Unscaling the output of an ANN - r

I have scaled my data so that the minimum takes the value 0 and the maximum the value 1. I have done this using the rescale function, which is part of the scale package in R. I then run this data through an ANN and compute the predictions of this ANN. Obviously the output will still be scaled according to the minimum and maximum of the input.
I believe there should be a way to unscale this dating using simple algebra but my maths isn't the best.
Let's say the input was x.input, and my output id x.output.
range01 <- function(x){(x-min(x))/(max(x)-min(x))}
x.input <- range01(x)
This is what the rescale function is doing.
How would I go about writing a function to reverse the transformation?
Thanks

Related

Estimating Lambda for Yeo and Johnson transform

I have a time series of rainfall values in a csv file.I plotted the histogram of the data. The histogram is skewed to the left. I wanted to transform the values so that it will have a normal distribution. I used the Yeo-Johnson transform available in R. The transformed values are here.
My question is:
In the above transformation, I used a test value of 0.5 for lambda, which works fine. Is there away to determine the optimal value of lambda based on the time series? I'll appreciate any suggestions.
So far, here's the code:
library(car)
dat <- scan("Zamboanga.csv")
hist(dat)
trans <- yjPower(dat,0.5,jacobian.adjusted=TRUE)
hist(trans)
Here is the csv file.
First find the optimal lambda by using the function boxCox from the car package to estimate λ by maximum likelihood.
You can plot it like this:
boxCox(your_model, family="yjPower", plotit = TRUE)
As Ben Bolker said in a comment, the model here could be something like
your_model <- lm(dat~1)
Then use the optimized lambda in your existing code.

Cross-correlation of 5 time series (distance) and interpretation

I would appreciate some input in this a lot!
I have data for 5 time series (an example of 1 step in the series is in the plot below), where each step in the series is a vertical profile of species sightings in the ocean which were investigated 6h apart. All 5 steps are spaced vertically by 0.1m (and the 6h in time).
What I want to do is calculate the multivariate cross-correlation between all series in order to find out at which lag the profiles are most correlated and stable over time.
Profile example:
I find the documentation in R on that not so great, so what I did so far is use the package MTS with the ccm function to create cross correlation matrices. However, the interpretation of the figures is rather difficult with sparse documentation. I would appreciate some help with that a lot.
Data example:
http://pastebin.com/embed_iframe.php?i=8gdAeGP4
Save in file cross_correlation_stack.csv or change as you wish.
library(dplyr)
library(MTS)
library(data.table)
d1 <- file.path('cross_correlation_stack.csv')
d2 = read.csv(d1)
# USING package MTS
mod1<-ccm(d2,lag=1000,level=T)
#USING base R
acf(d2,lag.max=1000)
# MQ plot also from MTS package
mq(d2,lag=1000)
Which produces this (the ccm command):
This:
and this:
In parallel, the acf command from above produces this:
My question now is if somebody can give some input in whether I am going in the right direction or are there better suited packages and commands?
Since the default figures don't get any titles etc. What am I looking at, specifically in the ccm figures?
The ACF command was proposed somewhere, but can I use it here? In it's documentation it says ... calculates autocovariance or autocorrelation... I assume this is not what I want. But then again it's the only command that seems to work multivariate. I am confused.
The plot with the significance values shows that after a lag of 150 (15 meters) the p values increase. How would you interpret that regarding my data? 0.1 intervals of species sightings and many lags up to 100-150 are significant? Would that mean something like that peaks in sightings are stable over the 5 time-steps on a scale of 150 lags aka 15 meters?
In either way it would be nice if somebody who worked with this before can explain what I am looking at! Any input is highly appreciated!
You can use the base R function ccf(), which will estimate the cross-correlation function between any two variables x and y. However, it only works on vectors, so you'll have to loop over the columns in d1. Something like:
cc <- vector("list",choose(dim(d1)[2],2))
par(mfrow=c(ceiling(choose(dim(d1)[2],2)/2),2))
cnt <- 1
for(i in 1:(dim(d1)[2]-1)) {
for(j in (i+1):dim(d1)[2]) {
cc[[cnt]] <- ccf(d1[,i],d1[,j],main=paste0("Cross-correlation of ",colnames(d1)[i]," with ",colnames(d1)[j]))
cnt <- cnt + 1
}
}
This will plot each of the estimated CCF's and store the estimates in the list cc. It is important to remember that the lag-k value returned by ccf(x,y) is an estimate of the correlation between x[t+k] and y[t].
All of that said, however, the ccf is only defined for data that are more-or-less normally distributed, but your data are clearly overdispersed with all of those zeroes. Therefore, lacking some adequate transformation, you should really look into other metrics of "association" such as the mutual information as estimated from entropy. I suggest checking out the R packages entropy and infotheo.

Fitting Model Parameters To Histogram Data in R

So I've got a data set that I want to parameterise but it is not a Gaussian distribution so I can't parameterise it in terms of it's mean and standard deviation. I want to fit a distribution function with a set of parameters and extract the values of the parameters (eg. a and b) that give the best fit. I want to do this exactly the same as the
lm(y~f(x;a,b))
except that I don't have a y, I have a distribution of different x values.
Here's an example. If I assume that the data follows a Gumbel, double exponential, distribution
f(x;u,b) = 1/b exp-(z + exp-(z)) [where z = (x-u)/b]:
#library(QRM)
#library(ggplot2)
rg <- rGumbel(1000) #default parameters are 0 and 1 for u and b
#then plot it's distribution
qplot(rg)
#should give a nice skewed distribution
If I assume that I don't know the distribution parameters and I want to perform a best fit of the probability density function to the observed frequency data, how do I go about showing that the best fit is (in this test case), u = 0 and b = 1?
I don't want code that simply maps the function onto the plot graphically, although that would be a nice aside. I want a method that I can repeatedly use to extract variables from the function to compare to others. GGPlot / qplot was used as it quickly shows the distribution for anyone wanting to test the code. I prefer to use it but I can use other packages if they are easier.
Note: This seems to me like a really obvious thing to have been asked before but I can't find one that relates to histogram data (which again seems strange) so if there's another tutorial I'd really like to see it.

