5) # Vary initial value for finding the second global optimum
model.add_subsystem('inputs_comp', inputs_comp)
"Component 1"
comp = MetaCompSMT(sm=sm)
model.add_subsystem('MetaCompSMT', comp)
"Connect design variable to the 2 components. Easier to follow than promote"
model.connect('inputs_comp.x', 'MetaCompSMT.x')
model.connect('inputs_comp.y', 'MetaCompSMT.y')
"Lower/Upper bound design variables"
model.add_design_var('inputs_comp.x', lower=-3, upper=3)
model.add_design_var('inputs_comp.y', lower=-2, upper=2)
model.add_objective('MetaCompSMT.z')
prob.driver = ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.options['disp'] = True
prob.driver.options['tol'] = 1e-9
prob.setup(check=True, mode='fwd')
prob.run_driver()
print(prob['inputs_comp.x'],prob['inputs_comp.y'],prob['MetaCompSMT.z'])
If you are willing to compile some code yourself, you could write very light weight wrapper for the Surrogate Modeling Toolbox (SMT). You could write that wrapper to work with the standard MetaModelUnstructuredComp or just write your own component wrapper.
Either way, that library has some significantly faster unstructured surrogate models in it. The default OpenMDAO implementations are just basic implementations. We may improve them over time, but for larger data sets or design spaces SMT offers much better algorithms.
We haven't written a general SMT wrapper in OpenMDAO as of Version 2.4, but its not hard to write your own.
I'm going to look into the performance of the MetaModelUnStructuredComp using your test case a bit more closely. Though I do notice that this test case does involve fitting a structured data set. If you were to use MetaModelStructuredComp(http://openmdao.org/twodocs/versions/2.2.0/features/building_blocks/components/metamodelstructured.html), the performance is considerably better:
class trig(MetaModelStructuredComp):
def setup(self):
ii=3
nx, ny = (10*ii, 10*ii)
xx = np.linspace(-3,3, nx)
yy = np.linspace(-2,2, ny)
x, y = np.meshgrid(xx, yy, indexing='ij')
term1 = (4-2.1*x**2+(x**4)/3) * x**2;
term2 = x*y;
term3 = (-4+4*y**2) * y**2;
z = term1 + term2 + term3;
self.add_input('x', 0.0, xx)
self.add_input('y', 0.0, yy)
self.add_output('meta_out', 0.0, z)
The 900 points case goes from 14 seconds on my machine using MetaModelUnStructuredComp to 0.081 when using MetaModelStructuredComp.
Related
I have a blackbox solver which is wrapped as explicit component and the objective function and constraints are calculated in the blackbox solver and output. These are taken to a constraint components that has an equality constraint defined such that at any iteration, these constraints are satisifed. I am using finite difference to approximate the partial derivatives. However, I get this SLSQP error "Positive directional derivative for linesearch". From S.O., I understand that this error translates - optimizer could not find a direction to move to and also couldn't verify if the results are minimum. I found that for some iterations derivative is 'None' and it was 'None' at least a few times before it threw this error. Is it because the constraints are calculated in the black box solver? or is it because 'fd' for approximation is not working for non linear constraints? or both? A problem summary is attached for reference.
from PowerHarvest import *
from HydroDynamics import *
from SatelliteComms import *
from Propulsion import *
from Constraints import *
from SystemCost import *
class MDA(Group):
"""Multidisciplinary Analysis Group"""
def __init__(self, derivative_method='fd', **kwargs):
super(MDA, self).__init__(**kwargs)
self.derivative_method = 'fd'
def setup(self):
cycle = self.add_subsystem('cycle',Group(), promotes = ["*"])
cycle.nonlinear_solver = om.NewtonSolver(solve_subsystems = True)
cycle.nonlinear_solver.options['atol'] = 1e-6
cycle.add_subsystem('Hydro', Hydro(),promotes = ["*"]) #This is a blackbox explicit component!
cycle.add_subsystem('Propulsion_system', Propulsion(),promotes = ["*"])
cycle.add_subsystem('PowerHarvest_system',PowerHarvest(),promotes = ["*"])
cycle.add_subsystem("SatelitteComs_system", SatelitteComs(),promotes = ["*"])
cycle.nonlinear_solver.options['atol'] = 1.0e-5
cycle.nonlinear_solver.options['maxiter'] = 500
cycle.nonlinear_solver.options['iprint'] = 2
#Add constraint on the each subsytem if possible
#cycle.add_constraint('',om.ex)
self.add_subsystem('PowerConstraints_system', PowerConstraints(), promotes=["*"])
self.add_subsystem('BodyConstraints_system', BodyConstraint(),promotes = ["*"])
self.add_subsystem('SystemCost_system',SystemCost(), promotes = ['*'])
self.add_constraint('A_PV', upper = 100, units = 'm**2')
#these constraints are output of the blackbox solver!
