Draw a line across multiple ggplot figures in a gtable_matrix - r

I am trying to draw a line across two ggplot histograms in a gtable_matrix, so that the mean of the values in the one histogram is overlaid across both plots.
However, I cannot get at the device coordinates of the plotting area. In base graphics, I would use grconvertX(), but where can I find the device coordinates of the plotting area of ggplot so I can convert numbers on my 'user' scale (0-10) to device coordinates?
In the example below, I have meticulously found the numbers to plug in to get the line at the correct location, but as soon as the plot is rescaled, or the axis labels change, or any other plot element changes, it breaks down. Probably won't work as intended on your machine either.
library(ggplot2)
library(grid)
library(gtable)
n_1 = 10
n_2 = 10
mean_1 = 5.5
sd_1 = 1
mean_2 = 7
sd_2 = 1
data = data.frame(y = c(
rnorm(n_1, mean_1, sd_1),
rnorm(n_2, mean_2, sd_2)
),
group = c(rep("1", n_1), rep("2", n_2)))
data$y[data$y > 10] <- 10
data$y[data$y < 0] <- 0
plots <- lapply(c("1", "2"), function(x) {
ggplotGrob(
ggplot(data[data$group == x,], aes(y)) +
geom_histogram(
breaks = seq(0, 10, length.out = 12),
fill = ifelse(x == "1", "blue", "red"),
colour = "black",
alpha = .2
) +
theme_classic() +
theme(axis.title.x = element_blank()) +
ylab(x) +
scale_x_continuous(expand = c(0, 0), limits = c(0, 10)) +
scale_y_continuous(expand = c(0, 0), limits = c(0, 4))
)
})
gt <- gtable_matrix(
"histograms",
matrix(plots, nrow = 2, byrow = TRUE),
widths = unit(1, "null"),
heights = unit(c(1, 1), "null")
)
left <- textGrob("Frequency", rot = 90, just = c(.5, .5))
gt <-
gtable_add_cols(gt, widths = grobWidth(left) + unit(0.5, "line"), 0)
gt <- gtable_add_grob(
gt,
left,
t = 1,
b = nrow(gt),
l = 1,
r = 1,
z = Inf
)
gt <- gtable_add_cols(gt, widths = unit(0.5, "line"))
grid.newpage()
grid.draw(gt)
pushViewport(viewport())
grid.lines(y = c(.05, .98),
x = (.11 + (5 / 10 * .861)),
gp = gpar(col = "red"))
popViewport()

Here's a stripped-down version with facets. You can decide whether this accomplishes enough of what you're looking for to drop the gtable stuff.
Use a geom_vline with the intercept set to the mean of your y-values; this will put it in the same place on each facet. I took out the strip text (strip.text = element_blank()) to mimic what you'd done with removing the titles of the two plots. Other than that, it's just a standard facet_wrap by groups.
library(tidyverse)
n_1 = 10
n_2 = 10
mean_1 = 5.5
sd_1 = 1
mean_2 = 7
sd_2 = 1
data = data.frame(y = c(
rnorm(n_1, mean_1, sd_1),
rnorm(n_2, mean_2, sd_2)
),
group = c(rep("1", n_1), rep("2", n_2)))
data$y[data$y > 10] <- 10
data$y[data$y < 0] <- 0
ggplot(data, aes(x = y, fill = group)) +
geom_histogram(breaks = seq(0, 10, length.out = 12)) +
geom_vline(aes(xintercept = mean(y))) +
facet_wrap(~ group, ncol = 1) +
theme_minimal() +
theme(strip.text = element_blank())

Related

Display more than three variables using different aesthetics in a ggplot2 bar chart

Can the following chart be generated using ggplot2:
There are two variables mapped onto the axises, one variable (Region) mapped onto the colour (using grouped bars) and one variable (Product) mapped onto some other aethetics (alpha, pattern, line style)
How would that be possible? An example using R is welcome.
Update
In my original question I did not think about facets. Of course with facets you are able to display four variables. The question should be reformulated as Display more than four variables using different aesthetics in a ggplot2 bar chart ...
Here is an approach by abusing facets to serve as an x-axis so you can both stack and "dodge" the data. You can look into the ggpattern package, but I'm not fluent in its use.
