I built a Variational Autoencoder using Keras in R,
I noticed that if I train the model on regular R session all work great,
but when I train the model on Shiny session it goes terribly wrong:
When Shiny session gets to the line which train the model:
history<- vae %>% fit(
x_train, x_train,
shuffle = TRUE,
epochs = 25,
batch_size = batch_size,
validation_data = list(x_test, x_test)
)
there is no feedback on epoch and the all computer get stuck.
(I don't get any errors just crushing computer)
Is there special configuration to set when using Keras on Shiny?
Edit:
I use the Variational Autoencoder for dimensionality reduction,
here is my function, I use it from shiny server:
get_variational_autoencoder<- function(data_set,
reduce_to = 2){
library(keras)
use_condaenv("r-tensorflow")
# Data preparation ---------------------------------
row_names<- row.names(data_set)
data_set<- normalize(data_set)
row.names(data_set)<- row_names
partition<- data_partition(data_set, .80)
x_train <- partition["train_set"]$train_set
x_test <- partition["test_set"]$test_set
# Parameters ---------------------------------------
batch_size = DEAFULT_BATCH_SIZE_FOR_AUTOANCODER
original_dim = dim(data_set)[2]
latent_dim = reduce_to
intermediate_dim = (2/3)*original_dim + latent_dim
nb_epoch = DEAFULT_NUMBER_OF_EPOCH_FOR_AUTOANCODER
epsilon_std = DEAFULT_EPSILON_FOR_AUTOANCODER
#encoder
# input layer
x <- layer_input(shape = c(original_dim))
# hidden intermediate, lower-res
h <- layer_dense(x, intermediate_dim, activation = "relu")
# latent var 1, 2-dim (mainly for plotting!): mean
z_mean <- layer_dense(h, latent_dim)
# latent var 2, 2-dim: variance
z_log_var <- layer_dense(h, latent_dim)
sampling <- function(arg){
z_mean <- arg[, 1:(latent_dim)]
z_log_var <- arg[, (latent_dim + 1):(2 * latent_dim)]
epsilon <- k_random_normal(
shape = c(k_shape(z_mean)[[1]]),
mean=0.,
stddev=epsilon_std
)
z_mean + k_exp(z_log_var/2)*epsilon
}
z <- layer_concatenate(list(z_mean, z_log_var)) %>%
layer_lambda(sampling)
# hidden intermediate, higher-res
decoder_h <- layer_dense(units = intermediate_dim, activation = "relu")
# decoder for the mean, high-res again
decoder_mean <- layer_dense(units = original_dim, activation = "sigmoid")
h_decoded <- decoder_h(z)
x_decoded_mean <- decoder_mean(h_decoded)
# the complete model, from input to decoded output
vae <- keras_model(x, x_decoded_mean)
# encoder, from inputs to latent space
encoder <- keras_model(x, z_mean)
# generator, from latent space to reconstructed inputs
decoder_input <- layer_input(shape = latent_dim)
h_decoded_2 <- decoder_h(decoder_input)
x_decoded_mean_2 <- decoder_mean(h_decoded_2)
generator <- keras_model(decoder_input, x_decoded_mean_2)
vae_loss <- function(x, x_decoded_mean){
xent_loss <- (original_dim/1.0)*loss_binary_crossentropy(x,
x_decoded_mean)
kl_loss <- -0.5*k_mean(1 + z_log_var - k_square(z_mean) -
k_exp(z_log_var), axis = -1L)
xent_loss + kl_loss
}
vae %>% compile(optimizer = "rmsprop", loss = vae_loss, metrics =
c('accuracy'))
# Model training ---------------------------------------------------------
history<- vae %>% fit(
x_train, x_train,
shuffle = TRUE,
epochs = 25,
batch_size = batch_size,
validation_data = list(x_test, x_test)
)
data_set_after_vae <- keras::predict(encoder, data_set, batch_size =
batch_size)
vae_result<- list ("v_autoencoder" = vae,
"data_set_after_vae" = data_set_after_vae %>%
as_data_frame(),
"history" = history,
"encoder" = encoder)
return (vae_result)
}
Related
I want to train a regression model by "keras_model_sequential" in R. For finding the best parameters over the grid search I have used "tuning_run". But I got this error:
training run 1/128 (flags = list(0.05, 66, "relu", 8, 10, 0.001, 0.2))
Error in sink(file = output_file, type = "output", split = TRUE) :
sink stack is full
Calls: tuning_run ... with_changed_file_copy -> force -> sink -> .handleSimpleError -> h
I need to mention, that a folder named "runs" was created in the data and script path which has a lot of subfolders whose name is like a date format. maybe this is the reason.