self.add_constraint('AreaCon', upper = 0)
self.add_constraint('massCon',equals = 0)
self.add_constraint('P_Load', upper = 0) # Solar generates just enough for everything no storing!
self.add_constraint('DraughtCon', lower = 0.5 )
self.add_constraint('GMCon', lower = 0.01) #should be positive
#self.add_constraint('theta', upper = 0.14, lower = 0.1)
self.add_constraint('Amplitude_Con',upper = -0.1) #amplitude differenc
Added. Run script
import openmdao.api as om
from geom_utils import *
from openmdao.api import Problem, Group, ExplicitComponent,ImplicitComponent, IndepVarComp, ExecComp,\
NonlinearBlockGS, ScipyOptimizeDriver,NewtonSolver,DirectSolver,ScipyKrylov
import os
import numpy as np
from types import FunctionType
from geom_utils import *
from capytaine.meshes.meshes import Mesh
from pprint import pprint
from PowerHarvest import *
from HydroDynamics import *
from SatelliteComms import *
from Propulsion import *
from Constraints import *
from SystemCost import *
from PEARLMDA import *
if __name__ == '__main__':
prob = Problem()
model = prob.model = MDA()
prob.driver = ScipyOptimizeDriver(optimizer = 'SLSQP')
# prob.model.nonlinear_solver = om.NonlinearBlockGS()
#prob.driver.options['optimizer'] = 'COBYLA'
prob.driver.options['tol'] = 1e-5
prob.model.add_design_var('Df', lower= 6.0, upper=20.0, units = "m")
prob.model.add_design_var('tf', lower=1.0, upper=4.0, units = "m")
#prob.model.add_design_var('submergence', upper = -0.9)
prob.model.add_design_var('Vs', lower=1, upper=2, units = "m/s") #make sure the lower, upper are according to their units.
prob.model.add_design_var('ld', lower = 3, upper = 7, units = 'm' )
prob.model.add_objective('cost_per_byte' )
newton = om.NewtonSolver(solve_subsystems=True)
newton.linesearch = om.BoundsEnforceLS()
prob.model.nonlinear_solver = newton
prob.model.linear_solver = om.DirectSolver()
# sqlite file to record the intermediate calculations and derivatives
r = om.SqliteRecorder("pearl_computations.sql")
prob.add_recorder(r)
prob.driver.add_recorder(r)
prob.driver.recording_options["record_derivatives"] = True
# Attach recorder to a subsystem
model.nonlinear_solver.add_recorder(r)
model.add_recorder(r)
prob.driver.recording_options["includes"] = ["*"]
# Attach recorder to a solver
model.nonlinear_solver.add_recorder(r)
prob.setup()
prob.set_solver_print(level=2)
# For gradients across the model this will do the finite difference method
prob.model.approx_totals(method="fd", step=0.1, form="forward", step_calc="abs")
prob.run_model()
prob.run_driver()
prob.record("final_state")
print('minimum objective found at')
print(prob['cost_per_byte'][0])
print(prob['A_PV'])
print(f"tf: {prob['tf'][0]}")
results = dict()
results['tf'] = prob['tf'][0]
results['Df'] = prob['Df'][0]
results['ld'] = prob['ld'][0]
results['mass'] = prob['Payloadmass'][0]
results['DraughCon'] = prob['DraughtCon'][0]
results['AmplitudeCon'] = prob['AmplitudeCon'][0]
print(results)
Scaling report
I am having trouble understanding how to optimize a distributed component with a serial output. This is my attempt with an example problem given in the openmdao docs.
import numpy as np
import openmdao.api as om
from openmdao.utils.array_utils import evenly_distrib_idxs
from openmdao.utils.mpi import MPI
class MixedDistrib2(om.ExplicitComponent):
def setup(self):
# Distributed Input
self.add_input('in_dist', shape_by_conn=True, distributed=True)
# Serial Input
self.add_input('in_serial', val=1)
# Distributed Output
self.add_output('out_dist', copy_shape='in_dist', distributed=True)
# Serial Output
self.add_output('out_serial', copy_shape='in_serial')
#self.declare_partials('*','*', method='cs')
def compute(self, inputs, outputs):
x = inputs['in_dist']
y = inputs['in_serial']
