Yun's algorithm - math

I would like to try to implement Yun's algorithm for square-free factorization of polynomials. From Wikipedia (f is the polynomial):
a0 = gcd(f, f'); b1 = f/a0; c1 = f'/a0; d1 = c1 - b1'; i = 1
repeat
ai = gcd(bi, di); bi+1 = bi/ai; ci+1 = di/ai; i = i + 1; di = ci - bi'
until b = 1
However, I'm not sure about the second step. I would like to use it for polynomials with integer coefficients (not necessary monic or primitive). Is it possible to realize the division b1 = f/a0 using just integers?
I found the code for synthetic division:
def extended_synthetic_division(dividend, divisor):
'''Fast polynomial division by using Extended Synthetic Division. Also works with non-monic polynomials.'''
# dividend and divisor are both polynomials, which are here simply lists of coefficients. Eg: x^2 + 3x + 5 will be represented as [1, 3, 5]
out = list(dividend) # Copy the dividend
normalizer = divisor[0]
for i in xrange(len(dividend)-(len(divisor)-1)):
out[i] /= normalizer # for general polynomial division (when polynomials are non-monic),
# we need to normalize by dividing the coefficient with the divisor's first coefficient
coef = out[i]
if coef != 0: # useless to multiply if coef is 0
for j in xrange(1, len(divisor)): # in synthetic division, we always skip the first coefficient of the divisor,
# because it is only used to normalize the dividend coefficients
out[i + j] += -divisor[j] * coef
# The resulting out contains both the quotient and the remainder, the remainder being the size of the divisor (the remainder
# has necessarily the same degree as the divisor since it is what we couldn't divide from the dividend), so we compute the index
# where this separation is, and return the quotient and remainder.
separator = -(len(divisor)-1)
return out[:separator], out[separator:] # return quotient, remainder.
The problem for me is that out[i] /= normalizer. Would it always work with integer (floor) division for Yun's b1 = f/a0? Is it so that it is always possible to divide f/gcd(f, f')? Is the out[separator:] (remainder) always going to zero?

The fact that the "division in p/GCD(p, p') will always work (i.e. be "exact", with no remainder in Z)" follows from the definition of the GCD. For any polynomials p and q their GCD(p,q) divides both p and q exactly. That's why it is called GCD i.e. Greatest Common Divisor:
A greatest common divisor of p and q is a polynomial d that divides p and q and such that every common divisor of p and q also divides d.
P.S. it makes more sense to ask such purely mathematical questions at the more specialized https://math.stackexchange.com/

