order geom_point by specific facet - r

I have a ggplot related question, which should be easy but I could not find the answer yet. I am trying to plot a faceted plot with the code below and this dataset (11 kB).
ggplot(plot.dat, aes(x = estimate, y = reorder(countryyear, estimate))) +
geom_point() +
geom_segment(aes(x=conf.low, xend=conf.high, yend=countryyear)) +
facet_grid(. ~ facet) +
xlab("Random Effect Estimate") +
ylab("") + scale_x_continuous(breaks=c(seq(0, 5, 1)), limits=c(0, 5)) +
ggtitle("Random Slopes in Country*Year Groups from Northwestern Europe") +
theme_minimal() + theme(plot.title = element_text(hjust = 0.5))
I would like countryyear to be organized by the values of estimate in the Extreme Right facet. Not quite sure how to order by values of a specific facet. Any ideas are welcome! Thanks.
Update: Here is the dput structure of a random subset of the dataset. It has some missing values, but it should work for the sake of the example. I also updated the download link above, that has the full version.
structure(list(estimate = c(1.41056902925372, 0.854859208455895,
1.16012834593894, 0.871339033194504, 0.803272289946221, 1.17540386134493,
0.996313357490551, 1.49940694539732, 1.33773365908762, 2.7318703090905,
1.19131935418045, 1.12765907711738, 0.746741192261761, 0.985847015192172,
0.912357310925342, 1.11582763712164, 1.21854572824977, 0.675712547978394,
0.566955524699616, 1.32611743759365, 0.519648352294682, 0.591013596394243,
1.30944973684044, 0.613722269599125, 1.13293279727271, 0.950788678552604,
1.1599446923567, 1.11493952112913, 0.95336321045095, 1.39002327097034,
0.794207546872633, 0.788545101449259, 1.01096883872495, 0.897407203907834,
1.38391605229103, 1.35754760293107, 1.0718508539761, 0.542191158958878,
0.757132752456427, 1.44172863221312, 1.04842251986171, 0.77260404885379,
0.879288027642055, 1.09372353598088, 0.745484830381145, 1.21211217249353,
0.628009608902132, 1.34864488674734), countryyear = structure(c(1L,
2L, 4L, 5L, 7L, 9L, 10L, 12L, 13L, 26L, 28L, 29L, 31L, 32L, 34L,
36L, 37L, 39L, 40L, 57L, 59L, 60L, 62L, 63L, 65L, 67L, 68L, 70L,
71L, 73L, 75L, 76L, 89L, 90L, 92L, 94L, 95L, 103L, 104L, 106L,
108L, 109L, 111L, 128L, 130L, 132L, 133L, 135L), .Label = c("AT02",
"AT04", "AT06", "AT14", "AT16", "BE02", "BE04", "BE06", "BE08",
"BE10", "BE12", "BE14", "BE16", "BG06", "BG08", "BG10", "BG12",
"CH14", "CZ02", "CZ04", "CZ08", "CZ10", "CZ12", "CZ14", "CZ16",
"DE02", "DE04", "DE06", "DE08", "DE10", "DE12", "DE14", "DE16",
"DK02", "DK04", "DK06", "DK08", "DK10", "DK12", "DK14", "EE04",
"EE06", "EE08", "EE10", "EE12", "EE14", "EE16", "ES02", "ES04",
"ES06", "ES08", "ES10", "ES12", "ES14", "ES16", "FI02", "FI04",
"FI06", "FI08", "FI10", "FI12", "FI14", "FI16", "FR06", "FR08",
"FR10", "FR12", "FR14", "FR16", "GB02", "GB04", "GB06", "GB08",
"GB10", "GB12", "GB14", "GB16", "GR02", "GR04", "GR08", "GR10",
"HU02", "HU06", "HU08", "HU10", "HU12", "HU14", "HU16", "IE02",
"IE04", "IE06", "IE08", "IE10", "IE12", "IE14", "IE16", "IT04",
"IT12", "IT16", "LT10", "LT12", "LT14", "NL02", "NL04", "NL06",
"NL08", "NL10", "NL12", "NL14", "NL16", "NO14", "PL02", "PL04",
"PL06", "PL08", "PL10", "PL12", "PL14", "PL16", "PT02", "PT04",
"PT06", "PT08", "PT10", "PT12", "PT14", "PT16", "SE02", "SE04",
"SE06", "SE08", "SE10", "SE12", "SE14", "SE16", "SI02", "SI04",
"SI06", "SI08", "SI10", "SI12", "SI14", "SI16", "SK04", "SK06",
"SK08", "SK10", "SK12"), class = "factor"), facet = structure(c(1L,
3L, 1L, 4L, 5L, 3L, 4L, 1L, 1L, 1L, 5L, 5L, 4L, 5L, 3L, 1L, 2L,
4L, 5L, 2L, 1L, 4L, 2L, 5L, 2L, 3L, 4L, 3L, 2L, 5L, 5L, 4L, 2L,
5L, 4L, 5L, 3L, 1L, 4L, 5L, 3L, 5L, 4L, 1L, 5L, 2L, 4L, 1L), .Label = c("Intercept",
"Extreme Left", "Center", "Right", "Extreme Right"), class = "factor"),
conf.low = c(1.16824810706745, 0.686215051613965, 0.910277310292764,
0.591705078386698, 0.37357342399703, 0.947951001435781, 0.663296044193037,
1.18794112232166, 1.06645119085865, 2.33578182814618, 0.580210898576738,
0.564235690522211, 0.530859530342114, 0.516191258265551,
0.730992343373883, 0.862424540370486, 0.827891784352444,
0.427638276259852, 0.275692447335368, 0.829763907986328,
0.370078643492081, 0.321852705445509, 0.83550621863293, 0.289836810427436,
0.847226120408727, 0.780056160572728, 0.873143885861924,
0.869757467125519, 0.615741777890997, 0.649483531741787,
0.349657606457465, 0.523294407847395, 0.670109418373736,
0.36656743494149, 0.952201390937053, 0.777207016700884, 0.888128473009524,
0.397085597526946, 0.479828726362257, 0.614533313431094,
0.813336887981082, 0.3129232351085, 0.61435321820328, 0.854801028643867,
0.346698059397102, 0.805414039007076, 0.434676644041643,
1.07780736338027), conf.high = c(1.70315275860739, 1.06494933995261,
1.47855797769819, 1.28312522319126, 1.7272277157504, 1.45743211956315,
1.49652679976667, 1.8925358720741, 1.67802460909168, 3.19512520208851,
2.44607918797515, 2.25369471581694, 1.05041423643869, 1.8828182806291,
1.13872035780431, 1.44368725318228, 1.79353596677755, 1.06769546329854,
1.16593171156554, 2.11938292490653, 0.729667639003753, 1.08526995489865,
2.05223919950836, 1.29954170985538, 1.51498719434776, 1.15888977865399,
1.54095070825389, 1.4292376699955, 1.47610807594453, 2.97492484321718,
1.80395225460704, 1.18824770090216, 1.52521060717706, 2.19697554354282,
2.01136404338166, 2.37122858469145, 1.29357889999432, 0.740322123703373,
1.19469713534712, 3.38237391450413, 1.35145693795059, 1.90755095606211,
1.25847381058047, 1.39942645489832, 1.60297301142912, 1.82417470710871,
0.907332092210651, 1.68753999308876)), row.names = c(1L,
9L, 17L, 25L, 33L, 41L, 49L, 57L, 65L, 128L, 136L, 144L, 152L,
160L, 168L, 176L, 184L, 192L, 200L, 283L, 291L, 299L, 307L, 315L,
323L, 331L, 339L, 347L, 355L, 363L, 371L, 379L, 442L, 450L, 458L,
466L, 474L, 512L, 520L, 528L, 536L, 544L, 552L, 640L, 648L, 656L,
664L, 672L), class = "data.frame")

Related

Widening Data and Changing Columns

I have managed to delete a little bit of code that did the below task and can't for the life of me figure out how I did it before.