# "Computationally Intensive" operation that we wish to parallelize.
f_x = x**2 - 2.0*x + 4.0
# These operations are repeated on all procs.
f_y = y ** 0.5
g_y = y**2 + 3.0*y - 5.0
# Compute square root of our portion of the distributed input.
g_x = x ** 0.5
# Distributed output
outputs['out_dist'] = f_x + f_y
# Serial output
if MPI and comm.size > 1:
# We need to gather the summed values to compute the total sum over all procs.
local_sum = np.array(np.sum(g_x))
total_sum = local_sum.copy()
self.comm.Allreduce(local_sum, total_sum, op=MPI.SUM)
outputs['out_serial'] = g_y * total_sum
else:
# Recommended to make sure your code can run in serial too, for testing.
outputs['out_serial'] = g_y * np.sum(g_x)
size = 7
if MPI:
comm = MPI.COMM_WORLD
rank = comm.rank
sizes, offsets = evenly_distrib_idxs(comm.size, size)
else:
# When running in serial, the entire variable is on rank 0.
rank = 0
sizes = {rank : size}
offsets = {rank : 0}
prob = om.Problem()
model = prob.model
# Create a distributed source for the distributed input.
ivc = om.IndepVarComp()
ivc.add_output('x_dist', np.zeros(sizes[rank]), distributed=True)
ivc.add_output('x_serial', val=1)
model.add_subsystem("indep", ivc)
model.add_subsystem("D1", MixedDistrib2())
model.add_subsystem('con_cmp1', om.ExecComp('con1 = y**2'), promotes=['con1', 'y'])
model.connect('indep.x_dist', 'D1.in_dist')
model.connect('indep.x_serial', ['D1.in_serial','y'])
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
model.add_design_var('indep.x_serial', lower=5, upper=10)
model.add_constraint('con1', upper=90)
model.add_objective('D1.out_serial')
prob.setup(force_alloc_complex=True)
#prob.setup()
# Set initial values of distributed variable.
x_dist_init = [1,1,1,1,1,1,1]
prob.set_val('indep.x_dist', x_dist_init)
# Set initial values of serial variable.
prob.set_val('indep.x_serial', 10)
#prob.run_model()
prob.run_driver()
print('x_dist', prob.get_val('indep.x_dist', get_remote=True))
print('x_serial', prob.get_val('indep.x_serial'))
print('Obj', prob.get_val('D1.out_serial'))
The problem is with defining partials with 'fd' or 'cs'. I cannot define partials of serial output w.r.t distributed input. So I used prob.setup(force_alloc_complex=True) to use complex step. But gives me this warning DerivativesWarning:Constraints or objectives [('D1.out_serial', inds=[0])] cannot be impacted by the design variables of the problem. I understand this is because the total derivative is 0 which causes the warning but I dont understand the reason. Clearly the total derivative should not be 0 here. But I guess this is because I didn't explicitly declare_partials in the component. I tried removing the distributed components and ran it again with declare_partials and this works correctly(code below).
import numpy as np
import openmdao.api as om
class MixedDistrib2(om.ExplicitComponent):
def setup(self):
self.add_input('in_dist', np.zeros(7))
self.add_input('in_serial', val=1)
self.add_output('out_serial', val=0)
self.declare_partials('*','*', method='cs')
def compute(self, inputs, outputs):
x = inputs['in_dist']
y = inputs['in_serial']
g_y = y**2 + 3.0*y - 5.0
g_x = x ** 0.5
outputs['out_serial'] = g_y * np.sum(g_x)
prob = om.Problem()
model = prob.model
model.add_subsystem("D1", MixedDistrib2(), promotes_inputs=['in_dist', 'in_serial'], promotes_outputs=['out_serial'])
model.add_subsystem('con_cmp1', om.ExecComp('con1 = in_serial**2'), promotes=['con1', 'in_serial'])
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
model.add_design_var('in_serial', lower=5, upper=10)
model.add_constraint('con1', upper=90)
model.add_objective('out_serial')
prob.setup(force_alloc_complex=True)
prob.set_val('in_dist', [1,1,1,1,1,1,1])
prob.set_val('in_serial', 10)
prob.run_model()
prob.check_totals()
prob.run_driver()
print('x_dist', prob.get_val('in_dist', get_remote=True))
print('x_serial', prob.get_val('in_serial'))
print('Obj', prob.get_val('out_serial'))
What I am trying to understand is
How to use 'fd' or 'cs' in Distributed component with a serial output?
What is the meaning of prob.setup(force_alloc_complex=True) ? Is not forcing to use cs in all the components in the problem ? If so why does the total derivative becomes 0?
When I run your code in OpenMDAO V 3.11.0 (after uncommenting the declare_partials call) I get the following error:
RuntimeError: 'D1' <class MixedDistrib2>: component has defined partial ('out_serial', 'in_dist') which is a serial output wrt a distributed input. This is only supported using the matrix free API.