Related

Minimum number of increments so that all elements have a common divisor

I got this problem in an interview recently:
Given a set of numbers X = [X_1, X_2, ...., X_n] where X_i <= 500 for 1 <= i <= n. Increment the numbers (only positive increments) in the set so that each element in the set has a common divisor >=2, and such that the sum of all increments is minimized.
For example, if X = [5, 7, 7, 7, 7] the new set would be X = [7, 7, 7, 7, 7] Since you can add 2 to X_1. X = [6, 8, 8, 8, 8] has a common denominator of 2 but is not correct since we're adding 6 (add 2 to 5 and 1 to each of the 4 7's).
I had a seemingly working solution (as in it passed all the test cases) that loops through the prime numbers < 500 and for each X_i in X finds the closest multiple of the prime number greater than X_i.
function closest_multiple(x, y)
return ceil(x/y)*y
min_increment = inf
for each prime_number < 500:
total_increment = 0
for each element X_i in X:
total_increment += closest_multiple(X_i, prime_number) - X_i
min_increment = min(min_increment, total_increment)
return min_increment
It's technically O(n) but is there a better way to solve this? I've been suggested to use dynamic programming but am unsure how that would fit in here.
Constant-bounded entries case
When X_i is bounded by a constant, the best time you can achieve asymptotically is O(n), since it takes at least that long to read all of your inputs. There are some practical improvements:
Filter out duplicates, so you work with a list of (element, frequency) pairs.
Early stopping in your loop.
Faster computation of closest_multiple(x, p) - x. This is slightly hardware/language dependent, but a single integer modulus op is almost certainly faster than an int -> float cast, float division, ceiling() call, and multiplication on the same magnitude numbers.
freq_counts <- Initialize-Counter(X) // List of (element, freq) pairs
min_increment = inf
for each prime_number < 500:
total_increment = 0
for each pair X_i, freq in freq_counts:
total_increment += (prime_number - (X_i % prime_number)) * freq
if total_increment >= min_increment: break
min_increment = min(min_increment, total_increment)
return min_increment
Large entries case
With uniformly chosen random data, the answer is almost always from using '2' as the divisor, and much larger prime divisors are vanishingly unlikely. However, let's solve for that worst case scenario.
Here, let max(X) = M, so that our input size is O(n (log M)) bits. We want a solution that's sub-exponential in that input size, so finding all primes below M (or even sqrt(M)) is out of the question. We're looking for any prime that gives us a min-total-increment; we'll call such a prime a min-prime. After finding such a prime, we can get the min-total-increment in linear time. We'll use a factoring approach along with two observations.
Observation 1: The answer is always at most n, since the increment needed for the prime 2 to divide X_i is at most 1.
Observation 2: We're trying to find primes that divide X_i or a number slightly larger than X_i for a large fraction of our entries X_i. Let Consecutive-Product-Divisors[i] be the set of all primes dividing either of X_i or X_i+1, which I'll abbreviate CPD[i]. This is exactly the set of all primes which divide X_i * (1 + X_i).
(Obs. 2 Continued) If U is a known upper bound on our answer (here, at most n), and p is a min-prime for X, then p must divide either X_i or X_i + 1 for at least N - U/2 of our CPD entries. Use frequency counts on the CPD array to find all such primes.
Once you have a list of candidate primes (all min-primes are guaranteed to be in this list), you can test each one individually using your algorithm. Since a number k can have at most O(log k) distinct prime divisors, this gives O(n log M) possible distinct primes that divide at least half of the numbers
[X_1*(1 + X_1), X_2*(1 + X_2), ... X_n*(1 + X_n)] that make up our candidate list. It's possible you can lower this bound with some more careful analysis, but it likely won't strongly affect the asymptotic runtime of the whole algorithm.
A more optimal complexity for large entries
The complexity of this solution is hard to write in short form, because the bottleneck is factoring n numbers of maximum size M, plus O(n^2 log M) arithmetic (i.e. addition, subtraction, multiply, modulo) operations on numbers of maximum size M. That doesn't mean the runtime is unknown: If you select any integer factoring algorithm and large-integer-arithmetic algorithms, you can derive the runtime exactly. Unfortunately, because of factoring, the best known runtime of the above algorithm is super-polynomial (but sub-exponential).
How can we do better? I did find a more complicated solution, based on Greatest Common Divisors (GCD) and dynamic-programming-like that runs in polynomial time (although likely much slower on non-astronomical-size inputs) since it doesn't rely on factoring.
The solution relies on the fact that at least one of the following two statements is true:
The number 2 is a min-prime for X, or
For at least one value of i, 1 <= i <= n there is an optimal solution where X_i remains unincremented, i.e. where one of the divisors of X_i produces a min-total-increment.
GCD-Based polynomial time algorithm
We can test 2 and all small primes quickly for their minimum costs. In fact, we'll test all primes p, p <= n, which we can do in polynomial time, and factor out these primes from X_i and its first n increments. This leads us to the following algorithm:
// Given: input list X = [X_1, X_2, ... X_n].
// Subroutine compute-min-cost(list A, int p) is
// just the inner loop of the above algorithm.
min_increment = inf;
for each prime p <= n:
min_increment = min(min_increment, compute-min-cost(X, p));
// Initialize empty, 2-D, n x (n+1) list Y[n][n+1], of offset X-values
for all 1 <= i <= n:
for all 0 <= j <= n:
Y[i][j] <- X[i] + j;
for each prime p <= n: // Factor out all small prime divisors from Y
for each Y[i][j]:
while Y[i][j] % p == 0:
Y[i][j] /= p;
for all 1 <= i <= n: // Loop 1
// Y[i][0] is the test 'unincremented' entry
// Initialize empty hash-tables 'costs' and 'new_costs'
// Keys of hash-tables are GCDs,
// Values are a running sum of increment-costs for that GCD
costs[Y[i][0]] = 0;
for all 1 <= k <= n: // Loop 2
if i == k: continue;
clear all entries from new_costs // or reinitialize to empty
for all 0 <= j < n: // Loop 3
for each Key in costs: // Loop 4
g = GCD(Key, Y[k][j]);
if g == 1: continue;
if g is not a key in new_costs:
new_costs[g] = j + costs[Key];
else:
new_costs[g] = min(new_costs[g], j + costs[Key]);
swap(costs, new_costs);
if costs is not empty:
min_increment = min(min_increment, smallest Value in costs);
return min_increment;
The correctness of this solution follows from the previous two observations, and the (unproven, but straightforward) fact that there is a list
[X_1 + r_1, X_2 + r_2, ... , X_n + r_n] (with 0 <= r_i <= n for all i) whose GCD is a divisor with minimum increment cost.
The runtime of this solution is trickier: GCDs can easily be computed in O(log^2(M)) time, and the list of all primes up to n can be computed in low poly(n) time. From the loop structure of the algorithm, to prove a polynomial bound on the whole algorithm, it suffices to show that the maximum size of our 'costs' hash-table is polynomial in log M. This is where the 'factoring-out' of small primes comes into play. After iteration k of loop 2, the entries in costs are (Key, Value) pairs, where each Key is the GCD of k + 1 elements:
our initial Y[i][0], and [Y[1][j_1], Y[2][j_2], ... Y[k][j_k]] for some 0 <= j_l < n. The Value for this Key is the minimum increment sum needed for this divisor (i.e. sum of the j_l) over all possible choices of j_l.
There are at most O(log M) unique prime divisors of Y[i][0]. Each such prime divides at most one key in our 'costs' table at any time: Since we've factored out all prime divisors below n, any remaining prime divisor p can divide at most one of the n consecutive numbers in any Y[j] = [X_j, 1 + X_j, ... n-1 + X_j]. This means the overall algorithm is polynomial, and has a runtime below O(n^4 log^3(M)).
From here, the open questions are whether a simpler algorithm exists, and how much better than this bound can you achieve. You can definitely optimize this algorithm (including using the early-stopping and frequency counts from before). It's also likely that better bounds on counting large-and-distinct-prime-divisors for consecutive numbers shows this solution is already better than that stated runtime, but a simplification of this solution would be very interesting.