library(plyr)
library(boot)
library(keras)
library(tensorflow)
library(kerasR)
library(tidyverse)
library(tfruns)
library(MLmetrics)
df= mainlist[[1]] # data which is a 33*31 dataframe (33 samples and 31 features which last column is target)
x = (length(df))-1
print(x)
df1 = df[, 2:x]
#normalization
df2 = df[, 2:length(df)]
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}
maxmindf <- as.data.frame(lapply(df2, normalize))
attach(maxmindf)
df_norm<-as.matrix(maxmindf)
# Determine sample size
ind <- sample(2, nrow(df_norm), replace=TRUE, prob=c(0.80, 0.20))
# Split the data(peaks)
training <- df_norm[ind==1, 1:ncol(df_norm)-1]
test1 <- df_norm[ind==2, 1:ncol(df_norm)-1]
training_target <- df_norm[ind==1, ncol(df_norm)]
test1_target <- df_norm[ind==2, ncol(df_norm)]
#number of nodes in the first hidden layer
u1_1 = ceiling((1/2) * (ncol(training)+1))
u2_1 = ceiling(1* (ncol(training)+1))
u3_1 = ceiling((2/3) * (ncol(training)+1))
u4_1 = ceiling(2*(ncol(training)))
####a) Declaring the flags for hyperparameters
FLAGS = flags(
flag_numeric("dropout1", 0.05),
flag_integer("units",u1_1),
flag_string("activation1", "relu"),
flag_integer("batchsize1",8),
flag_integer("Epoch1",50),
flag_numeric("learning_rate", 0.01),
flag_numeric("val_split",0.2),
flag_numeric("reg_l1",0.001)
)
# ####b) Defining the DNN model
build_model<-function() {
model <- keras_model_sequential()
model %>%
layer_dense(units = FLAGS$units, activation = FLAGS$activation1, input_shape = c(dim(training)[2])) %>%
layer_dropout(rate = FLAGS$dropout1) %>%
layer_dense(units=1, activation ="linear")
#####c) Compiling the DNN model
model %>% compile(
loss = "mse",
optimizer =optimizer_adam(FLAGS$learning_rate),
metrics = c("mse"))
model
}
model<-build_model()
model %>% summary()
print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 80 == 0) cat("\n")
cat(".")})
early_stop <- callback_early_stopping(monitor = "val_loss", mode='min',patience =20)
###########d) Fitting the DNN model#################
model_Final<-build_model()
model_fit_Final<-model_Final %>% fit(
training,
training_target,
epochs =FLAGS$Epoch1, batch_size = FLAGS$batchsize1,
shuffled=F,
validation_split = FLAGS$val_split,
verbose=0,
callbacks = list(early_stop, print_dot_callback)
)
################a) Inner cross-validation##########################
nCVI=5
Hyperpar = data.frame() #the results of each combination of hyperparameters resulting from each inner partition will be saved
for (i in 1:nCVI){ #do it to choose best parameters
print("I is:")
print(i)
Sam_per=sample(1:nrow(training),nrow(training))
X_trII=training[Sam_per,]
y_trII=training_target[Sam_per]
# print(head(X_trII, 3))
print("----------------------")
print(head(y_trII,3))
############b) Grid search using the tuning_run() function of tfruns package########
runs.sp<-tuning_run(paste0("train.R")
,runs_dir = '_tuningE1'
,flags=list(dropout1 = c(0,0.05),