I want to widen the data that has two factors spread over 8 different 'waves'. There are four 'Paper' factors, each with the same four internal factors 'Response'. The output from a previously required function gives the following dataframe:
[
And I would like to make it look like this:
The single column of the first tibble has become the single row of the second tibble.
As you can see, the second tibble has extra factors of Paper but these can just be joined row wise.
I really wasn't sure how to attack this, but thought it would be done using the pivot_wider function. When I tried
times_correct <- times_19 %>%
pivot_wider( id_cols = c('Stay/remain in the EU`', 'Leave the EU', 'I would/will not vote', 'Don\'t know'), names_from = eurrefcolnames)
I got the error that I can't subset columns that don't exist which makes sense: I need to manually add the correct 'Waves'. I think this is relatively simple, but can't for the life of me figure out how I did it!
Here is the dput of the various tibbles:
structure(list(resp = structure(c(3L, 2L, 4L, 1L, NA, NA, NA,
NA), .Label = c("Don't Know", "Leave", "Remain", "Will Not Vote"
), class = "factor"), `Stay/remain in the EU` = c(316L, 290L,
313L, 324L, 338L, 320L, 325L, 335L), `Leave the EU` = c(157L,
123L, 159L, 154L, 134L, 189L, 187L, 181L), `I would/will not vote` = c(2L,
3L, 3L, 3L, 2L, 2L, 2L, 0L), `Don't know` = c(56L, 51L, 55L,
50L, 57L, 20L, 17L, 0L), Paper = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L), .Label = "Times", class = "factor")), row.names = c(NA,
-8L), class = c("tbl_df", "tbl", "data.frame"))
structure(list(resp = structure(c(3L, 2L, 4L, 1L, 3L, 2L, 4L,
1L, 3L, 2L, 4L, 1L, 3L, 2L, 4L, 1L, 3L, 2L, 4L, 1L), .Label = c("Don't Know",
"Leave", "Remain", "Will Not Vote"), class = "factor"), euRefVoteW1 = c(316L,
157L, 2L, 56L, 190L, 339L, 4L, 70L, 819L, 79L, 9L, 71L, 1294L,
1311L, 150L, 523L, 1715L, 2587L, 133L, 630L), euRefVoteW2 = c(290L,
123L, 3L, 51L, 175L, 282L, 3L, 62L, 777L, 74L, 5L, 62L, 1091L,
925L, 80L, 371L, 1528L, 2044L, 83L, 517L), euRefVoteW3 = c(313L,
159L, 3L, 55L, 199L, 334L, 4L, 69L, 835L, 81L, 10L, 57L, 1348L,
1289L, 139L, 508L, 1766L, 2563L, 156L, 586L), euRefVoteW4 = c(324L,
154L, 3L, 50L, 215L, 328L, 2L, 61L, 848L, 70L, 10L, 55L, 1397L,
1267L, 128L, 492L, 1853L, 2494L, 143L, 583L), euRefVoteW6 = c(338L,
134L, 2L, 57L, 241L, 286L, 2L, 77L, 853L, 68L, 5L, 57L, 1519L,
1133L, 112L, 520L, 2017L, 2284L, 106L, 667L), euRefVoteW7 = c(320L,
189L, 2L, 20L, 186L, 384L, 2L, 34L, 832L, 109L, 8L, 34L, 1449L,
1456L, 87L, 292L, 1906L, 2785L, 55L, 328L), euRefVoteW8 = c(325L,
187L, 2L, 17L, 187L, 384L, 1L, 34L, 836L, 118L, 5L, 24L, 1462L,
1522L, 72L, 228L, 1898L, 2852L, 56L, 268L), euRefVoteW9 = c(335L,
181L, 0L, 0L, 206L, 385L, 0L, 6L, 844L, 102L, 0L, 4L, 1572L,
1462L, 0L, 21L, 2018L, 2827L, 0L, 20L), Paper = structure(c(1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L), .Label = c("Times", "Telegraph", "Control", "No_Paper",
"Rest"), class = "factor")), row.names = c(NA, -20L), class = c("tbl_df",
"tbl", "data.frame"))
eurrefcolnames = c('euRefVoteW1','euRefVoteW2', 'euRefVoteW3', 'euRefVoteW4', 'euRefVoteW6',' euRefVoteW7', 'euRefVoteW8', 'euRefVoteW9')
EDIT:
Here is the function that create the initial dataframes, is there an edit I could make here perhaps ?
tally_reader_number <- function(input_dataframe,newspaper_name) {
#function takes the input of in_all_waves, tallies the number of different eu ref responses using map_df for a given newspaper factor (defined above)
# and returns a dataframe of responese for each wave with the newspaper factor as a column
returned_dataframe <- input_dataframe %>%
filter(Paper == newspaper_name) %>%
ungroup() %>% #function refuses to work without this
select(-Paper) %>%
map_df(table) %>% # use map_df from the purrr package to "table" each column
rownames_to_column("response") %>% #convert the rownames to a column named response
mutate(resp = case_when(response == 1 ~ "Remain", #change the resulting numbers to the correct responses
response == 2 ~ "Leave",
response ==3 ~ "Will Not Vote",
response == 4 ~ "Don't Know")) %>%
select(resp, everything(), -response) %>% #reorder the columns with resp at the front, removing response
mutate(Paper = newspaper_name)
returned_dataframe$Paper <- as.factor(returned_dataframe$Paper)
returned_dataframe$resp <- as.factor(returned_dataframe$resp)
returned_dataframe
}

ggplot2: Inconsistent color from alpha

I am making several plots that have different x-axis limits, and I want to highlight a region of interest by adding a grey box. Even though I use the same geom_rect() command with the same alpha value in ggplot2, I get results with very different grey colors. I have looked here and here but so far have not figured out how to make these boxes the same level of transparency. Below is a reproducible example (with fake data) and the figures that it produces. Notice the different color of the grey rectangles. I want the grey to be the same across plots.