As the error indicates, you can't use the matrix-based api for derivatives in this situations. The reasons why are a bit subtle, and probably outside the scope of what needs to be delt with to answer your question here. It boils down to OpenMDAO not knowing why kind of distributed operations are being done in the compute and having no way to manage those details when you propagate things in reverse.
So you need to use the matrix-free derivative APIs in this situation. When you use the matrix-free APIs you DO NOT declare any partials, because you don't want OpenMDAO to allocate any memory for you to store partials in (and you wouldn't use that memory even if it did).
I've coded them for your example here, but I need to note a few important details:
Your example has a distributed IVC, but as of OpenMDAO V3.11.0 you can't get total derivatives with respect to distributed design variables. I assume you just made it that way to make your simple test case, but in case your real problem was set up this way, you need to note this and not do it this way. Instead, make the IVC serial, and use src indices to distribute the correct parts to each proc.
In the example below, the derivatives are correct. However, there seems to be a bug in the check_partials output when running in paralle. So the reverse mode partials look like they are off by a factor of the comm size... this will have to get fixed in later releases.
I only did the derivatives for out_serial. out_dist will work similarly and is left as an excersize for the reader :)
You'll notice that I duplicates some code in the compute and compute_jacvec_product methods. You can abstract this duplicate code out into its own method (or call compute from within compute_jacvec_product by providing your own output dictionary). However, you might be asking why the duplicate call is needed at all? Why can't u store the values from the compute call. The answer is, in large part, that OpenMDAO does not guarantee that compute is always called before compute_jacvec_product. However, I'll also point out that this kind of code duplication is very AD-like. Any AD code will have the same kind of duplication built in, even though you don't see it.
import numpy as np
import openmdao.api as om
from openmdao.utils.array_utils import evenly_distrib_idxs
from openmdao.utils.mpi import MPI
class MixedDistrib2(om.ExplicitComponent):
def setup(self):
# Distributed Input
self.add_input('in_dist', shape_by_conn=True, distributed=True)
# Serial Input
self.add_input('in_serial', val=1)
# Distributed Output
self.add_output('out_dist', copy_shape='in_dist', distributed=True)
# Serial Output
self.add_output('out_serial', copy_shape='in_serial')
# self.declare_partials('*','*', method='fd')
def compute(self, inputs, outputs):
x = inputs['in_dist']
y = inputs['in_serial']
# "Computationally Intensive" operation that we wish to parallelize.
f_x = x**2 - 2.0*x + 4.0
# These operations are repeated on all procs.
f_y = y ** 0.5
g_y = y**2 + 3.0*y - 5.0
# Compute square root of our portion of the distributed input.
g_x = x ** 0.5
# Distributed output
outputs['out_dist'] = f_x + f_y
# Serial output
if MPI and comm.size > 1:
# We need to gather the summed values to compute the total sum over all procs.
local_sum = np.array(np.sum(g_x))
total_sum = local_sum.copy()
self.comm.Allreduce(local_sum, total_sum, op=MPI.SUM)
outputs['out_serial'] = g_y * total_sum
else:
# Recommended to make sure your code can run in serial too, for testing.
outputs['out_serial'] = g_y * np.sum(g_x)
def compute_jacvec_product(self, inputs, d_inputs, d_outputs, mode):
x = inputs['in_dist']
y = inputs['in_serial']
g_y = y**2 + 3.0*y - 5.0
# "Computationally Intensive" operation that we wish to parallelize.
f_x = x**2 - 2.0*x + 4.0
# These operations are repeated on all procs.
f_y = y ** 0.5
g_y = y**2 + 3.0*y - 5.0
# Compute square root of our portion of the distributed input.
g_x = x ** 0.5
# Distributed output
out_dist = f_x + f_y
# Serial output
if MPI and comm.size > 1:
# We need to gather the summed values to compute the total sum over all procs.
local_sum = np.array(np.sum(g_x))
total_sum = local_sum.copy()
self.comm.Allreduce(local_sum, total_sum, op=MPI.SUM)
# total_sum
else:
# Recommended to make sure your code can run in serial too, for testing.
total_sum = np.sum(g_x)
num_x = len(x)
d_f_x__d_x = np.diag(2*x - 2.)
d_f_y__d_y = np.ones(num_x)*0.5*y**-0.5
d_g_y__d_y = 2*y + 3.