Trying to do a simulation in R

I'm pretty new to R, so I hope you can help me!
I'm trying to do a simulation for my Bachelor's thesis, where I want to simulate how a stock evolves.
I've done the simulation in Excel, but the problem is that I can't make that large of a simulation, as the program crashes! Therefore I'm trying in R.
The stock evolves as follows (everything except $\epsilon$ consists of constants which are known):
$$W_{t+\Delta t} = W_t exp^{r \Delta t}(1+\pi(exp((\sigma \lambda -0.5\sigma^2) \Delta t+\sigma \epsilon_{t+\Delta t} \sqrt{\Delta t}-1))$$
The only thing here which is stochastic is $\epsilon$, which is represented by a Brownian motion with N(0,1).
What I've done in Excel:
Made 100 samples with a size of 40. All these samples are standard normal distributed: N(0,1).
Then these outcomes are used to calculate how the stock is affected from these (the normal distribution represent the shocks from the economy).
My problem in R:
I've used the sample function:
x <- sample(norm(0,1), 1000, T)
So I have 1000 samples, which are normally distributed. Now I don't know how to put these results into the formula I have for the evolution of my stock. Can anyone help?
Using R for (discrete) simulation
There are two aspects to your question: conceptual and coding.
Let's deal with the conceptual first, starting with the meaning of your equation:
1. Conceptual issues
The first thing to note is that your evolution equation is continuous in time, so running your simulation as described above means accepting a discretisation of the problem. Whether or not that is appropriate depends on your model and how you have obtained the evolution equation.
If you do run a discrete simulation, then the key decision you have to make is what stepsize $\Delta t$ you will use. You can explore different step-sizes to observe the effect of step-size, or you can proceed analytically and attempt to derive an appropriate step-size.
Once you have your step-size, your simulation consists of pulling new shocks (samples of your standard normal distribution), and evolving the equation iteratively until the desired time has elapsed. The final state $W_t$ is then available for you to analyse however you wish. (If you retain all of the $W_t$, you have a distribution of the trajectory of the system as well, which you can analyse.)
So:
your $x$ are a sampled distribution of your shocks, i.e. they are $\epsilon_t=0$.
To simulate the evolution of the $W_t$, you will need some initial condition $W_0$. What this is depends on what you're modelling. If you're modelling the likely values of a single stock starting at an initial price $W_0$, then your initial state is a 1000 element vector with constant value.
Now evaluate your equation, plugging in all your constants, $W_0$, and your initial shocks $\epsilon_0 = x$ to get the distribution of prices $W_1$.
Repeat: sample $x$ again -- this is now $\epsilon_1$. Plugging this in, gives you $W_2$ etc.
2. Coding the simulation (simple example)
One of the useful features of R is that most operators work element-wise over vectors.
So you can pretty much type in your equation more or less as it is.
I've made a few assumptions about the parameters in your equation, and I've ignored the $\pi$ function -- you can add that in later.
So you end up with code that looks something like this:
dt <- 0.5 # step-size
r <- 1 # parameters
lambda <- 1
sigma <- 1 # std deviation
w0 <- rep(1,1000) # presumed initial condition -- prices start at 1
# Show an example iteration -- incorporate into one line for production code...
x <- rnorm(1000,mean=0,sd=1) # random shock
w1 <- w0*exp(r*dt)*(1+exp((sigma*lambda-0.5*sigma^2)*dt +
sigma*x*sqrt(dt) -1)) # evolution
When you're ready to let the simulation run, then merge the last two lines, i.e. include the sampling statement in the evolution statement. You then get one line of code which you can run manually or embed into a loop, along with any other analysis you want to run.
# General simulation step
w <- w*exp(r*dt)*(1+exp((sigma*lambda-0.5*sigma^2)*dt +
sigma*rnorm(1000,mean=0,sd=1)*sqrt(dt) -1))
You can also easily visualise the changes and obtain summary statistics (5-number summary):
hist(w)
summary(w)
Of course, you'll still need to work through the details of what you actually want to model and how you want to go about analysing it --- and you've got the $\pi$ function to deal with --- but this should get you started toward using R for discrete simulation.

Replicate R and matlab results in finding the optimal threshold from ROC curve

I am using the OptimalCutpoints package in R to find the optimal cutoff point from ROC curve. The criterion for finding the optimal threshold is maximizing Youden's index:
J = sensitivity + specificity - 1
I am trying to do the same in matlab with the function perfcurve. I run perfcurve with the default criteria for two axis, the FPR in x-coordinates and TPR in y-coordinates. The perfcurve returns a matrix with thresholds and chooses one of them according to the criteria.
The problem is that the optimal threshold that matlab gives, is not the same as in R. However, the optimal threshold according to R is included in the threshold matrix that matlab returns.
How can I replicate the results that R returns with the ones in matlab? I am suspecting that the criteria are not correctly set in matlab for Youden's index.
If you look at the documentation for perfcurve (specifically the OPTROCPT row), you would see that the formula that matlab uses to find the best threshold is quite different, and includes a cost matrix in the optimality criterion.
If you want to replicate what is done in R exactly, use the X and Y return values to compute the Youden index for each threshold, and then choose the best (see how to find max and it's index in array in matlab for some idea how to do it).

Resources