units = c(u1_1, u2_1),
activation1 = ("relu"),
batchsize1 = c(8, 16),
Epoch1 = c(10,50),
learning_rate = c(0.001),
val_split = c(0.2)),
sample = 0.2,
confirm = FALSE,
echo =F)
# clean_runs(ls_runs(completed == FALSE))
#####c) Saving each combination of hyperparameters in the Hyperpar data.frame
runs.sp = runs.sp[order(runs.sp$flag_units,runs.sp$flag_dropout1, runs.sp$flag_batchsize1, runs.sp$flag_Epoch1),]
runs.sp$grid_length = 1:nrow(runs.sp) #we save the grid lenght and also important parameters
Parameters = data.frame(grid_length=runs.sp$grid_length,
metric_val_mse=runs.sp$metric_val_mse,
flag_dropout1=runs.sp$flag_dropout1,
flag_units=runs.sp$flag_units,
flag_batchsize1=runs.sp$flag_batchsize1,
epochs_completed=runs.sp$epochs_completed,
flag_learning_rate=runs.sp$flag_learning_rate,
flag_activation1=runs.sp$flag_activation1)
Hyperpar = rbind(Hyperpar,data.frame(Parameters)) #we saved the important parameters
}
#####d) Summarizing the five inner fold by hyperparameter combination
#the average prediction performance is obtained for each inner fold
Hyperpar %>%
group_by(grid_length) %>%
summarise(val_mse=mean(metric_val_mse),
dropout1=mean(flag_dropout1),
units=mean(flag_units),
batchsize1=mean(flag_batchsize1),
learning_rate=mean(flag_learning_rate),
epochs=mean( epochs_completed)) %>%
select(grid_length,val_mse,dropout1,units,batchsize1,
learning_rate, epochs) %>%
mutate_if(is.numeric, funs(round(., 3)))
Hyperpar_Opt = Hyperpar
######e) ############ select the best combinition of hyperparameters
Min = min(Hyperpar_Opt$val_mse)
pos_opt = which(Hyperpar_Opt$val_mse==Min)
pos_opt=pos_opt[1]
Optimal_Hyper=Hyperpar_Opt[pos_opt,]
#####Selecting the best hyperparameters
Drop_O = Optimal_Hyper$dropout1
Epoch_O = round(Optimal_Hyper$epochs,0)
Units_O = round(Optimal_Hyper$units,0)
activation_O = unique(Hyperpar$flag_activation1)
batchsize_O = round(Optimal_Hyper$batchsize1,0)
lr_O = Optimal_Hyper$learning_rate
print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 20 == 0) cat("\n")
cat(".")})
#refitting the model with optimal values
model_Sec<-keras_model_sequential()
model_Sec %>%
layer_dense(units =Units_O , activation =activation_O, input_shape =
c(dim(training)[2])) %>%
layer_dropout(rate =Drop_O) %>%
layer_dense(units =1, activation =activation_O)
model_Sec %>% compile(
loss = "mean_squared_error",
optimizer = optimizer_adam(lr=lr_O),
metrics = c("mean_squared_error"))
# fit the model with our data
ModelFited<-model_Sec %>% fit(
X_trII, y_trII,
epochs=Epoch_O, batch_size =batchsize_O, #####validation_split=0.2,
early_stop,
verbose=0
,callbacks=list(print_dot_callback)
)
#############g) Prediction of testing set ##########################
Yhat=model_Sec%>% predict(test1)
y_p=Yhat
y_p_tst =as.numeric(y_p)
#y_tst=y[tst_set]
plot(test1_target,y_p_tst)
MSE=mean((test1_target - y_p_tst)^2)
Do you have any ideas?
Thanks in advance.