d_g_x__d_x = 0.5*x**-0.5
d_out_dist__d_x = d_f_x__d_x # square matrix
d_out_dist__d_y = d_f_y__d_y # num_x,1
d_out_serial__d_y = d_g_y__d_y # scalar
d_out_serial__d_x = g_y*d_g_x__d_x.reshape((1,num_x))
if mode == 'fwd':
if 'out_serial' in d_outputs:
if 'in_dist' in d_inputs:
d_outputs['out_serial'] += d_out_serial__d_x.dot(d_inputs['in_dist'])
if 'in_serial' in d_inputs:
d_outputs['out_serial'] += d_out_serial__d_y.dot(d_inputs['in_serial'])
elif mode == 'rev':
if 'out_serial' in d_outputs:
if 'in_dist' in d_inputs:
d_inputs['in_dist'] += d_out_serial__d_x.T.dot(d_outputs['out_serial'])
if 'in_serial' in d_inputs:
d_inputs['in_serial'] += total_sum*d_out_serial__d_y.T.dot(d_outputs['out_serial'])
size = 7
if MPI:
comm = MPI.COMM_WORLD
rank = comm.rank
sizes, offsets = evenly_distrib_idxs(comm.size, size)
else:
# When running in serial, the entire variable is on rank 0.
rank = 0
sizes = {rank : size}
offsets = {rank : 0}
prob = om.Problem()
model = prob.model
# Create a distributed source for the distributed input.
ivc = om.IndepVarComp()
ivc.add_output('x_dist', np.zeros(sizes[rank]), distributed=True)
ivc.add_output('x_serial', val=1)
model.add_subsystem("indep", ivc)
model.add_subsystem("D1", MixedDistrib2())
model.add_subsystem('con_cmp1', om.ExecComp('con1 = y**2'), promotes=['con1', 'y'])
model.connect('indep.x_dist', 'D1.in_dist')
model.connect('indep.x_serial', ['D1.in_serial','y'])
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
model.add_design_var('indep.x_serial', lower=5, upper=10)
model.add_constraint('con1', upper=90)
model.add_objective('D1.out_serial')
prob.setup(force_alloc_complex=True)
#prob.setup()
# Set initial values of distributed variable.
x_dist_init = np.ones(sizes[rank])
prob.set_val('indep.x_dist', x_dist_init)
# Set initial values of serial variable.
prob.set_val('indep.x_serial', 10)
prob.run_model()
prob.check_partials()
# prob.run_driver()
print('x_dist', prob.get_val('indep.x_dist', get_remote=True))
print('x_serial', prob.get_val('indep.x_serial'))
print('Obj', prob.get_val('D1.out_serial'))
I am trying to make a toy problem to learn a bit about the OpenMDAO software before applying the lessons to a larger problem. I have a problem set up so that the objective function should be minimized when both design variables are at a minimum. However both values stay at their originally assigned values despite receiving an 'Optimization terminated successfully' message.
I have been starting by writing the code based on the Sellar problem examples. ( http://openmdao.org/twodocs/versions/latest/basic_guide/sellar.html ) Additionally I have come across a stack overflow question that seems to be the same problem, but the solution there doesn't work. ( OpenMDAO: Solver converging to non-optimal point ) (When I add the declare_partials line to the IntermediateCycle or ScriptForTest I recieve an error saying either that self is not defined, or that the object has no attribute declare_partials)
This is the script that runs everything
import openmdao.api as om
from IntermediateForTest import IntermediateCycle
prob = om.Problem()
prob.model = IntermediateCycle()
prob.driver = om.ScipyOptimizeDriver()
#prob.driver.options['optimizer'] = 'SLSQP'
#prob.driver.options['tol'] = 1e-9
prob.model.add_design_var('n_gear', lower=2, upper=6)
prob.model.add_design_var('stroke', lower=0.0254, upper=1)
prob.model.add_objective('objective')
prob.setup()
prob.model.approx_totals()
prob.run_driver()
print(prob['objective'])
print(prob['cycle.f1.total_weight'])
print(prob['cycle.f1.stroke'])
print(prob['cycle.f1.n_gear'])
It calls an intermediate group, as per the Sellar example
import openmdao.api as om
from FunctionsForTest import FunctionForTest1
from FunctionsForTest import FunctionForTest2
class IntermediateCycle(om.Group):
def setup(self):
indeps = self.add_subsystem('indeps', om.IndepVarComp(), promotes=['*'])
indeps.add_output('n_gear', 3.0)
indeps.add_output('stroke', 0.2)
indeps.add_output('total_weight', 26000.0)
cycle = self.add_subsystem('cycle', om.Group())
cycle.add_subsystem('f1', FunctionForTest1())
cycle.add_subsystem('f2', FunctionForTest2())
cycle.connect('f1.landing_gear_weight','f2.landing_gear_weight')
cycle.connect('f2.total_weight','f1.total_weight')
self.connect('n_gear','cycle.f1.n_gear')
self.connect('stroke','cycle.f1.stroke')
#cycle.nonlinear_solver = om.NonlinearBlockGS()
self.nonlinear_solver = om.NonlinearBlockGS()
self.add_subsystem('objective', om.ExecComp('objective = total_weight', objective=26000, total_weight=26000), promotes=['objective', 'total_weight'])
Finally there is a file with the two functions in it:
import openmdao.api as om
class FunctionForTest1(om.ExplicitComponent):
def setup(self):
self.add_input('stroke', val=0.2)
self.add_input('n_gear', val=3.0)
self.add_input('total_weight', val=26000)
self.add_output('landing_gear_weight')
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
stroke = inputs['stroke']
n_gear = inputs['n_gear']
total_weight = inputs['total_weight']
outputs['landing_gear_weight'] = total_weight * 0.1 + 100*stroke * n_gear ** 2
class FunctionForTest2(om.ExplicitComponent):
def setup(self):
self.add_input('landing_gear_weight')
self.add_output('total_weight')
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
landing_gear_weight = inputs['landing_gear_weight']
outputs['total_weight'] = 26000 + landing_gear_weight
It reports optimization terminated successfully,
Optimization terminated successfully. (Exit mode 0)
Current function value: 26000.0
Iterations: 1
Function evaluations: 1
Gradient evaluations: 1
Optimization Complete
-----------------------------------
[26000.]
[29088.88888889]
[0.2]
[3.]
however the value for the function to optimize hasn't changed. It seems as it converges the loop to estimate the weight, but doesn't vary the design variables to find the optimum.
It arrives at 29088.9, which is correct for a value of n_gear=3 and stroke=0.2, but if both are decreased to the bounds of n_gear=2 and stroke=0.0254, it would arrive at a value of ~28900, ~188 less.
Any advice, links to tutorials, or solutions would be appreciated.
Lets take a look at the n2 of the model, as you provided it:
I've highlighted the connection from indeps.total_weight to objective.total_weight. So this means that your computed total_weight value is not being passed to your objective output at all. Instead you have a constant value being set there.
Now, taking a small step back, lets look at the computation of the objective itself:
self.add_subsystem('objective', om.ExecComp('objective = total_weight', objective=26000, total_weight=26000), promotes=['objective', 'total_weight'])
So this is an odd use of the ExecComp, because it just sets the output to exactly the input. It does nothing, and isn't really needed at all.
I believe what you wanted was simply to make the objective be the output f2.total_weight. When I do that (and make a few additional small cleanups to your code, like removing the unnecessary ExecComp, then I do get the correct answer in 2 major iterations of the optimizer:
import openmdao.api as om
class FunctionForTest1(om.ExplicitComponent):
def setup(self):
self.add_input('stroke', val=0.2)
self.add_input('n_gear', val=3.0)
self.add_input('total_weight', val=26000)
self.add_output('landing_gear_weight')
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
stroke = inputs['stroke']
n_gear = inputs['n_gear']
total_weight = inputs['total_weight']
outputs['landing_gear_weight'] = total_weight * 0.1 + 100*stroke * n_gear ** 2
class FunctionForTest2(om.ExplicitComponent):
def setup(self):
self.add_input('landing_gear_weight')
self.add_output('total_weight')
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
landing_gear_weight = inputs['landing_gear_weight']
outputs['total_weight'] = 26000 + landing_gear_weight
class IntermediateCycle(om.Group):
def setup(self):
indeps = self.add_subsystem('indeps', om.IndepVarComp(), promotes=['*'])
indeps.add_output('n_gear', 3.0)
indeps.add_output('stroke', 0.2)
cycle = self.add_subsystem('cycle', om.Group())
cycle.add_subsystem('f1', FunctionForTest1())
cycle.add_subsystem('f2', FunctionForTest2())
cycle.connect('f1.landing_gear_weight','f2.landing_gear_weight')
cycle.connect('f2.total_weight','f1.total_weight')
self.connect('n_gear','cycle.f1.n_gear')
self.connect('stroke','cycle.f1.stroke')
#cycle.nonlinear_solver = om.NonlinearBlockGS()
self.nonlinear_solver = om.NonlinearBlockGS()
prob = om.Problem()
prob.model = IntermediateCycle()
prob.driver = om.ScipyOptimizeDriver()
#prob.driver.options['optimizer'] = 'SLSQP'
#prob.driver.options['tol'] = 1e-9
prob.model.add_design_var('n_gear', lower=2, upper=6)
prob.model.add_design_var('stroke', lower=0.0254, upper=1)
prob.model.add_objective('cycle.f2.total_weight')
prob.model.approx_totals()
prob.setup()
prob.model.nl_solver.options['iprint'] = 2
prob.run_driver()
print(prob['cycle.f1.total_weight'])
print(prob['cycle.f2.total_weight'])
print(prob['cycle.f1.stroke'])
print(prob['cycle.f1.n_gear'])
gives:
Optimization terminated successfully. (Exit mode 0)
Current function value: 28900.177777779667
Iterations: 2
Function evaluations: 2
Gradient evaluations: 2
Optimization Complete
-----------------------------------
[28900.1777778]
[28900.17777778]
[0.0254]
[2.]