library(ggplot2)
df <- expand.grid(
region = c("North", "East", "South", "West"),
product = c("Red wine", 'White wine'),
year = 2013:2015
)
set.seed(42)
df$value <- runif(nrow(df))
ggplot(df, aes(region, value)) +
geom_col(aes(alpha = product, fill = region), width = 1) +
# Expand x axis to control the width of 'dodging'
scale_x_discrete(expand = c(0.5, 0), breaks = NULL, name = NULL) +
scale_alpha_manual(values = c(0.6, 1)) +
facet_grid(~ year, switch = "x") +
# 0 spacing gives impression it is a single panel
theme(panel.spacing.x = unit(0, "pt"))
Created on 2021-09-24 by the reprex package (v2.0.1)
EDIT: An alternative without using facets, but with use of a helper function to position everything on the x-axis:
helper <- function(center, offset, width = 0.6) {
if (!is.numeric(center)) {
center <- match(center, sort(unique(center)))
}
offset <- match(offset, sort(unique(offset)))
offset <- scales::rescale(offset, to = c(-0.5, 0.5) * width)
center + offset
}
ggplot(df, aes(helper(year, region), value)) +
geom_col(aes(alpha = product, fill = region), width = 0.15) +
scale_alpha_manual(values = c(0.6, 1)) +
scale_x_continuous(breaks = scales::breaks_width(1)) +
theme(panel.spacing.x = unit(0, "pt"))
Here's a base version that gets most of the way there
set.seed(1)
d <- replicate(15, rpois(2, 10))
s <- replace(rep(0.1, 15), 1:2 * 5 + 1, 1)
op <- par(mar = c(5, 4, 2, 7), las = 1)
bp <- barplot(colSums(d), space = s, col = 2:6)
barplot(d, space = s, add = TRUE, density = c(0, 10), col = 'black', border = 'black')
abline(h = 0)
axis(1L, bp[1:3 * 5 - 2], 13:15 + 2000, lwd = 0)
title(xlab = 'Year', cex.lab = 1.5)
l <- list(
list(
title = 'Region', fill = 2:6,
legend = c('North', 'South', 'East', 'West', 'Center')
),
list(
title = 'Product', density = c(20, 0),
legend = c('Red wine', 'White wine')
)
)
lg <- legend('topright', legend = '', bty = 'n', inset = c(-0.025, 0))
for (ii in seq_along(l)) {
lg <- do.call('legend', c(
list(x = lg$rect$left, y = lg$rect$top - lg$rect$h,
xpd = NA, bty = 'n', title.adj = 0), l[[ii]]
))
}
par(op)

R, ggplot2: How to plot bezier curves that pass through fixed coordinates?

I am helping someone translate hand-drawn economics supply and demand functions into image files that can be included in a Word document. These have been going well using Hmisc::bezier and geom_path modeled after Andrew Heiss's recon plots and using his curve_intersect function. That is, until the author asked that one of the supply curves should pass through a specified set of coordinates. The Hmisc::bezier function only uses the first and last control point as absolute, and bends toward intermediate points so the specified intersection point does not match the curve. I tried creating a spline of 2 bezier curves with the bezier function from the bezier package (v1.1.2, https://cran.r-project.org/web/packages/bezier/bezier.pdf), but this fails with "Error in FUN(X[[i]], ...) : object 'x' not found", which I do not understand or know how to fix.
Please let me know where I am going wrong or if there is a better method! I will include the commented out attempts using various functions. Please excuse the amateurish code, as I am a relative newb at R and ggplot2.
This section not directly relevant to my question
# Graph figures for physical economics, negative oil prices paper
library(reconPlots)
library(dplyr)
library(ggplot2)
library(patchwork)
library(ggrepel)
library(bezier)
library(ggforce)
options(ggrepel.max.time = 1)
options(ggrepel.max.iter = 20000)
#Set seed value for ggrepel
set.seed(52)
# panel (a)
#Set values of curves using the bezier function, each pair of c() values
# is an xy coordinate, and the sets of coordinates control the shape of the
# curve
supply <- Hmisc::bezier(c(1, 5, 6), c(3, 4, 9)) %>%
as_data_frame()
demand <- Hmisc::bezier(c(0, 9, 9), c(6, 6, 6)) %>%
as_data_frame()
label_height <- Hmisc::bezier(c(0, 9, 9), c(8, 8, 8)) %>%
as_data_frame()
# Calculate the intersections of the two curves
intersections <- bind_rows(curve_intersect(supply, demand))
# Calculate point where the curve label(s) intersect a specified height
supply_label <- bind_rows(curve_intersect(supply, label_height))
labels <- data_frame(label = expression("PS"[CR]^DRL),
x = supply_label$x,
y = supply_label$y)
production <- ggplot(mapping = aes(x = x, y = y)) +
#Draw the supply curve. Demand is not drawn in this figure, but the
# intersections of an imaginary demand curve are used to illustrate P0
# and Q0, the intersection point, and the dotted lines
geom_path(data = supply, color = "#0073D9", size = 1) +
geom_segment(data = intersections,
aes(x = x, y = 0, xend = x, yend = y), lty = "dotted") +
geom_segment(data = intersections,
aes(x = 0, y = y, xend = x, yend = y), lty = "dotted") +
#Draw the supply curve label using the intersection calculated above, using
# GGrepel so that the labels do not overlap the curve line
geom_text_repel(data = labels
,aes(x = x, y = y, label = label)
,parse = TRUE
,direction = "x"
,force = 3
,force_pull = 0.1
,hjust = 0
,min.segment.length = 0
) +