Data<-structure(list(X = c(34L, 27L, 28L, 47L, 26L, 3L, 13L, 31L, 39L,
16L, 45L, 5L, 49L, 17L, 29L, 43L, 1L, 35L, 41L, 10L, 48L, 24L,
12L, 11L, 30L, 40L, 8L, 4L, 20L, 25L, 50L, 22L, 9L, 21L, 18L,
7L, 15L, 44L, 6L, 36L, 46L, 33L, 2L, 37L, 23L, 14L, 42L, 38L,
19L, 32L, 34L, 27L, 28L, 47L, 26L, 3L, 13L, 31L, 39L, 16L, 45L,
5L, 49L, 17L, 29L, 43L, 1L, 35L, 41L, 10L, 48L, 24L, 12L, 11L,
30L, 40L, 8L, 4L, 20L, 25L, 50L, 22L, 9L, 21L, 18L, 7L, 15L,
44L, 6L, 36L, 46L, 33L, 2L, 37L, 23L, 14L, 42L, 38L, 19L, 32L
), Y = c(130L, 146L, 58L, 110L, 117L, 135L, 133L, 108L, 97L,
61L, 71L, 64L, 103L, 142L, 125L, 104L, 100L, 147L, 111L, 78L,
56L, 145L, 62L, 69L, 70L, 116L, 137L, 79L, 150L, 94L, 91L, 81L,
65L, 118L, 129L, 83L, 98L, 84L, 85L, 148L, 93L, 73L, 59L, 87L,
134L, 88L, 136L, 90L, 140L, 55L, 89L, 115L, 123L, 51L, 132L,
126L, 66L, 80L, 60L, 120L, 109L, 76L, 74L, 57L, 149L, 121L, 138L,
128L, 114L, 127L, 68L, 107L, 67L, 112L, 144L, 119L, 53L, 52L,
54L, 96L, 131L, 106L, 113L, 72L, 95L, 63L, 92L, 86L, 75L, 105L,
82L, 101L, 139L, 143L, 122L, 77L, 99L, 141L, 124L, 102L), B = structure(c(2L,
2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L,
2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 1L), class = "factor", .Label = c("no", "yes"))), .Names = c("X",
"Y", "B"), row.names = c(NA, -100L), class = "data.frame")
Data2<-structure(list(variable = c(2.49676547444708, 0.67359598601097,
0.674751772966082, 0.0317590441796792, 0.485143583939748, 1.08231639527806,
0.0732344181040914, 1.62357048819912, 0.146833215667032, 0.823157103468943,
0.240761579418538, 1.37540376416553), DOY_mid_month = c(15, 46,
75, 106, 136, 167, 197, 228, 259, 289, 320, 350)), .Names = c("variable",
"DOY_mid_month"), row.names = c(NA, -12L), class = "data.frame")
test<-ggplot(data=Data) +
geom_rect(aes(xmin=5, xmax=30, ymin=1, ymax=40), alpha = 0.02) +
geom_point(aes(x = X, y = X, colour= B), data =Data, size=2) +
theme_bw()
test2 <-ggplot(data=Data2) +
geom_rect(aes(xmin=5, xmax=30, ymin=-Inf, ymax=Inf), alpha = 0.02) +
geom_point(aes(x = DOY_mid_month, y = variable), color="black", size=4) +
scale_x_continuous("Day of Year", limits = c(0, 366)) + # Use this to add back X-axis label for the bottom plot in panel
scale_y_continuous(expression(paste("Variable", sep=""))) +
theme_bw()
Plot result from first example:
Plot result from second example:
You are currently drawing one rectangle for each row of the dataset. The more rectangles you overlap, the darker they get, which is why the longer dataset has a darker rectangle. Use annotate instead of geom_rect to draw a single rectangle.
annotate(geom = "rect", xmin=5, xmax=30, ymin=-Inf, ymax=Inf, alpha = 0.2)
If you want to stick with geom_rect you can give a one row data.frame to that layer so that each rectangle is only drawn one time. Here I use a fake dataset, although you could put your rectangle limits in the data.frame, as well.
geom_rect(data = data.frame(fake = 1),
aes(xmin = 5, xmax= 30, ymin = -Inf, ymax = Inf), alpha = 0.2)

Bubble Plot of Negative and Positive values in space ggplot2 R

I would like to make a bubble plot using ggplot2 in R. My code and data are found below.
Please leave the colors as they are. I am having difficulties in scaling positive and negative values equally. For example, -3 is scaled smaller than +3. I would like negatives and positives to be scaled proportionately irrespective of sign.
Identify negative from positive values using some kind of outline linetype for bubbles and include it in the legend.
Also remove the "Mean" part of the legend.
Thanks very much for your great help.
#=====================================================================
library(ggplot2)
if (dev.cur() == 1) x11(width=8,height=6)
par(mfcol=c(1,1))
p<-ggplot(site.resiudal, aes(x=Eastings, y=Northings, size=Mean,label=site.resiudal$Site,legend = FALSE))+
#theme(legend.position="none")+
geom_point(shape=21)+
geom_point(aes(colour = factor(Region)))+
scale_area(range=c(1,15))+
scale_alpha(guide = 'none')+
scale_x_continuous(name="Longitude", limits=c(-120,-95))+
scale_y_continuous(name="Latitude", limits=c(48,61))+
geom_text(size=4)+
scale_colour_manual(name="Region",labels = c("A", "B","C","D", "E"),values = c("1" = "firebrick3","2" = "palegreen4","3" = "sandybrown","4" = "red","5" = "gray0"))+
theme(legend.title = element_text(colour="black", size=16, face="plain"))+
theme(legend.text = element_text(colour="black", size = 16, face = "plain"))
p
#Data[["sign"]] = ifelse(Data[["Mean"]] >= 0, "positive", "negative")
#=================================================
structure(list(Site = structure(c(101L, 102L, 105L, 107L, 108L,
110L, 111L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 16L, 20L, 47L, 52L, 53L, 55L, 91L, 92L, 93L, 94L, 95L,
96L, 99L, 15L, 17L, 18L, 19L, 21L, 114L, 23L, 26L, 36L, 59L,
60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L,
73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L,
86L, 87L, 88L, 89L, 98L, 100L, 103L, 104L, 106L, 109L, 112L,
113L, 115L, 116L, 117L, 119L, 42L, 44L, 46L, 48L, 49L, 50L, 51L,