This is not an issue with OpenMDAO, but more a topic I would like to hear your thoughts about with a (simplistic) suggestion for a solution. The issue is about setting the initial value for a variable that needs to be converged with a solver. In my case I can have a model where one tool (InitialGuess) is able to give an initial guess for a variable (let's say for y1), which would be converged in a group where y1 is output of another tool (D1). At the moment it is not allowed to have two tools that have y1 as output (and understandably so). Hence it is not possible to have InitialGuess as a preconditioner and let D1 calculate the updated value(s). However, in some models it could be helpful to have such a preconditioner as one of the components. In an aircraft design example, a lower fidelity tool could provide initial guesses, in order for the solver to start at a nicer point with higher fidelity tools.
I have created a small example to illustrate my point (based on the Sellar problem). The code is shown below the picture. This picture shows the 'initial guess connections' that should be created in blue:
from openmdao.core.explicitcomponent import ExplicitComponent
from openmdao.devtools.problem_viewer.problem_viewer import view_model
from openmdao.solvers.nonlinear.nonlinear_block_gs import NonlinearBlockGS
class InitialGuess(ExplicitComponent):
def setup(self):
self.add_input('x1', val=0.)
self.add_input('z1', val=0.)
self.add_input('z2', val=0.)
self.add_output('y1', val=0.)
self.add_output('y2', val=0.)
def compute(self, inputs, outputs):
x1 = inputs['x1']
z1 = inputs['z1']
z2 = inputs['z2']
outputs['y1'] = (-0.1 + ((z1 - 0.1) ** 2 + 0.8 * z2 + x1) ** (0.5)) ** 2
outputs['y2'] = z1 + z2 - 0.1 + ((z1 - 0.1) ** 2 + 0.8 * z2 + x1) ** (0.5)
class D1(ExplicitComponent):
def setup(self):
self.add_input('x1', val=0.)
self.add_input('z1', val=0.)
self.add_input('z2', val=0.)
self.add_input('y2', val=0.)
self.add_output('y1', val=0.)
def compute(self, inputs, outputs):
x1 = inputs['x1']
z1 = inputs['z1']
z2 = inputs['z2']
y2 = inputs['y2']
outputs['y1'] = z1 ** 2. + x1 + z2 - .2 * y2
class D2(ExplicitComponent):
def setup(self):
self.add_input('z1', val=0.)
self.add_input('z2', val=0.)
self.add_input('y1', val=0.)
self.add_output('y2', val=0.)
def compute(self, inputs, outputs):
z1 = inputs['z1']
z2 = inputs['z2']
y1 = inputs['y1']
outputs['y2'] = abs(y1)**.5 + z1 + z2
if __name__ == "__main__":
from openmdao.core.problem import Problem
from openmdao.core.group import Group
from openmdao.core.indepvarcomp import IndepVarComp
model = Group()
ivc = IndepVarComp()
ivc.add_output('x1', 3.0)
ivc.add_output('z1', 2.0)
ivc.add_output('z2', 2.0)
model.add_subsystem('des_vars', ivc)
model.add_subsystem('initial_guess', InitialGuess())
conv_group = Group()
conv_group.add_subsystem('d1_comp', D1())
conv_group.add_subsystem('d2_comp', D2())
model.add_subsystem('conv_group', conv_group)
model.connect('des_vars.x1', 'initial_guess.x1')
model.connect('des_vars.x1', 'conv_group.d1_comp.x1')
model.connect('des_vars.z1', 'initial_guess.z1')
model.connect('des_vars.z1', 'conv_group.d1_comp.z1')
model.connect('des_vars.z1', 'conv_group.d2_comp.z1')
model.connect('des_vars.z2', 'initial_guess.z2')
model.connect('des_vars.z2', 'conv_group.d1_comp.z2')
model.connect('des_vars.z2', 'conv_group.d2_comp.z2')
model.connect('conv_group.d1_comp.y1', 'conv_group.d2_comp.y1')
model.connect('conv_group.d2_comp.y2', 'conv_group.d1_comp.y2')
###
# PSEUDO_CODE
# model.connect_as('initial_guess', 'initial_guess.y1', 'conv_group.d2_comp.y1')
# model.connect_as('initial_guess', 'initial_guess.y2', 'conv_group.d1_comp.y1')
###
conv_group.nonlinear_solver = NonlinearBlockGS()
prob = Problem(model)
prob.setup()
view_model(prob, outfile='n2_initial_guess_example.html', show_browser=False)
prob.run_model()
print('y1 guess = ' + str(prob['initial_guess.y1'][0]))
print('y1 conv = ' + str(prob['conv_group.d1_comp.y1'][0]))
print('y2 guess = ' + str(prob['initial_guess.y2'][0]))
print('y2 conv = ' + str(prob['conv_group.d2_comp.y2'][0]))
In the example above the initial_guess and the conv_group are completely separated, however, it would be very helpful if, with a single run_model call, the initial_guess component updates the y1 and y2 values before the conv_group is solved. In this case, this would even mean that conv_group would be solved at the first iteration, but in a realistic case it would merely lead to less iterations. The pseudo-code in the example provides a suggestion as to how this could be defined in the script.