#Draw the intersection point based on intersection function between supply
# and the phantom flat demand curve at height y=6
geom_point(data = intersections, size = 3) +
#Use scale functions to set y-axis label, axis intersection point labels,
# and limits of the viewing area
scale_x_continuous(expand = c(0, 0), breaks = intersections$x
,labels = expression(Q[CR]^{DRL-PS})
,limits=c(0,9)
) +
scale_y_continuous(expand = c(0, 0), breaks = c(intersections$y, 9)
,labels = c(expression(P[CR]==frac("$",brl))
,expression(P[CR]))
,limits=c(0,9)
) +
#Use labs function to set x-axis title and title of each graph using the
# caption function so that it displays on the bottom
labs(x = expression(frac(Barrels,Week)),
caption = expression(atop("(a) Driller Production Supply", "of Crude Oil"))
) +
#Set classic theme, x-axis title on right-hand side using larger font of
# relative size 1.2, graph title on left-hand side using same larger font
theme_classic() +
theme(axis.title.y = element_blank(),
axis.title.x = element_text(hjust = 1),
axis.text = element_text(size=rel(1.2)),
plot.caption = element_text(hjust = 0.5, size=rel(1.2))
) +
coord_equal()
# Save the intersections so we can set the same quantity, price for panel (c)
specified_intersections = intersections
# Panel (b)
supply <- Hmisc::bezier(c(3.99, 4), c(0, 9)) %>%
as_data_frame()
demand <- Hmisc::bezier(c(2, 3, 4, 5), c(9, 6.5, 6, 5.5)) %>%
as_data_frame()
demand_capacity <- Hmisc::bezier(c(5, 5), c(0, 5.5)) %>%
as_data_frame()
supply_capacity <- Hmisc::bezier(c(4.999, 5), c(0, 9)) %>%
as_data_frame()
supply_label_height <- Hmisc::bezier(c(0, 9), c(9, 9)) %>%
as_data_frame()
demand_label_height <- Hmisc::bezier(c(0, 9), c(8, 8)) %>%
as_data_frame()
capacity_label_height <- Hmisc::bezier(c(0, 9), c(9, 9)) %>%
as_data_frame()
# Calculate the intersections of the two curves
intersections <- bind_rows(curve_intersect(supply,
demand))
supply_label <- bind_rows(curve_intersect(supply
,supply_label_height))
demand_label <- bind_rows(curve_intersect(demand
,demand_label_height))
capacity_label <- bind_rows(curve_intersect(supply_capacity
,capacity_label_height))
labels <- data_frame(label = c(expression("OD"[CR]^DRL),expression("OS"[CR]^DRL)
,expression("Q"[CR]^CAP)
),
x = c(demand_label$x, supply_label$x
, capacity_label$x
),
y = c(demand_label$y, supply_label$y
, capacity_label$y
)
)
inventory <- ggplot(mapping = aes(x = x, y = y)) +
geom_path(data = supply, color = "#0073D9", size = 1) +
geom_path(data = demand, color = "#FF4036", size = 1) +
geom_path(data = demand_capacity, color = "#FF4036", size = 1) +
geom_path(data = supply_capacity, color = "#0073D9", size = 1, lty = "dashed") +
geom_segment(data = intersections,
aes(x = 0, y = y, xend = x, yend = y), lty = "dotted") +
geom_text_repel(data = labels
,aes(x = x, y = y, label = label)
,parse = TRUE
,direction = "x"
,force = 3
,force_pull = 0.1
,hjust = c(0, 0, 1)
,min.segment.length = 0
) +
geom_point(data = intersections, size = 3) +
scale_x_continuous(expand = c(0, 0), breaks = c(intersections$x
, 5),
labels = c(expression(paste(Q[CR]^{DRL-OS},phantom(12345)))
,expression(Q[CR]^CAP)
)
, limits=c(0,9)) +
scale_y_continuous(expand = c(0, 0), breaks = c(intersections$y, 9),
labels = c(expression(P[CR]),expression(P[CR]))
, limits=c(0,9)) +
labs(x = "Barrels",
caption = expression(atop("(b) Driller Storage / Ownership", "of Crude Oil"))
) +
theme_classic() +
theme(axis.title.y = element_blank(),
axis.title.x = element_text(hjust = 1),
axis.text = element_text(size=rel(1.2)),
plot.caption = element_text(hjust = 0.5, size=rel(1.2))
) +
coord_equal()
Relevant section
# panel (c)
# ggforce package method
#supply <- list(c(1, 4, specified_intersections$x, 5, 7),
# c(3, 4, specified_intersections$y, 7, 9)) %>%
# as_data_frame()
# bezier package method: Fails with "Error in FUN(X[[i]], ...) : object 'x' not found"
t <- seq(0, 2, length=10)
p <- list(c(1, 4, specified_intersections$x, 7, 8),
c(3, 4, specified_intersections$y, 6, 9))
#p <- matrix(c(1,3, 4,4, specified_intersections$x,specified_intersections$y,
# 7,6, 8,9), nrow=5, ncol=2, byrow=TRUE)
supply <- bezier(t=t, p=p) %>%
as_data_frame()
# Original: Fails because it does not pass through the specified intersection
#supply <- Hmisc::bezier(c(1, specified_intersections$x, 8),
# c(3, specified_intersections$y, 9)) %>%
# as_data_frame()
# Hmisc method: Fails because there is no way to get the two curves to appear
# contiguous
#supply1 <- Hmisc::bezier(c(1, 4, specified_intersections$x),
# c(3, 4, specified_intersections$y)) %>%
# as_data_frame()
#supply2 <- Hmisc::bezier(c(specified_intersections$x, 6, 7),
# c(specified_intersections$y, 8, 9)) %>%
# as_data_frame()
#demand <- Hmisc::bezier(c(0, 9), c(specified_intersections$y, specified_intersections$y)) %>%
# as_data_frame()
label_height <- Hmisc::bezier(c(0, 9), c(8, 8)) %>%
as_data_frame()
# Calculate the intersections of the two curves
#intersections <- bind_rows(curve_intersect(supply, demand))
#supply_label <- bind_rows(curve_intersect(supply,
# label_height))
#labels <- data_frame(label = expression("SS"[CR]^DRL),