54L, 56L, 57L, 58L, 90L, 97L, 118L, 120L, 22L, 24L, 25L, 27L,
28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 37L, 38L, 39L, 40L, 41L,
43L, 45L), .Label = c("G100", "G101", "G102", "G103", "G104",
"G105", "G106", "G107", "G108", "G109", "G110", "G111", "G112",
"G113", "G114", "G115", "G116", "G117", "G118", "G119", "G120",
"GG10", "GG11", "GG12", "GG13", "GG14", "GG15", "GG16", "GG17",
"GG18", "GG19", "GG20", "GG21", "GG22", "GG23", "GG24", "GG25",
"GG26", "GG27", "GG28", "GG29", "GG30", "GG31", "GG32", "GG33",
"GG34", "GG35", "GG36", "GG37", "GG38", "GG39", "GG40", "GG41",
"GG42", "GG43", "GG44", "GG45", "GG46", "GG47", "GG48", "GG49",
"GG50", "GG51", "GG52", "GG53", "GG54", "GG55", "GG56", "GG57",
"GG58", "GG59", "GG60", "GG61", "GG62", "GG63", "GG64", "GG65",
"GG66", "GG67", "GG68", "GG69", "GG70", "GG71", "GG72", "GG73",
"GG74", "GG75", "GG76", "GG77", "GG78", "GG79", "GG80", "GG81",
"GG82", "GG83", "GG84", "GG85", "GG86", "GG87", "GG88", "GG89",
"GG90", "GG91", "GG92", "GG93", "GG94", "GG95", "GG96", "GG97",
"GG98", "GG99", "GGG1", "GGG2", "GGG3", "GGG4", "GGG5", "GGG6",
"GGG7", "GGG8", "GGG9"), class = "factor"), Name = structure(c(53L,
87L, 29L, 92L, 36L, 76L, 102L, 103L, 119L, 2L, 9L, 11L, 45L,
47L, 49L, 54L, 90L, 30L, 105L, 66L, 78L, 107L, 81L, 42L, 41L,
43L, 59L, 110L, 24L, 27L, 56L, 61L, 64L, 118L, 40L, 21L, 44L,
70L, 108L, 25L, 58L, 98L, 83L, 5L, 19L, 26L, 31L, 38L, 55L, 60L,
71L, 74L, 75L, 85L, 95L, 120L, 109L, 1L, 67L, 20L, 50L, 63L,
106L, 111L, 116L, 62L, 6L, 99L, 114L, 73L, 84L, 89L, 93L, 97L,
115L, 80L, 10L, 12L, 88L, 79L, 15L, 17L, 33L, 35L, 94L, 100L,
3L, 16L, 37L, 101L, 117L, 8L, 39L, 48L, 86L, 113L, 23L, 13L,
69L, 96L, 104L, 32L, 65L, 82L, 14L, 22L, 18L, 46L, 68L, 72L,
77L, 91L, 112L, 4L, 7L, 28L, 51L, 57L, 52L, 34L), .Label = c("ANEROID",
"ARBORG", "ATHABASCA", "BANFF", "BANGOR", "BATTLEFORD", "BEAVER MINES",
"BEAVERLODGE", "BERENS RIVER", "BIRTLE", "BISSETT", "BRANDON",
"BUFFALO NARROWS", "CALGARY", "CALMAR", "CAMPSIE", "CAMROSE",
"CARWAY", "CEYLON", "CHAPLIN", "CHURCHILL", "CLARESHOLM", "COLD LAKE",
"COLLINS BAY", "CORONATION", "COTE", "CREE LAKE", "CROWSNEST",
"CYPRESS RIVER", "DAUPHIN", "DAVIDSON", "DRUMHELLER", "EDMONTON",
"EDSON", "ELK POINT", "EMERSON AUT", "ENILDA-BERG", "ESTEVAN",
"FAIRVIEW", "FLIN FLON", "FORT CHIPEWYAN", "FORT MCMURRAY", "FORT VERMILION",
"GILLAM", "GIMLI", "GLEICHEN", "GRAND RAPIDS", "GRANDE PRAIRIE",
"GREAT FALLS", "HIGH POINT", "HIGHWOOD", "HINTON VALLEY", "HUDSON BAY",
"INDIAN BAY", "INDIAN HEAD", "ISLAND FALLS", "JASPER WARDEN",
"JENNER", "KEG RIVER RS", "KELLIHER", "KEY LAKE", "KINDERSLEY",
"KLINTONEL", "LA RONGE", "LACOMBE 2", "LANGRUTH WEST", "LEADER",
"LETHBRIDGE", "LOON LAKE", "LYNN LAKE", "MANOR", "MEDICINE HAT",
"MELFORT", "MOOSE JAW", "MOOSOMIN", "MORDEN", "MOUNTAIN VIEW",
"NEEPAWA MURRAY", "NINETTE", "NIPAWIN", "NORWAY HOUSE", "OLDS",
"ONEFOUR", "OUTLOOK", "PASWEGIN", "PEACE RIVER", "PELLY", "PIERSON",
"PILGER", "PINAWA WNRE", "PINCHER CREEK ", "PORTAGE PRAIRIE",
"PRINCE ALBERT", "RANFURLY", "REGINA", "ROCKY MT HOUSE ", "SASKATOON",
"SCOTFIELD", "SCOTT", "SION", "SLAVE LAKE", "SPRAGUE", "STEINBACH",
"STETTLER NORTH", "SWAN RIVER", "SWIFT CURRENT", "THE PAS", "THOMPSON",
"TONKIN", "URANIUM CITY ", "VAL-MARIE", "VAUXHALL", "WABASCA RS",
"WASECA", "WASKESIU LAKE", "WEST POPLAR", "WHITECOURT", "WHITESAND DAM",
"WINNIPEG", "YELLOW GRASS"), class = "factor"), Mean = c(-0.020525899,
0.333863493, 0.210353772, NA, NA, 0.093520458, 0.341295298, NA,
-0.175074657, 0.09834825, 0.075610648, NA, -0.117503802, 0.18309367,
0.25246942, 0.221329766, 0.072167004, -0.094766032, NA, NA, 0.19783711,
-0.166351357, -0.0996169, -0.038555432, -0.028092042, 0.297855371,
0.108263891, 0.002057761, 0.327731415, NA, 0.180100638, 0.193837736,
-0.003306948, 0.178881894, 0.3655509, -0.235975798, -0.176154056,
-0.080433735, -0.110955273, -0.228010105, 0.048103255, -0.116681527,
-0.073042421, NA, NA, 0.035356012, 0.297171565, -0.197834719,
0.036412958, 0.055218077, NA, -0.236229087, 0.265211081, 0.271625885,
-0.293179359, 0.113744571, -0.207770026, 0.100471248, -0.071569464,
NA, NA, NA, -0.052716493, 0.057385851, 0.090340517, -0.30456625,
-0.234420722, 0.082287977, 0.009973663, NA, -0.06405062, 0.074703356,
-0.208329196, -0.272401078, 0.217991554, -0.043619919, -0.208901155,
-0.020022401, 0.111495318, NA, 0.38239749, 0.199136959, -0.177740258,
NA, 0.147515615, 0.309306538, 0.298741467, 0.068170296, NA, -0.02102765,
0.001754313, -0.010196512, 0.108254156, -0.228183063, -0.196261239,
NA, -0.167054722, 0.039949534, 0.154337034, -0.020855461, 0.136010278,
NA, 0.096997744, NA, -0.241963754, 0.660176529, 0.423554314,
0.190305726, -0.210778787, -0.261148915, NA, 0.054264129, -0.098706619,
-0.138776994, NA, NA, NA, -0.113823745, 0.373292721, -0.047060083
), Eastings = c(-102.5800018, -101.8700027, -99.08000183, -98.26999664,
-97.23000336, -98.08000183, -95.59999847, -96.76999664, -97.23000336,
-97.08000183, -97.02999878, -95.69999695, -97.01999664, -99.27999878,
-96, -95.19999695, -96.06999969, -100.0500031, -101.2300034,
-98.80000305, -99.56999969, -101.0999985, -97.84999847, -111.2200012,