Run time of the following code

So my code is
function mystery(n, k):
if k ≥ n
return foo(n)
sum = 0
for i = k to n
sum = sum + mystery(n, k+1)
return sum
I have created a tree and the answer I am getting is $n^2*(n-1)!$. where foo is O(n. )Is it correct?
You are correct. If you were to turn the recursion into iteration, you would have loops that run triangle(n-k) times -- where triangle is the triangle function, the sum of integers 1 through N. The formula for that is
triangle(N) = N * (N-1) / 2
Multiply this by O(n), drop the 1/2 constant, and that yields your answer.
[ N.B. Since k is a constant for complexity purposes, you also drop that]

Remainder sequences

I would like to compute the remainder sequence of two polynomials as used by GCD. If I understood the Wikipedia article about Pseudo-remainder sequence, one way to compute it is to use Euclid's algorithm:
gcd(a, b) := if b = 0 then a else gcd(b, rem(a, b))
meaning I will collect that rem() parts. If however the coefficients are integers, the intermediate fractions grow very quickly so then there are the so-called "Pseudo-remainder sequences" which try to keep the coefficients in small integers.
My question is, if I understood correctly (did I?), the two above sequences differ only by constant factor but when I try to run the following example I get different results, why? The first remainder sequence differs by -2, ok, but why is the second sequence so different? I presume subresultants() works correctly, but why does that g % (f % g) not work?
f = Poly(x**2*y + x**2 - 5*x*y + 2*x + 1, x, y)
g = Poly(2*x**2 - 12*x + 1, x)
print
print subresultants(f, g)[2]
print subresultants(f, g)[3]
print
print f % g
print g % (f % g)
which results in
Poly(-2*x*y - 16*x + y - 1, x, y, domain='ZZ')
Poly(-9*y**2 - 54*y + 225, x, y, domain='ZZ')
Poly(x*y + 8*x - 1/2*y + 1/2, x, y, domain='QQ')
Poly(2*x**2 - 12*x + 1, x, y, domain='QQ')
the two above sequences differ only by constant factor
For polynomials of one variable, they do. For multivariate polynomials, they don't.
The division of multivariable polynomials is a somewhat tricky business: result depends on the chosen order of monomials (by default, sympy uses lexicographic order). When you ask it to divide 2*x**2 - 12*x + 1 by x*y + 8*x - 1/2*y + 1/2, it observes that the leading monomial of the denominator is x*y, and there is no monomial in the numerator that is divisible by x*y. So the quotient is zero, and everything is a remainder.
The computation of subresultants (as it's implemented in sympy) treats polynomials in x,y as single-variable polynomials in x whose coefficients happen to come from the ring of polynomials in y. It is certain to produce a sequence of subresultants whose degree with respect to x keeps decreasing until it reaches 0: the last polynomial of the sequence will not have x in it. The degree with respect to y may (and does) go up, since the algorithm has no problem multiplying the terms by any polynomials in y in order to get x to drop out.
The upshot is that both computations work correctly, they just do different things.