# x = supply_label$x,
# y = supply_label$y)
sales <- ggplot(mapping = aes(x = x, y = y)) +
# ggforce package method
# geom_bspline(data = supply, color = "#0073D9", size = 1) +
# Original geom_path method
geom_path(data = supply, color = "#0073D9", size = 1) +
# Supply 1 and 2 for Hmisc method
# geom_path(data = supply1, color = "#0073D9", size = 1) +
# geom_path(data = supply2, color = "#0073D9", size = 1) +
geom_segment(data = specified_intersections,
aes(x = x, y = 0, xend = x, yend = y), lty = "dotted") +
geom_segment(data = specified_intersections,
aes(x = 0, y = y, xend = x, yend = y), lty = "dotted") +
# geom_text_repel(data = labels
# ,aes(x = x, y = y, label = label)
# ,parse = TRUE
# ,direction = "x"
# ,force = 3
# ,force_pull = 0.1
# ,hjust = 0
# ,min.segment.length = 0
# ) +
geom_point(data = specified_intersections, size = 3) +
scale_x_continuous(expand = c(0, 0), breaks = specified_intersections$x,
labels = expression(Q[CR]^{DRL-SS}), limits=c(0,9)) +
scale_y_continuous(expand = c(0, 0), breaks = c(specified_intersections$y, 9),
labels = c(expression(P[CR]),expression(P[CR]))) +
labs(x = expression(frac(Barrels,Week)),
caption = expression(atop("(c) Driller Sales Supply", "of Crude Oil"))
) +
theme_classic() +
theme(axis.title.y = element_blank(),
axis.title.x = element_text(hjust = 1),
axis.text = element_text(size=rel(1.2)),
plot.caption = element_text(hjust = 0.5, size=rel(1.2))
) +
coord_equal()
patchwork <- (production | inventory | sales)
patchwork
Graphs before implementation of fixed coordinates. Need to move panel (c) intersection point to match panel (a)
I solved the "Error in FUN(X[[i]], ...) : object 'x' not found" by printing the supply variable and noticing that the bezier function names its rows V1,V2 and not x,y. I needed to set the aesthetics of the geom_path to the correct mapping.
Relevant Section, trimmed to only the bezier method
# panel (c)
# bezier package method
t <- seq(0, 2, length = 100)
p <- matrix(c(1,3, 4,4, specified_intersections$x,specified_intersections$y,
7,6, 8,9), nrow=5, ncol=2, byrow=TRUE)
supply <- bezier::bezier(t=t, p=p, deg=2) %>%
as_data_frame()
sales <- ggplot(mapping = aes(x = x, y = y)) +
# Original geom_path method
geom_path(data = supply, mapping = aes(x = V1, y = V2),
color = "#0073D9", size = 1, inherit.aes = FALSE) +
geom_segment(data = specified_intersections,
aes(x = x, y = 0, xend = x, yend = y), lty = "dotted") +
geom_segment(data = specified_intersections,
aes(x = 0, y = y, xend = x, yend = y), lty = "dotted") +
geom_point(data = specified_intersections, size = 3) +
scale_x_continuous(expand = c(0, 0), breaks = specified_intersections$x,
labels = expression(Q[CR]^{DRL-SS}), limits=c(0,9)) +
scale_y_continuous(expand = c(0, 0), breaks = c(specified_intersections$y, 9),
labels = c(expression(P[CR]),expression(P[CR]))) +
labs(x = expression(frac(Barrels,Week)),
caption = expression(atop("(c) Driller Sales Supply", "of Crude Oil"))
) +
theme_classic() +
theme(axis.title.y = element_blank(),
axis.title.x = element_text(hjust = 1),
axis.text = element_text(size=rel(1.2)),
plot.caption = element_text(hjust = 0.5, size=rel(1.2))
) +
coord_equal()
patchwork <- (production | inventory | sales)
patchwork
This does not solve my larger problem of needing a smooth curve that passes through a specified set of coordinates, as it produces two bezier curves that do not match.
I will do some research on using functions to specify bezier curves and find out if there is some mathematical or programmatic way to specify a bezier curve that passes through a set of fixed coordinates. If I find one, I'll edit this answer.
If anyone knows how to accomplish this, I would appreciate any help!
Kinked bezier curves

Convert plot to ggplot and add horizontal lines until specific points

I have creted the plot below using the base R plot() function but I would like to convert it to ggplot() and also add horizontal lines like in the example picture but until the crossing with the graphs and not a full continuing horizontal line until the end.
# Figure 3.1 & 3.2
# curve(logistic(pnorm(x), a=1, d=0),-3,3,ylab="Probability of x",
# main="Logistic transform of x",xlab="z score units")
# #logistic with a=1.702 is almost the same as pnorm
# curve(logistic(pnorm(x), d=1),add=TRUE)
# Set x-axis values
theta <- seq(from = -10, to = 10, by = 0.001)
# Code for plot1
B_i <- 1
B_j <- -1
P_item1_rasch <- NULL
P_item2_rasch <- NULL
for (i in 1:length(theta)){
P_item1_rasch[i] <- (exp((theta[i]-B_i)))/(1+(exp((theta[i]-B_i))))
P_item2_rasch[i] <- (exp((theta[i]-B_j)))/(1+(exp((theta[i]-B_j))))
}
#select the colors that will be used
library(RColorBrewer)
#all palette available from RColorBrewer
display.brewer.all()
#we will select the first 4 colors in the Set1 palette
cols<-brewer.pal(n=4,name="Set1")
#cols contain the names of four different colors
plot(theta, P_item1_rasch, xlim=c(-4,4), ylim=c(0,1))
lines(theta, P_item2_rasch,col=cols[2])
# Add lines at the values below, but only half as in the example Figures
# abline(h=0.5)
# abline(v=-1)
# abline(v=1)
Perhaps something like this?