-111.1200027, -116.0299988, -117.6200027, -108.4800034, -103.6999969,
-107.1299973, -102.3499985, -105.6200027, -105.2699966, -103.1500015,
-101.8799973, -94.06999969, -94.72000122, -101.0800018, -97.87000275,
-111.4499969, -111.1999969, -111.3499985, -110.4700012, -102.2799988,
-104.6500015, -101.7799988, -105.9800034, -102.9700012, -103.6500015,
-103.75, -102.0999985, -105.5500031, -101.6699982, -103.9199982,
-104.6699982, -104.1800003, -102.2300034, -107.3000031, -109.5,
-106.6500015, -107.9300003, -108.9199982, -107.7300034, -107.8499985,
-106.3799973, -109.1800003, -108.25, -108.8300018, -109.4000015,
-104.5999985, -107.0500031, -105.1500015, -105.6699982, -106.7200012,
-106.0699997, -104, -101.0500031, -99.94999695, -101.2699966,
-99.65000153, -113.8499985, -112.8199997, -113.5800018, -111.0699997,
-111.7300034, -114.1200027, -113.2799988, -114.6800003, -116.3000031,
-114.7799988, -115.7799988, -119.4000015, -118.5299988, -118.8799973,
-117.4499969, -113.8300018, -110.2799988, -108.4300003, -109.0999985,
-114.9199982, -112.7200012, -112.8700027, -113.75, -114.0999985,
-114.0199966, -113.7300034, -113.3799973, -113.0500031, -112.8000031,
-110.7200012, -113.6299973, -113.9800034, -112.1299973, -115.5500031,
-114.1800003, -114.4800034, -114.3700027, -118.0299988, -117.5299988,
-116.4499969), Northings = c(52.88000107, 52.08000183, 49.54999924,
49.95000076, 49, 49.18000031, 49.02000046, 49.52999878, 49.91999817,
50.93000031, 52.34999847, 51.02999878, 50.63000107, 53.15000153,
50.47000122, 49.61999893, 50.18000031, 51.09999847, 52.11999893,
50.41999817, 50.15000153, 53.97000122, 53.97000122, 56.65000153,
58.77000046, 58.38000107, 57.75, 59.56999969, 58.18000031, 57.34999847,
55.52999878, 57.25, 55.15000153, 56.22999954, 54.77000046, 58.72999954,
56.34999847, 56.86999893, 55.79999924, 52.06999969, 50.72000122,
51.58000183, 49.11999893, 50.90000153, 49.38000107, 51.52000046,
51.27000046, 49.22000122, 50.54999924, 51.25, 49.61999893, 50.33000183,
50.13000107, 51.97999954, 50.43000031, 49.81999969, 51.20000076,
49.72000122, 50.90000153, 50.47000122, 50.97999954, 49.68000031,
50.27000046, 49.36999893, 49, 51.52000046, 52.77000046, 52.36999893,
53.13000107, 52.81999969, 51.47999954, 52.41999817, 53.22000122,
52.16999817, 53.91999817, 53.33000183, 50.43000031, 49.91999817,
49.18000031, 49.41999817, 53.27999878, 53.02999878, 53.31999969,
53.88000107, 53.41999817, 53.88000107, 54.72000122, 54.13000107,
55.41999817, 55.27999878, 54.15000153, 55.20000076, 56.08000183,
55.18000031, 56.22999954, 55.97000122, 54.41999817, 55.83000183,
54.04999924, 52.41999817, 52.33000183, 51.47000122, 52.45000076,
51.77999878, 51.11999893, 49.93000031, 49, 50.88000107, 49.63000107,
50.02000046, 49.13000107, 49.52000046, 50.04999924, 51.20000076,
49.47000122, 49.63000107, 50.54999924, 52.93000031, 53.40000153,
53.58000183), Region = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L)), .Names = c("Site",
"Name", "Mean", "Eastings", "Northings", "Region"), class = "data.frame", row.names = c(NA,
-120L))
#============================================
use abs()
eg
instead of size=Mean use size=abs(Mean)
Then, you can track the sign using shape (or some other aesthetic, but color and size are already taken)
replace:
geom_point(shape=21)+
geom_point(aes(colour = factor(Region))) +
with the single line
geom_point(aes(shape=factor(sign(Mean)), colour = factor(Region))) +
If you'd like, you can also add lines such as
scale_shape_discrete(name="Mean Is", breaks=c(-1, 1), labels=c("Negative", "Positive"))
guides(size=FALSE)

Internal ordering of facets ggplot2

I'm trying to plot a facets in ggplot2 but I struggle to get the internal ordering of the different facets right. The data looks like this:
head(THAT_EXT)
ID FILE GENRE NODE
1 CKC_1823_01 CKC Novels better
2 CKC_1824_01 CKC Novels better
3 EW9_192_03 EW9 Popular Science better
4 H0B_265_01 H0B Popular Science sad
5 CS2_231_03 CS2 Academic Prose desirable
6 FED_8_05 FED Academic Prose certain
str(THAT_EXT)
'data.frame': 851 obs. of 4 variables:
$ ID : Factor w/ 851 levels "A05_122_01","A05_277_07",..: 345 346 439 608 402 484 319 395 228 5 ...
$ FILE : Factor w/ 241 levels "A05","A06","A0K",..: 110 110 127 169 120 135 105 119 79 2 ...
$ GENRE: Factor w/ 5 levels "Academic Prose",..: 4 4 5 5 1 1 1 5 1 5 ...
$ NODE : Factor w/ 115 levels "absurd","accepted",..: 14 14 14 89 23 16 59 59 18 66 ...
Part of the problem is that can't get the sorting right. Here is the code for the sorting of NODE that I use:
THAT_EXT <- within(THAT_EXT,
NODE <- factor(NODE,
levels=names(sort(table(NODE),
decreasing=TRUE))))
When I plot this with the code below I get a graphs in which the NODE is not correctly sorted in the individual GENREs since different NODEs are more frequent in different GENREs:
p1 <-
ggplot(THAT_EXT, aes(x=NODE)) +
geom_bar() +
scale_x_discrete("THAT_EXT", breaks=NULL) + # supress tick marks on x axis
facet_wrap(~GENRE)
What I want is for every facet to have NODE sorted in decreasing order for that particular GENRE. Can anyone help with this?