Vectorizing code to calculate (squared) Mahalanobis Distiance

EDIT 2: this post seems to have been moved from CrossValidated to StackOverflow due to it being mostly about programming, but that means by fancy MathJax doesn't work anymore. Hopefully this is still readable.
Say I want to to calculate the squared Mahalanobis distance between two vectors x and y with covariance matrix S. This is a fairly simple function defined by
M2(x, y; S) = (x - y)^T * S^-1 * (x - y)
With python's numpy package I can do this as
# x, y = numpy.ndarray of shape (n,)
# s_inv = numpy.ndarray of shape (n, n)
diff = x - y
d2 = diff.T.dot(s_inv).dot(diff)
or in R as
diff <- x - y
d2 <- t(diff) %*% s_inv %*% diff
In my case, though, I am given
m by n matrix X
n-dimensional vector mu
n by n covariance matrix S
and want to find the m-dimensional vector d such that
d_i = M2(x_i, mu; S) ( i = 1 .. m )
where x_i is the ith row of X.
This is not difficult to accomplish using a simple loop in python:
d = numpy.zeros((m,))
for i in range(m):
diff = x[i,:] - mu
d[i] = diff.T.dot(s_inv).dot(diff)
Of course, given that the outer loop is happening in python instead of in native code in the numpy library means it's not as fast as it could be. $n$ and $m$ are about 3-4 and several hundred thousand respectively and I'm doing this somewhat often in an interactive program so a speedup would be very useful.
Mathematically, the only way I've been able to formulate this using basic matrix operations is
d = diag( X' * S^-1 * X'^T )
where
x'_i = x_i - mu
which is simple to write a vectorized version of, but this is unfortunately outweighed by the inefficiency of calculating a 10-billion-plus element matrix and only taking the diagonal... I believe this operation should be easily expressible using Einstein notation, and thus could hopefully be evaluated quickly with numpy's einsum function, but I haven't even begun to figure out how that black magic works.
So, I would like to know: is there either a nicer way to formulate this operation mathematically (in terms of simple matrix operations), or could someone suggest some nice vectorized (python or R) code that does this efficiently?
BONUS QUESTION, for the brave
I don't actually want to do this once, I want to do it k ~ 100 times. Given:
m by n matrix X
k by n matrix U
Set of n by n covariance matrices each denoted S_j (j = 1..k)
Find the m by k matrix D such that
D_i,j = M(x_i, u_j; S_j)
Where i = 1..m, j = 1..k, x_i is the ith row of X and u_j is the jth row of U.
I.e., vectorize the following code:
# s_inv is (k x n x n) array containing "stacked" inverses
# of covariance matrices
d = numpy.zeros( (m, k) )
for j in range(k):
for i in range(m):
diff = x[i, :] - u[j, :]
d[i, j] = diff.T.dot(s_inv[j, :, :]).dot(diff)
First off, it seems like maybe you're getting S and then inverting it. You shouldn't do that; it's slow and numerically inaccurate. Instead, you should get the Cholesky factor L of S so that S = L L^T; then
M^2(x, y; L L^T)
= (x - y)^T (L L^T)^-1 (x - y)
= (x - y)^T L^-T L^-1 (x - y)
= || L^-1 (x - y) ||^2,
and since L is triangular L^-1 (x - y) can be computed efficiently.
As it turns out, scipy.linalg.solve_triangular will happily do a bunch of these at once if you reshape it properly:
L = np.linalg.cholesky(S)
y = scipy.linalg.solve_triangular(L, (X - mu[np.newaxis]).T, lower=True)
d = np.einsum('ij,ij->j', y, y)
Breaking that down a bit, y[i, j] is the ith component of L^-1 (X_j - \mu). The einsum call then does
d_j = \sum_i y_{ij} y_{ij}
= \sum_i y_{ij}^2
= || y_j ||^2,
like we need.
Unfortunately, solve_triangular won't vectorize across its first argument, so you should probably just loop there. If k is only about 100, that's not going to be a significant issue.
If you are actually given S^-1 rather than S, then you can indeed do this with einsum more directly. Since S is quite small in your case, it's also possible that actually inverting the matrix and then doing this would be faster. As soon as n is a nontrivial size, though, you're throwing away a lot of numerical accuracy by doing this.
To figure out what to do with einsum, write everything in terms of components. I'll go straight to the bonus case, writing S_j^-1 = T_j for notational convenience:
D_{ij} = M^2(x_i, u_j; S_j)
= (x_i - u_j)^T T_j (x_i - u_j)
= \sum_k (x_i - u_j)_k ( T_j (x_i - u_j) )_k
= \sum_k (x_i - u_j)_k \sum_l (T_j)_{k l} (x_i - u_j)_l