theta <- seq(from = -10, to = 10, by = 0.001)
# Code for plot1
B_i <- 1
B_j <- -1
P_item0_rasch <- NULL
P_item1_rasch <- NULL
P_item2_rasch <- NULL
for (i in 1:length(theta)){
P_item0_rasch[i] <- (exp((theta[i])))/(1+(exp((theta[i]))))
P_item1_rasch[i] <- (exp((theta[i]-B_i)))/(1+(exp((theta[i]-B_i))))
P_item2_rasch[i] <- (exp((theta[i]-B_j)))/(1+(exp((theta[i]-B_j))))
}
df <- data.frame(theta = rep(theta, 3),
P_item_rasch = c(P_item0_rasch, P_item1_rasch, P_item2_rasch),
number = factor(rep(1:3, each = length(theta))))
library(ggplot2)
ggplot(df, aes(theta, P_item_rasch, color = number)) +
geom_line() +
lims(x = c(-6, 6)) +
geom_segment(x = -1, xend = 1, y = 0.5, yend = 0.5, lty = 2) +
geom_vline(xintercept = c(-1, 0, 1), lty = 2) +
scale_color_manual(values = RColorBrewer::brewer.pal(4, "Set1")[-1]) +
theme_classic() +
theme(legend.position = "none")
#> Warning: Removed 24000 row(s) containing missing values (geom_path).
Edit
The OP changed the question to alter the requirements. Here is a way to achieve them:
ggplot(df, aes(theta, P_item_rasch)) +
geom_line(aes(color = number)) +
lims(x = c(-6, 6)) +
# Line between curves
geom_segment(x = -1, xend = 1, y = 0.5, yend = 0.5, lty = 2) +
# Optional line on left
geom_segment(x = -Inf, xend = -1, y = 0.5, yend = 0.5, lty = 2) +
# Lower lines
geom_segment(data = data.frame(theta = c(-1, 0, 1), P_item_rasch = rep(-Inf, 3)),
aes(xend = theta, yend = 0.5), lty = 2) +
# Upper lines
#geom_segment(data = data.frame(theta = c(-1, 0, 1), P_item_rasch = rep(Inf, 3)),
# aes(xend = theta, yend = 0.5), lty = 2) +
scale_color_manual(values = RColorBrewer::brewer.pal(4, "Set1")[-1]) +
theme_classic() +
theme(legend.position = "none")
Created on 2020-12-06 by the reprex package (v0.3.0)

Produce an inset in each facet of an R ggplot while preserving colours of the original facet content

I would like to produce a graphic combining four facets of a graph with insets in each facet showing a detail of the respective plot. This is one of the things I tried:
#create data frame
n_replicates <- c(rep(1:10,15),rep(seq(10,100,10),15),rep(seq(100,1000,100),15),rep(seq(1000,10000,1000),15))
sim_years <- rep(sort(rep((1:15),10)),4)
sd_data <- rep (NA,600)
for (i in 1:600) {
sd_data[i]<-rnorm(1,mean=exp(0.1 * sim_years[i]), sd= 1/n_replicates[i])
}
max_rep <- sort(rep(c(10,100,1000,10000),150))
data_frame <- cbind.data.frame(n_replicates,sim_years,sd_data,max_rep)
#do first basic plot
library(ggplot2)
plot1<-ggplot(data=data_frame, aes(x=sim_years,y=sd_data,group =n_replicates, col=n_replicates)) +
geom_line() + theme_bw() +
labs(title ="", x = "year", y = "sd")
plot1
#make four facets
my_breaks = c(2, 10, 100, 1000, 10000)
facet_names <- c(
`10` = "2, 3, ..., 10 replicates",
`100` = "10, 20, ..., 100 replicates",
`1000` = "100, 200, ..., 1000 replicates",
`10000` = "1000, 2000, ..., 10000 replicates"
)
plot2 <- plot1 +
facet_wrap( ~ max_rep, ncol=2, labeller = as_labeller(facet_names)) +
scale_colour_gradientn(name = "number of replicates", trans = "log",
breaks = my_breaks, labels = my_breaks, colours = rainbow(20))
plot2
#extract inlays (this is where it goes wrong I think)
library(ggpmisc)
library(tibble)
library(dplyr)
inset <- tibble(x = 0.01, y = 10.01,
plot = list(plot2 +
facet_wrap( ~ max_rep, ncol=2, labeller = as_labeller(facet_names)) +
coord_cartesian(xlim = c(13, 15),
ylim = c(3, 5)) +
labs(x = NULL, y = NULL, color = NULL) +
scale_colour_gradient(guide = FALSE) +
theme_bw(10)))
plot3 <- plot2 +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = inset, aes(npcx = x, npcy = y, label = plot)) +
annotate(geom = "rect",
xmin = 13, xmax = 15, ymin = 3, ymax = 5,
linetype = "dotted", fill = NA, colour = "black")
plot3
That leads to the following graphic:
As you can see, the colours in the insets are wrong, and all four of them appear in each of the facets even though I only want the corresponding inset of course. I read through a lot of questions here (to even get me this far) and also some examples in the ggpmisc user guide but unfortunately I am still a bit lost on how to achieve what I want. Except maybe to do it by hand extracting four insets and then combining them with plot2. But I hope there will be a better way to do this. Thank you for your help!