structure(list(ID = structure(c(1L, 2L, 3L, 4L, 10L, 133L, 137L,
138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L,
149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L,
160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L,
171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L,
182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L, 190L, 191L, 192L,
193L, 194L, 195L, 196L, 197L, 198L, 199L, 200L, 201L, 202L, 203L,
204L, 205L, 206L, 207L, 208L, 212L, 213L, 214L, 215L, 216L, 217L,
218L, 219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L,
240L, 241L, 267L, 268L, 269L, 270L, 271L, 272L, 273L, 274L, 275L,
276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L, 284L, 290L, 291L,
298L, 299L, 300L, 303L, 304L, 305L, 306L, 307L, 308L, 309L, 310L,
313L, 314L, 315L, 316L, 317L, 318L, 319L, 327L, 328L, 329L, 330L,
331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L, 341L,
342L, 343L, 344L, 345L, 346L, 347L, 348L, 352L, 353L, 354L, 355L,
356L, 357L, 358L, 359L, 360L, 349L, 350L, 351L, 361L, 362L, 363L,
364L, 365L, 366L, 367L, 368L, 369L, 370L, 371L, 372L, 373L, 374L,
375L, 376L, 377L, 378L, 379L, 380L, 381L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L,
29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 41L, 42L, 43L, 44L, 45L,
46L, 50L, 54L, 72L, 73L, 74L, 75L, 76L, 90L, 91L, 92L, 97L, 98L,
102L, 115L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 209L,
210L, 211L, 242L, 243L, 244L, 245L, 246L, 289L, 292L, 293L, 294L,
295L, 296L, 297L, 301L, 302L, 311L, 312L, 320L, 321L, 322L, 323L,
324L, 325L, 326L, 382L, 383L, 384L, 385L, 386L, 387L, 388L, 5L,
6L, 7L, 8L, 9L, 11L, 37L, 38L, 39L, 40L, 47L, 48L, 49L, 51L,
52L, 53L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L,
66L, 67L, 68L, 69L, 70L, 71L, 77L, 78L, 79L, 80L, 81L, 82L, 83L,
84L, 85L, 86L, 87L, 88L, 89L, 93L, 94L, 95L, 96L, 99L, 100L,
101L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L,
113L, 114L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L,
134L, 135L, 136L, 247L, 248L, 249L, 250L, 251L, 252L, 253L, 254L,
255L, 256L, 257L, 258L, 259L, 260L, 261L, 262L, 263L, 264L, 265L,
266L, 285L, 286L, 287L, 288L), .Label = c("A05_122_01", "A05_277_07",
"A05_400_01", "A05_99_01", "A06_1283_02", "A06_1389_01", "A06_1390_01",
"A06_1441_02", "A06_884_03", "A0K_1190_03", "A77_1684_01", "A8K_525_03",
"A8K_582_01", "A8K_645_01", "A8K_799_01", "A90_341_02", "A90_496_01",
"A94_217_01", "A94_472_01", "A94_477_03", "A9M_164_01", "A9M_259_03",
"A9N_199_01", "A9N_489_01", "A9N_591_01", "A9R_173_01", "A9R_425_02",
"A9W_536_02", "AA5_121_01", "AAE_203_01", "AAE_243_01", "AAE_412_01",
"AAW_14_03", "AAW_244_02", "AAW_297_04", "AAW_365_04", "ADG_1398_01",
"ADG_1500_01", "ADG_1507_01", "ADG_1516_01", "AHB_336_01", "AHB_421_01",
"AHJ_1090_02", "AHJ_619_01", "AR3_340_01", "AR3_91_03", "ARF_879_01",
"ARF_985_01", "ARF_991_02", "ARK_1891_01", "ASL_33_04", "ASL_43_01",
"ASL_9_01", "AT7_1031_01", "B09_1162_01", "B09_1475_01", "B09_1493_01",
"B09_1539_01", "B0G_197_01", "B0G_320_01", "B0N_1037_01", "B0N_624_01",
"B0N_645_02", "B0N_683_01", "B3G_313_04", "B3G_320_03", "B3G_398_02",
"B7M_1630_01", "B7M_1913_01", "BNN_746_02", "BNN_895_01", "BP7_2426_01",
"BP7_2777_01", "BP7_2898_01", "BP9_410_01", "BP9_599_01", "BPK_829_01",
"C93_1407_02", "C9A_181_01", "C9A_196_01", "C9A_365_01", "C9A_82_02",
"C9A_9_01", "CB9_306_02", "CB9_63_04", "CB9_86_01", "CBJ_439_01",
"CBJ_702_02", "CBJ_705_01", "CCM_320_01", "CCM_665_01", "CCM_669_02",
"CCN_1036_02", "CCN_1078_01", "CCN_1119_01", "CCN_784_01", "CCW_2284_02",
"CCW_2349_03", "CE7_242_02", "CE7_284_01", "CE7_39_01", "CEB_1675_01",
"CER_145_03", "CER_23_01", "CER_235_02", "CER_378_10", "CET_1056_02",
"CET_680_01", "CET_705_01", "CET_797_01", "CET_838_01", "CET_879_05",
"CET_946_03", "CET_986_01", "CEY_2977_01", "CJ3_107_02", "CJ3_114_03",
"CJ3_20_01", "CJ3_81_01", "CK2_112_01", "CK2_22_01", "CK2_392_01",
"CK2_42_01", "CK2_75_01", "CKC_1776_01", "CKC_1777_01", "CKC_1823_01",
"CKC_1824_01", "CKC_1860_01", "CKC_1883_01", "CKC_1883_02", "CKC_2127_01",
"CMN_1439_02", "CRM_5767_01", "CRM_5770_03", "CRM_5789_01", "CS2_110_01",
"CS2_131_01", "CS2_139_01", "CS2_187_01", "CS2_187_03", "CS2_231_03",
"CS2_249_02", "CS2_301_01", "CS2_35_01", "CS2_58_02", "EV6_16_01",
"EV6_206_02", "EV6_240_01", "EV6_244_02", "EV6_28_01", "EV6_30_01",
"EV6_32_01", "EV6_450_01", "EV6_69_01", "EV6_80_01", "EV6_91_01",
"FAC_1019_01", "FAC_1026_01", "FAC_1027_01", "FAC_1235_01", "FAC_1269_05",
"FAC_1270_05", "FAC_1393_01", "FAC_1406_03", "FAC_933_01", "FAC_950_01",
"FAC_960_01", "FED_105_01", "FED_120_02", "FED_21_02", "FED_281_02",
"FED_302_02", "FED_53_01", "FED_8_05", "FEF_498_03", "FEF_674_03",
"FR2_410_01", "FR2_557_02", "FR2_593_01", "FR2_691_01", "FR4_232_01",
"FR4_331_01", "FR4_346_01", "FS7_818_01", "FS7_919_01", "FU0_368_02",
"FYT_1138_01", "FYT_1183_01", "FYT_901_05", "G08_1336_01", "G1E_385_01",
"G1N_824_01", "G1N_860_01", "G1N_868_01", "G1N_975_01", "GU5_854_01",
"GUJ_423_01", "GUJ_501_01", "GUJ_611_01", "GUJ_629_03", "GUJ_700_01",
"GV0_10_01", "GV0_104_01", "GV0_111_01", "GV0_122_01", "GV0_160_01",
"GV0_232_02", "GV2_1465_01", "GV2_1899_01", "GV6_2683_01", "GW6_297_01",
"GW6_306_05", "GW6_307_01", "GW6_322_01", "GW6_330_02", "GW6_335_01",
"GW6_338_01", "GW6_367_02", "GW6_373_01", "GW6_407_01", "GW6_411_01",
"GW6_413_01", "GW6_421_01", "GW6_423_01", "GW6_424_01", "GW6_428_01",
"GW6_447_01", "GWM_480_01", "GWM_533_02", "GWM_554_02", "GWM_554_03",