= \sum_{k l} (X_{i k} - U_{j k}) (T_j)_{k l} (X_{i l} - U_{j l})
So, if we make arrays X of shape (m, n), U of shape (k, n), and T of shape (k, n, n), then we can write this as
diff = X[np.newaxis, :, :] - U[:, np.newaxis, :]
D = np.einsum('jik,jkl,jil->ij', diff, T, diff)
where diff[j, i, k] = X_[i, k] - U[j, k].
Dougal nailed this one with an excellent and detailed answer, but thought I'd share a small modification that I found increases efficiency in case anyone else is trying to implement this. Straight to the point:
Dougal's method was as follows:
def mahalanobis2(X, mu, sigma):
L = np.linalg.cholesky(sigma)
y = scipy.linalg.solve_triangular(L, (X - mu[np.newaxis,:]).T, lower=True)
return np.einsum('ij,ij->j', y, y)
A mathematically equivalent variant I tried is
def mahalanobis2_2(X, mu, sigma):
# Cholesky decomposition of inverse of covariance matrix
# (Doing this in either order should be equivalent)
linv = np.linalg.cholesky(np.linalg.inv(sigma))
# Just do regular matrix multiplication with this matrix
y = (X - mu[np.newaxis,:]).dot(linv)
# Same as above, but note different index at end because the matrix
# y is transposed here compared to above
return np.einsum('ij,ij->i', y, y)
Ran both versions head-to-head 20x using identical random inputs and recorded the times (in milliseconds). For X as a 1,000,000 x 3 matrix (mu and sigma 3 and 3x3) I get:
Method 1 (min/max/avg): 30/62/49
Method 2 (min/max/avg): 30/47/37
That's about a 30% speedup for the 2nd version. I'm mostly going to be running this in 3 or 4 dimensions but to see how it scaled I tried X as 1,000,000 x 100 and got:
Method 1 (min/max/avg): 970/1134/1043
Method 2 (min/max/avg): 776/907/837
which is about the same improvement.
I mentioned this in a comment on Dougal's answer but adding here for additional visibility:
The first pair of methods above take a single center point mu and covariance matrix sigma and calculate the squared Mahalanobis distance to each row of X. My bonus question was to do this multiple times with many sets of mu and sigma and output a two-dimensional matrix. The set of methods above can be used to accomplish this with a simple for loop, but Dougal also posted a more clever example using einsum.
I decided to compare these methods with each other by using them to solve the following problem: Given k d-dimensional normal distributions (with centers stored in rows of k by d matrix U and covariance matrices in the last two dimensions of the k by d by d array S), find the density at the n points stored in rows of the n by d matrix X.
The density of a multivariate normal distribution is a function of the squared Mahalanobis distance of the point to the mean. Scipy has an implementation of this as scipy.stats.multivariate_normal.pdf to use as a reference. I ran all three methods against each other 10x using identical random parameters each time, with d=3, k=96, n=5e5. Here are the results, in points/sec:
[Method]: (min/max/avg)
Scipy: 1.18e5/1.29e5/1.22e5
Fancy 1: 1.41e5/1.53e5/1.48e5
Fancy 2: 8.69e4/9.73e4/9.03e4
Fancy 2 (cheating version): 8.61e4/9.88e4/9.04e4
where Fancy 1 is the better of the two methods above and Fancy2 is Dougal's 2nd solution. Since the Fancy 2 needs to calculate the inverses of all the covariance matrices I also tried a "cheating version" where it was passed these as a parameter, but it looks like that didn't make a difference. I had planned on including the non-vectorized implementation but that was so slow it would have taken all day.
What we can take away from this is that using Dougal's first method is about 20% faster than however Scipy does it. Unfortunately despite its cleverness the 2nd method is only about 60% as fast as the first. There are probably some other optimizations that can be done but this is already fast enough for me.
I also tested how this scaled with higher dimensionality. With d=100, k=96, n=1e4:
Scipy: 7.81e3/7.91e3/7.86e3
Fancy 1: 1.03e4/1.15e4/1.08e4
Fancy 2: 3.75e3/4.10e3/3.95e3
Fancy 2 (cheating version): 3.58e3/4.09e3/3.85e3
Fancy 1 seems to have an even bigger advantage this time. Also worth noting that Scipy threw a LinAlgError 8/10 times, probably because some of my randomly-generated 100x100 covariance matrices were close to singular (which may mean that the other two methods are not as numerically stable, I did not actually check the results).