Edit: better graphic now thanks to this answer, but problem remains partially unsolved:
The following code does good insets, but unfortunately the colours are not preserved. As in the above version each inset does its own rainbow colours anew instead of inheriting the partial rainbow scale from the facet it belongs to. Does anyone know why and how I could change this? In comments I put another (bad) attempt at solving this, it preserves the colors but has the problem of putting all four insets in each facet.
library(ggpmisc)
library(tibble)
library(dplyr)
# #extract inlays: good colours, but produces four insets.
# fourinsets <- tibble(#x = 0.01, y = 10.01,
# x = c(rep(0.01, 4)),
# y = c(rep(10.01, 4)),
# plot = list(plot2 +
# facet_wrap( ~ max_rep, ncol=2) +
# coord_cartesian(xlim = c(13, 15),
# ylim = c(3, 5)) +
# labs(x = NULL, y = NULL, color = NULL) +
# scale_colour_gradientn(name = "number of replicates", trans = "log", guide = FALSE,
# colours = rainbow(20)) +
# theme(
# strip.background = element_blank(),
# strip.text.x = element_blank()
# )
# ))
# fourinsets$plot
library(purrr)
pp <- map(unique(data_frame$max_rep), function(x) {
plot2$data <- plot2$data %>% filter(max_rep == x)
plot2 +
coord_cartesian(xlim = c(12, 14),
ylim = c(3, 4)) +
labs(x = NULL, y = NULL) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank(),
legend.position = "none",
axis.text=element_blank(),
axis.ticks=element_blank()
)
})
#pp[[2]]
inset_new <- tibble(x = c(rep(0.01, 4)),
y = c(rep(10.01, 4)),
plot = pp,
max_rep = unique(data_frame$max_rep))
final_plot <- plot2 +
geom_plot_npc(data = inset_new, aes(npcx = x, npcy = y, label = plot, vp.width = 0.3, vp.height =0.6)) +
annotate(geom = "rect",
xmin = 12, xmax = 14, ymin = 3, ymax = 4,
linetype = "dotted", fill = NA, colour = "black")
#final_plot
final_plot then looks like this:
I hope this clarifies the problem a bit. Any ideas are very welcome :)
Modifying off #user63230's excellent answer:
pp <- map(unique(data_frame$max_rep), function(x) {
plot2 +
aes(alpha = ifelse(max_rep == x, 1, 0)) +
coord_cartesian(xlim = c(12, 14),
ylim = c(3, 4)) +
labs(x = NULL, y = NULL) +
scale_alpha_identity() +
facet_null() +
theme(
strip.background = element_blank(),
strip.text.x = element_blank(),
legend.position = "none",
axis.text=element_blank(),
axis.ticks=element_blank()
)
})
Explanation:
Instead of filtering the data passed into plot2 (which affects the mapping of colours), we impose a new aesthetic alpha, where lines belonging to the other replicate numbers are assigned 0 for transparency;
Use scale_alpha_identity() to tell ggplot that the alpha mapping is to be used as-is: i.e. 1 for 100%, 0 for 0%.
Add facet_null() to override plot2's existing facet_wrap, which removes the facet for the inset.
Everything else is unchanged from the code in the question.
I think this will get you started although its tricky to get the size of the inset plot right (when you include a legend).
#set up data
library(ggpmisc)
library(tibble)
library(dplyr)
library(ggplot2)
# create data frame
n_replicates <- c(rep(1:10, 15), rep(seq(10, 100, 10), 15), rep(seq(100,
1000, 100), 15), rep(seq(1000, 10000, 1000), 15))
sim_years <- rep(sort(rep((1:15), 10)), 4)
sd_data <- rep(NA, 600)
for (i in 1:600) {
sd_data[i] <- rnorm(1, mean = exp(0.1 * sim_years[i]), sd = 1/n_replicates[i])
}
max_rep <- sort(rep(c(10, 100, 1000, 10000), 150))
data_frame <- cbind.data.frame(n_replicates, sim_years, sd_data, max_rep)
# make four facets
my_breaks = c(2, 10, 100, 1000, 10000)
facet_names <- c(`10` = "2, 3, ..., 10 replicates", `100` = "10, 20, ..., 100 replicates",
`1000` = "100, 200, ..., 1000 replicates", `10000` = "1000, 2000, ..., 10000 replicates")
Get overall plot:
# overall facet plot
overall_plot <- ggplot(data = data_frame, aes(x = sim_years, y = sd_data, group = n_replicates, col = n_replicates)) +
geom_line() +
theme_bw() +
labs(title = "", x = "year", y = "sd") +
facet_wrap(~max_rep, ncol = 2, labeller = as_labeller(facet_names)) +
scale_colour_gradientn(name = "number of replicates", trans = "log", breaks = my_breaks, labels = my_breaks, colours = rainbow(20))
#plot
overall_plot
which gives:
Then from the overall plot you want to extract each plot, see here. We can map over the list to extract one at a time:
pp <- map(unique(data_frame$max_rep), function(x) {
overall_plot$data <- overall_plot$data %>% filter(max_rep == x)
overall_plot + # coord_cartesian(xlim = c(13, 15), ylim = c(3, 5)) +
labs(x = NULL, y = NULL) +
theme_bw(10) +
theme(legend.position = "none")
})
If we look at one of these (I've removed the legend) e.g.