"GWM_609_01", "GWM_609_04", "GWM_610_01", "GWM_730_01", "GWM_731_01",
"GWM_738_01", "GWM_804_06", "GWM_815_01", "GWM_832_03", "GVP_179_01",
"GVP_211_01", "GVP_393_02", "GVP_443_02", "GVP_710_01", "H0B_171_04",
"H0B_216_01", "H0B_265_01", "H0B_32_01", "H0B_361_03", "H0B_365_01",
"H0B_369_01", "H0B_74_01", "H0B_93_01", "H10_1002_01", "H10_1032_04",
"H10_653_01", "H10_803_01", "H10_824_01", "H10_825_03", "H10_881_01",
"H10_986_01", "H78_851_04", "H78_891_01", "H78_946_04", "H79_1959_19",
"H7S_110_05", "H7S_130_06", "H7S_131_03", "H7S_131_04", "H7S_146_01",
"H7S_148_01", "H7S_164_01", "H7S_179_01", "H7S_54_01", "H7S_56_05",
"H7S_62_03", "H7S_79_01", "H7S_8_01", "H7S_81_01", "H7S_83_01",
"H7S_87_01", "H7S_92_03", "H7X_1028_02", "H7X_1091_01", "H7X_691_01",
"H7X_695_01", "H8H_2917_01", "H8K_153_01", "H8K_55_01", "H8M_1897_01",
"H8M_2104_02", "H8T_3316_03", "H98_3204_01", "H98_3410_01", "H98_3490_02",
"H9R_130_02", "H9R_39_01", "H9S_1297_01", "HA2_3107_02", "HA2_3284_01",
"HPY_754_04", "HPY_785_09", "HPY_799_03", "HPY_807_04", "HPY_830_04",
"HPY_838_02", "HPY_843_01", "HPY_869_11", "HR7_190_01", "HR7_440_01",
"HTP_540_01", "HTP_585_01", "HTP_588_05", "HTP_593_01", "HTP_601_01",
"HTP_613_01", "HTP_648_02", "HTW_197_01", "HTW_494_01", "HTW_750_01",
"HWL_2770_01", "HWL_2919_01", "HWM_45_01", "HWM_45_02", "HXY_1047_03",
"HXY_701_01", "HXY_781_01", "HXY_783_01", "HXY_784_01", "HXY_836_01",
"HXY_931_01", "HXY_963_01", "HXY_972_01", "HXY_985_03", "HY6_1024_01",
"HY6_1025_01", "HY6_1164_01", "HY6_1223_01", "HY6_988_03", "HY6_989_01",
"HY8_160_01", "HY8_164_01", "HY8_292_03", "HY8_316_01", "HY9_778_03",
"HY9_845_02", "HYX_235_08", "HYX_245_01", "HYX_88_01", "J12_1474_02",
"J12_1492_01", "J12_1571_01", "J12_1845_01", "J14_341_01", "J18_597_04",
"J18_698_02", "J18_759_01", "J18_828_01", "J3R_197_01", "J3R_219_02",
"J3R_277_04", "J3T_267_01", "J3T_269_02", "J3T_57_02", "J41_41_02",
"J41_58_03", "J9B_133_03", "J9B_341_02", "J9B_341_03", "J9D_147_05",
"J9D_218_01", "J9D_411_01", "J9D_616_01", "J9D_616_02", "JNB_563_02",
"JT7_118_01", "JT7_129_02", "JT7_218_02", "JT7_344_02", "JXS_3663_01",
"JXU_407_01", "JXU_468_02", "JXU_559_01", "JXV_1439_04", "JXV_1592_01",
"JY1_100_01"), class = "factor"), GENRE = structure(c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L), .Label = c("Academic Prose", "Conversation", "News",
"Novels", "Popular Science"), class = "factor"), NODE = structure(c(9L,
10L, 10L, 10L, 4L, 10L, 71L, 35L, 49L, 6L, 5L, 15L, 28L, 44L,
64L, 64L, 28L, 28L, 18L, 18L, 32L, 18L, 58L, 10L, 72L, 28L, 18L,
10L, 64L, 10L, 35L, 64L, 64L, 69L, 8L, 10L, 50L, 69L, 49L, 49L,
15L, 69L, 10L, 49L, 8L, 64L, 49L, 10L, 69L, 18L, 61L, 67L, 67L,
61L, 57L, 69L, 11L, 10L, 64L, 10L, 59L, 61L, 49L, 10L, 59L, 1L,
61L, 35L, 54L, 54L, 39L, 44L, 61L, 64L, 69L, 1L, 23L, 49L, 49L,
8L, 69L, 49L, 69L, 49L, 49L, 69L, 35L, 49L, 49L, 49L, 35L, 10L,
49L, 48L, 10L, 49L, 11L, 44L, 50L, 11L, 50L, 69L, 49L, 10L, 59L,
68L, 47L, 69L, 49L, 35L, 29L, 8L, 49L, 50L, 35L, 10L, 35L, 8L,
35L, 8L, 10L, 35L, 10L, 10L, 10L, 35L, 44L, 61L, 35L, 44L, 28L,
47L, 39L, 39L, 49L, 61L, 43L, 60L, 19L, 10L, 10L, 10L, 44L, 44L,
62L, 44L, 10L, 59L, 10L, 61L, 1L, 53L, 33L, 10L, 8L, 8L, 64L,
64L, 10L, 57L, 61L, 64L, 66L, 19L, 61L, 64L, 10L, 10L, 8L, 19L,
35L, 28L, 10L, 61L, 35L, 42L, 35L, 28L, 32L, 64L, 10L, 18L, 28L,
25L, 35L, 35L, 10L, 18L, 10L, 22L, 55L, 28L, 10L, 1L, 55L, 51L,
1L, 38L, 28L, 28L, 33L, 10L, 44L, 29L, 16L, 8L, 28L, 69L, 32L,
10L, 61L, 20L, 35L, 10L, 28L, 10L, 32L, 10L, 46L, 59L, 64L, 35L,
66L, 2L, 35L, 28L, 30L, 18L, 69L, 32L, 10L, 28L, 17L, 36L, 64L,
61L, 10L, 64L, 33L, 3L, 37L, 26L, 28L, 64L, 44L, 28L, 64L, 64L,
6L, 6L, 64L, 50L, 32L, 8L, 64L, 50L, 28L, 24L, 18L, 47L, 35L,
40L, 24L, 55L, 44L, 22L, 1L, 49L, 44L, 18L, 45L, 63L, 64L, 35L,
12L, 35L, 10L, 35L, 10L, 10L, 10L, 44L, 44L, 44L, 65L, 44L, 55L,
32L, 49L, 64L, 39L, 69L, 1L, 60L, 7L, 14L, 44L, 33L, 10L, 19L,
10L, 70L, 53L, 8L, 61L, 61L, 44L, 61L, 65L, 28L, 68L, 69L, 27L,
61L, 28L, 72L, 34L, 61L, 32L, 10L, 49L, 35L, 49L, 10L, 10L, 69L,
39L, 40L, 19L, 59L, 53L, 49L, 49L, 44L, 49L, 35L, 49L, 61L, 61L,
1L, 10L, 28L, 49L, 35L, 49L, 61L, 50L, 69L, 35L, 61L, 35L, 50L,
10L, 28L, 69L, 61L, 21L, 69L, 29L, 35L, 35L, 35L, 11L, 69L, 8L,
41L, 56L, 35L, 61L, 69L, 49L, 49L, 49L, 1L, 13L, 64L, 64L, 52L,
44L, 64L, 64L, 50L, 49L, 69L, 11L, 59L, 49L, 31L), .Label = c("apparent",
"appropriate", "awful", "axiomatic", "best", "better", "breathtaking",
"certain", "characteristic", "clear", "conceivable", "convenient",
"crucial", "cruel", "desirable", "disappointing", "emphatic",
"essential", "evident", "expected", "extraordinary", "fair",
"fortunate", "Funny", "good", "great", "imperative", "important",
"impossible", "incredible", "inescapable", "inevitable", "interesting",
"ironic", "likely", "Likely", "lucky", "ludicrous", "natural",
"necessary", "needful", "notable", "noteworthy", "obvious", "odd",
"paradoxical", "plain", "plausible", "possible", "probable",
"proper", "relevant", "remarkable", "revealing", "right", "Sad",
"self-evident", "sensible", "significant", "striking", "surprising",
"symptomatic", "terrible", "true", "typical", "understandable",
"unexpected", "unfortunate", "unlikely", "unreasonable", "untrue",
"vital"), class = "factor")), .Names = c("ID", "GENRE", "NODE"
), class = "data.frame", row.names = c(NA, -388L))
As I mentioned already: facet_wrap is not intended for having individual scales. At least I didn't find a solution. Hence, setting the labels in scale_x_discrete did not bring the desired result.