I was wondering if there already is a way to do this in OpenMDAO? If not, I thought it might be a nice idea to include a capability like this.
OpenMDAO master branch (as of 05/01/2019) OpenMDAO supports providing an initial guess using the guess_nonlinear method on systems: http://openmdao.org/twodocs/versions/latest/features/core_features/grouping_components/guess_method.html
This feature will be released in V2.7, but can be accessed by pulling from master in the meantime.
This method gets run before solving the group and sets the implicit outputs to whatever initial value you want.
A convenient thing about guess_nonlinear is that you can use it to do whatever calculations you want, assuming that you only need access to inputs, outputs, or residuals.
I which to perform an optimization with openmdao 1.4 on a metamodel. Using the tutorials I have build u p problem that i do not mange to solve: I think the problem is coming from a misuse of setup() and run() : I do not manage to train my metamodel and to optimize on it at the same time (perhpas I should use two differentes "groups" to do this ..)
Here is my code :
from __future__ import print_function
from openmdao.api import Component, Group, MetaModel ,IndepVarComp, ExecComp, NLGaussSeidel, KrigingSurrogate, FloatKrigingSurrogate
import numpy as np
class KrigMM(Group):
''' FloatKriging gives responses as floats '''
def __init__(self):
super(KrigMM, self).__init__()
# Create meta_model for f_x as the response
pmm = self.add("pmm", MetaModel())
pmm.add_param('x', val=0.)
pmm.add_output('f_x:float', val=0., surrogate=FloatKrigingSurrogate())
self.add('p1', IndepVarComp('x', 0.0))
self.connect('p1.x','pmm.x')
# mm.add_output('f_xy:norm_dist', val=(0.,0.), surrogate=KrigingSurrogate())
if __name__ == '__main__':
# Setup and run the model.
from openmdao.core.problem import Problem
from openmdao.drivers.scipy_optimizer import ScipyOptimizer
from openmdao.core.driver import Driver
import numpy as np
import doe_lhs
#prob = Problem(root=ParaboloidProblem())
###########################################################
prob = Problem(root=Group())
prob.root.add('meta',KrigMM(), promotes=['*'])
prob.driver = ScipyOptimizer()
prob.driver.options['optimizer'] = 'SLSQP'
prob.driver.add_desvar('p1.x', lower=0, upper=10)
prob.driver.add_objective('pmm.f_x:float')
prob.setup()
prob['pmm.train:x'] = np.linspace(0,10,20)
prob['pmm.train:f_x:float'] = np.sin(prob['pmm.train:x'])
prob.run()
print('\n')
print('Minimum of %f found for meta at %f' % (prob['pmm.f_x:float'],prob['pmm.x'])) #predicted value
I believe your problem is actually working fine. Its just that the sinusiod you've picked has an local optimum at 0.0, which happens to be your initial condition.
If I change the initial condition as follows:
prob.setup()
prob['p1.x'] = 5
prob['pmm.train:x'] = np.linspace(0,10,20)
prob['pmm.train:f_x:float'] = np.sin(prob['pmm.train:x'])
prob.run()
I get:
Optimization terminated successfully. (Exit mode 0)
Current function value: [-1.00004544]
Iterations: 3
Function evaluations: 3
Gradient evaluations: 3
Optimization Complete
-----------------------------------
Minimum of -1.000045 found for meta at 4.710483