pp[[1]]
#pp[[2]]
#pp[[3]]
#pp[[4]]
Gives:
Then we want to add these inset plots into a dataframe so that each plot has its own row:
inset <- tibble(x = c(rep(0.01, 4)),
y = c(rep(10.01, 4)),
plot = pp,
max_rep = unique(data_frame$max_rep))
Then merge this into the overall plot:
overall_plot +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = inset, aes(npcx = x, npcy = y, label = plot, vp.width = 0.8, vp.height = 0.8))
Gives:
Here is a solution based on Z. Lin's answer, but using ggforce::facet_wrap_paginate() to do the filtering and keeping colourscales consistent.
First, we can make the 'root' plot containing all the data with no facetting.
library(ggpmisc)
library(tibble)
library(dplyr)
n_replicates <- c(rep(1:10,15),rep(seq(10,100,10),15),rep(seq(100,1000,100),15),rep(seq(1000,10000,1000),15))
sim_years <- rep(sort(rep((1:15),10)),4)
sd_data <- rep (NA,600)
for (i in 1:600) {
sd_data[i]<-rnorm(1,mean=exp(0.1 * sim_years[i]), sd= 1/n_replicates[i])
}
max_rep <- sort(rep(c(10,100,1000,10000),150))
data_frame <- cbind.data.frame(n_replicates,sim_years,sd_data,max_rep)
my_breaks = c(2, 10, 100, 1000, 10000)
facet_names <- c(
`10` = "2, 3, ..., 10 replicates",
`100` = "10, 20, ..., 100 replicates",
`1000` = "100, 200, ..., 1000 replicates",
`10000` = "1000, 2000, ..., 10000 replicates"
)
base <- ggplot(data=data_frame,
aes(x=sim_years,y=sd_data,group =n_replicates, col=n_replicates)) +
geom_line() +
theme_bw() +
scale_colour_gradientn(
name = "number of replicates",
trans = "log10", breaks = my_breaks,
labels = my_breaks, colours = rainbow(20)
) +
labs(title ="", x = "year", y = "sd")
Next, the main plot will be just the root plot with facet_wrap().
main <- base + facet_wrap(~ max_rep, ncol = 2, labeller = as_labeller(facet_names))
Then the new part is to use facet_wrap_paginate with nrow = 1 and ncol = 1 for every max_rep, which we'll use as insets. The nice thing is that this does the filtering and it keeps colour scales consistent with the root plot.
nmax_rep <- length(unique(data_frame$max_rep))
insets <- lapply(seq_len(nmax_rep), function(i) {
base + ggforce::facet_wrap_paginate(~ max_rep, nrow = 1, ncol = 1, page = i) +
coord_cartesian(xlim = c(12, 14), ylim = c(3, 4)) +
guides(colour = "none", x = "none", y = "none") +
theme(strip.background = element_blank(),
strip.text = element_blank(),
axis.title = element_blank(),
plot.background = element_blank())
})
insets <- tibble(x = rep(0.01, nmax_rep),
y = rep(10.01, nmax_rep),
plot = insets,
max_rep = unique(data_frame$max_rep))
main +
geom_plot_npc(data = insets,
aes(npcx = x, npcy = y, label = plot,
vp.width = 0.3, vp.height = 0.6)) +
annotate(geom = "rect",
xmin = 12, xmax = 14, ymin = 3, ymax = 4,
linetype = "dotted", fill = NA, colour = "black")
Created on 2020-12-15 by the reprex package (v0.3.0)

how to draw two half circles in ggplot in r

How can I make a plot like this with two different-sized half circles (or other shapes such as triangles etc.)?
I've looked into a few options: Another post suggested using some unicode symbol, that didn't work for me. And if I use a vector image, how can I properly adjust the size parameter so the 2 circles touch each other?
Sample data (I would like to make the size of the two half-circles equal to circle1size and circle2size):
df = data.frame(circle1size = c(1, 3, 2),
circle2size = c(3, 6, 5),
middlepointposition = c(1, 2, 3))
And ultimately is there a way to position the half-circles at different y-values too, to encode a 3rd dimension, like so?
Any advice is much appreciated.
What you're asking for is a bar plot in polar coordinates. This can be done easily in ggplot2. Note that we need to map y = sqrt(count) to get the area of the half circle proportional to the count.
df <- data.frame(x = c(1, 2),
type = c("Investors", "Assignees"),
count = c(19419, 1132))
ggplot(df, aes(x = x, y = sqrt(count), fill = type)) + geom_col(width = 1) +
scale_x_discrete(expand = c(0,0), limits = c(0.5, 2.5)) +
coord_polar(theta = "x", direction = -1)
Further styling would have to be applied to remove the gray background, remove the axes, change the color, etc., but that's all standard ggplot2.