But this my workaround:
library(plyr)
library(ggplot2)
nodeCount <- ddply( df, c("GENRE", "NODE"), nrow )
nodeCount$factors <- paste( nodeCount$GENRE, nodeCount$NODE, sep ="." )
nodeCount <- nodeCount[ order( nodeCount$GENRE, nodeCount$V1, decreasing=TRUE ), ]
nodeCount$factors <- factor( nodeCount$factors, levels=nodeCount$factors )
head(nodeCount)
GENRE NODE V1 factors
121 Popular Science possible 14 Popular Science.possible
128 Popular Science surprising 11 Popular Science.surprising
116 Popular Science likely 9 Popular Science.likely
132 Popular Science unlikely 9 Popular Science.unlikely
103 Popular Science clear 7 Popular Science.clear
129 Popular Science true 5 Popular Science.true
g <- ggplot( nodeCount, aes( y=V1, x = factors ) ) +
geom_bar() +
scale_x_discrete( breaks=NULL ) + # supress tick marks on x axis
facet_wrap( ~GENRE, scale="free_x" ) +
geom_text( aes( label = NODE, y = V1+2 ), angle = 45, vjust = 0, hjust=0, size=3 )
Which gives:

How can I add missing sequence values?

I have a data frame like this:
structure(list(x = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L,
37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L,
50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L,
63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L,
76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L,
89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L,
101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 112L,
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 123L, 124L,
125L, 127L, 128L, 129L, 130L, 132L, 133L, 134L, 135L, 136L, 137L,
138L, 139L, 140L, 141L, 142L, 143L, 145L, 146L, 147L, 148L, 149L,
150L, 151L, 152L, 153L, 154L, 155L, 158L, 160L, 163L, 164L, 166L,
167L, 169L, 170L, 173L, 174L, 178L, 179L, 181L, 182L, 183L, 186L,
187L, 191L, 192L, 193L, 194L, 197L, 198L, 200L, 205L, 208L, 209L,
213L, 214L, 216L, 217L, 220L, 222L, 223L, 225L, 229L, 233L, 235L,
237L, 242L, 243L, 244L, 251L, 253L, 254L, 255L, 261L, 262L, 263L,
264L, 267L, 268L, 269L, 270L, 276L, 281L, 282L, 284L, 285L, 287L,
289L, 293L, 295L, 297L, 299L, 301L, 306L, 308L, 315L, 317L, 318L,
320L, 327L, 330L, 336L, 337L, 345L, 346L, 355L, 359L, 376L, 377L,
379L, 384L, 387L, 388L, 402L, 405L, 408L, 415L, 420L, 421L, 427L,
428L, 429L, 430L, 437L, 438L, 439L, 440L, 446L, 448L, 453L, 456L,
469L, 472L, 476L, 478L, 481L, 483L, 486L, 487L, 488L, 497L, 500L,
502L, 504L, 507L, 512L, 525L, 530L, 531L, 543L, 546L, 550L, 578L,
581L, 598L, 601L, 680L, 689L, 693L, 712L, 728L, 746L, 768L, 790L,
794L, 840L, 851L, 861L, 928L, 969L, 1010L, 1180L, 1698L), freq = c(29186L,
12276L, 5851L, 3938L, 3133L, 1894L, 1157L, 820L, 597L, 481L,
398L, 297L, 269L, 251L, 175L, 176L, 153L, 130L, 117L, 108L, 93L,
83L, 58L, 84L, 60L, 43L, 59L, 51L, 57L, 53L, 38L, 38L, 32L, 35L,
28L, 27L, 29L, 22L, 24L, 29L, 30L, 23L, 26L, 19L, 19L, 25L, 14L,
22L, 16L, 12L, 15L, 14L, 11L, 13L, 18L, 10L, 17L, 20L, 7L, 9L,
2L, 8L, 12L, 8L, 7L, 10L, 10L, 9L, 6L, 6L, 9L, 5L, 11L, 4L, 5L,
5L, 10L, 4L, 6L, 1L, 4L, 7L, 3L, 4L, 3L, 2L, 3L, 5L, 7L, 2L,
2L, 3L, 2L, 4L, 7L, 1L, 3L, 5L, 5L, 3L, 5L, 2L, 2L, 2L, 3L, 2L,
5L, 7L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 3L, 2L, 2L, 1L,
3L, 4L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 1L, 4L, 3L, 1L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 3L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 4L, 4L, 1L, 2L,
2L, 4L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 3L, 1L, 1L, 1L, 1L,
3L, 2L, 1L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 4L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L)), .Names = c("x",
"freq"), row.names = c(NA, -296L), class = "data.frame")
After the x value of 130, there are missing values. Is there a way I make this a continuous data frame in increments of 1 i.e. from 1 to 1698, populate the entire list and set the elements that do not have a value here as 0? What I mean is:
1,2
4,5
5,7
should be converted to:
1,2
2,0
3,0
4,5
5,7
Any suggestions?
You can also use merge (assuming your data is strored in l):
l <- merge(l,data.frame(x = 1:1698),all = TRUE,by = "x")
l$freq[is.na(l$freq)] <- 0
I'd create a data set of values that aren't covered by column x and then create a dataframe of those values and assign 0 to the freq of all of these x values. Then rbind and order by x.
#I called your data dat
y <- 1:max(dat$x)
dat2 <- data.frame(x=y[!y%in%dat$x], freq=0)
dat3 <- rbind(dat, dat2)
dat4 <- dat3[order(dat3$x), ] #could stop here
rownames(dat4) <- NULL #but I hate non sequential row names
dat4

Resources