Strange result in gaussian elimination with scilab

My function for calculate a gaussian elimination (without parcial pivot) with scilab are returning a strange result for operations like
0.083333 - 1.000000*0.083333 = -0.000000 (minus zero, I'm really not understand)
And when I access this result in matrix the number shown is - 1.388D-17. Someone have idea why this? Below my code for gauss elimination. A is expanded matrix (A | b)
function [r] = gaussian_elimination(A)
//Get a tuple representing matrix dimension
[row, col] = size(A)
if ( (row ~= 1) & (col ~= 2) ) then
for k = 1:row
disp(A)
if A(k, k) ~= 0 then
for i = k+1:row
m = real(A(i, k)/A(k, k))
for j = 1:col
a = A(k, j)
new_element = A(i, j) - m*a
printf("New Element A(%d, %d) = %f - %f*%f = %f\n", i, j, A(i,j), m, a, new_element)
A(i,j) = 0
A(i,j) = new_element
end
end
else
A = "Inconsistent system"
break
end
end
else
A = A(1,1)
end
r = A
The most strange is that for some matrices this not happening.
This is a rounding error. See "What Every Computer Scientist Should Know About Floating-Point Arithmetic" for more background information. In short: since the numbers you are representing are not base2 and they are represented in base2, it is sometimes hard to accurately represent the entire number. Figure out the significance and round-off the results.
Take for instance the example from here:
// fround(x,n)
// Round the floating point numbers x to n decimal places
// x may be a vector or matrix// n is the integer number of places to round to
function [y ]= fround(x,n)
y=round(x*10^n)/10^n;
endfunction
-->fround(%pi,5)
ans = 3.14159
Beware: n is the number of decimals, not the number of numerical digits.
If this is only a rounding error, you can clean up your results by the clean function, which rounds to zero the small entries of a matrix. By this function you can also set the cleaning tolerances in absolute or relative magnitude.
clean(r); //it will round to zero the very small elements e.g. 1.388D-17

Resources