Update 1: Improved version with multiple countries.
df <- data.frame(x = rep(c(1, 2), 3),
type = rep(c("Investors", "Assignees"), 3),
country = rep(c("Japan", "Germany", "Korea"), each = 2),
count = c(19419, 1132, 8138, 947, 8349, 436))
df$country <- factor(df$country, levels = c("Japan", "Germany", "Korea"))
ggplot(df, aes(x=x, y=sqrt(count), fill=type)) + geom_col(width =1) +
scale_x_continuous(expand = c(0, 0), limits = c(0.5, 2.5)) +
scale_y_continuous(expand = c(0, 0)) +
coord_polar(theta = "x", direction = -1) +
facet_wrap(~country) +
theme_void()
Update 2: Drawing the individual plots at different locations.
We can do some trickery to take the individual plots and plot them at different locations in an enclosing plot. This works, and is a generic method that can be done with any sort of plot, but it's probably overkill here. Anyways, here is the solution.
library(tidyverse) # for map
library(cowplot) # for draw_text, draw_plot, get_legend, insert_yaxis_grob
# data frame of country data
df <- data.frame(x = rep(c(1, 2), 3),
type = rep(c("Investors", "Assignees"), 3),
country = rep(c("Japan", "Germany", "Korea"), each = 2),
count = c(19419, 1132, 8138, 947, 8349, 436))
# list of coordinates
coord_list = list(Japan = c(1, 3), Germany = c(2, 1), Korea = c(3, 2))
# make list of individual plots
split(df, df$country) %>%
map( ~ ggplot(., aes(x=x, y=sqrt(count), fill=type)) + geom_col(width =1) +
scale_x_continuous(expand = c(0, 0), limits = c(0.5, 2.5)) +
scale_y_continuous(expand = c(0, 0), limits = c(0, 160)) +
draw_text(.$country[1], 1, 160, vjust = 0) +
coord_polar(theta = "x", start = 3*pi/2) +
guides(fill = guide_legend(title = "Type", reverse = T)) +
theme_void() + theme(legend.position = "none") ) -> plotlist
# extract the legend
legend <- get_legend(plotlist[[1]] + theme(legend.position = "right"))
# now plot the plots where we want them
width = 1.3
height = 1.3
p <- ggplot() + scale_x_continuous(limits = c(0.5, 3.5)) + scale_y_continuous(limits = c(0.5, 3.5))
for (country in names(coord_list)) {
p <- p + draw_plot(plotlist[[country]], x = coord_list[[country]][1]-width/2,
y = coord_list[[country]][2]-height/2,
width = width, height = height)
}
# plot without legend
p
# plot with legend
ggdraw(insert_yaxis_grob(p, legend))
Update 3: Completely different approach, using geom_arc_bar() from the ggforce package.
library(ggforce)
df <- data.frame(start = rep(c(-pi/2, pi/2), 3),
type = rep(c("Investors", "Assignees"), 3),
country = rep(c("Japan", "Germany", "Korea"), each = 2),
x = rep(c(1, 2, 3), each = 2),
y = rep(c(3, 1, 2), each = 2),
count = c(19419, 1132, 8138, 947, 8349, 436))
r <- 0.5
scale <- r/max(sqrt(df$count))
ggplot(df) +
geom_arc_bar(aes(x0 = x, y0 = y, r0 = 0, r = sqrt(count)*scale,
start = start, end = start + pi, fill = type),
color = "white") +
geom_text(data = df[c(1, 3, 5), ],
aes(label = country, x = x, y = y + scale*sqrt(count) + .05),
size =11/.pt, vjust = 0)+
guides(fill = guide_legend(title = "Type", reverse = T)) +
xlab("x axis") + ylab("y axis") +
coord_fixed() +
theme_bw()
If you don't need to have ggplot2 map aesthetics other than x and y you could try egg::geom_custom,
# devtools::install_github("baptiste/egg")
library(egg)
library(grid)
library(ggplot2)
d = data.frame(r1= c(1,3,2), r2=c(3,6,5), x=1:3, y=1:3)
gl <- Map(mushroomGrob, r1=d$r1, r2=d$r2, gp=list(gpar(fill=c("bisque","maroon"), col="white")))
d$grobs <- I(gl)
ggplot(d, aes(x,y)) +
geom_custom(aes(data=grobs), grob_fun=I) +
theme_minimal()
with the following grob,
mushroomGrob <- function(x=0.5, y=0.5, r1=0.2, r2=0.1, scale = 0.01, angle=0, gp=gpar()){
grob(x=x,y=y,r1=r1,r2=r2, scale=scale, angle=angle, gp=gp , cl="mushroom")
}
preDrawDetails.mushroom <- function(x){
pushViewport(viewport(x=x$x,y=x$y))
}
postDrawDetails.mushroom<- function(x){
upViewport()
}
drawDetails.mushroom <- function(x, recording=FALSE, ...){
th2 <- seq(0,pi, length=180)
th1 <- th2 + pi
d1 <- x$r1*x$scale*cbind(cos(th1+x$angle*pi/180),sin(th1+x$angle*pi/180))
d2 <- x$r2*x$scale*cbind(cos(th2+x$angle*pi/180),sin(th2+x$angle*pi/180))
grid.polygon(unit(c(d1[,1],d2[,1]), "snpc")+unit(0.5,"npc"),
unit(c(d1[,2],d2[,2]), "snpc")+unit(0.5,"npc"),
id=rep(1:2, each=length(th1)), gp=x$gp)
}
# grid.newpage()
# grid.draw(mushroomGrob(gp=gpar(fill=c("bisque","maroon"), col=NA)))

Resources