I have followed online tutorial about image recognition using Keras in R ending up with the following code:
library(keras)
view_list <- c("Inside", "Outside")
output_n <- length(view_list)
# image size to scale down to (original images are 100 x 100 px)
img_width <- 20
img_height <- 20
target_size <- c(img_width, img_height)
# RGB = 3 channels
channels <- 3
train_image_files_path <- "C:/Users/Tomek/Desktop/Photos"
valid_image_files_path <- "C:/Users/Tomek/Desktop/Photos valid"
test_image_files_path <- "C:/Users/Tomek/Desktop/Photos test"
# optional data augmentation
train_data_gen = image_data_generator(rescale = 1/255 )
# Validation data shouldn't be augmented! But it should also be scaled.
valid_data_gen <- image_data_generator(rescale = 1/255)
test_data_gen <- image_data_generator(rescale = 1/255)
# training images
train_image_array_gen <- flow_images_from_directory(train_image_files_path,
train_data_gen,
target_size = target_size,
class_mode = "categorical",
classes = view_list,
seed = 42)
# validation images
valid_image_array_gen <- flow_images_from_directory(valid_image_files_path,
valid_data_gen,
target_size = target_size,
class_mode = "categorical",
classes = view_list,
seed = 42)
# test images
test_image_array_gen <- flow_images_from_directory(test_image_files_path,
test_data_gen,
target_size = target_size,
class_mode = "categorical",
classes = view_list,
seed = 42)
cat("Number of images per class:")
table(factor(train_image_array_gen$classes))
train_image_array_gen$class_indices
views_classes_indices <- train_image_array_gen$class_indices
save(views_classes_indices, file = "C:/Users/Tomek/Desktop/views_classes_indices.RData")
# number of training samples
train_samples <- train_image_array_gen$n
# number of validation samples
valid_samples <- valid_image_array_gen$n
# number of test samples
test_samples <- test_image_array_gen$n
# define batch size and number of epochs
batch_size <- 1
epochs <- 10
# initialise model
model <- keras_model_sequential()
# add layers
model %>%
layer_conv_2d(filter = 32, kernel_size = c(3,3), padding = "same", input_shape = c(img_width, img_height, channels)) %>%
layer_activation("relu") %>%
# Second hidden layer
layer_conv_2d(filter = 16, kernel_size = c(3,3), padding = "same") %>%
layer_activation_leaky_relu(0.5) %>%
layer_batch_normalization() %>%
# Use max pooling
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_dropout(0.25) %>%
# Flatten max filtered output into feature vector
# and feed into dense layer
layer_flatten() %>%
layer_dense(100) %>%
layer_activation("relu") %>%
layer_dropout(0.5) %>%
# Outputs from dense layer are projected onto output layer
layer_dense(output_n) %>%
layer_activation("softmax")
# compile
model %>% compile(
loss = "categorical_crossentropy",
optimizer = optimizer_rmsprop(lr = 0.0001, decay = 1e-6),
metrics = "accuracy"
)
summary(model)
# fit
hist <- model %>% fit_generator(
# training data
train_image_array_gen,
# epochs
steps_per_epoch = as.integer(train_samples / batch_size),
epochs = epochs,
# validation data
validation_data = valid_image_array_gen,
validation_steps = as.integer(valid_samples / batch_size),
# print progress
verbose = 2,
callbacks = list(
# save best model after every epoch
callback_model_checkpoint("C:/Users/Tomek/Desktop/views_checkpoints.h5", save_best_only = TRUE),
# only needed for visualising with TensorBoard
callback_tensorboard(log_dir = "C:/Users/Tomek/Desktop/keras/logs")
)
)
plot(hist)
#prediction
a <- model %>% predict_generator(test_image_array_gen, steps = 5, verbose = 1, workers = 1)
a <- round(a, digits = 4)
The classification model (with two output classes) seems to work quite nicely. The accuracy on the train and the validation sets is equal to ~99% and ~95% respectively. However, I am not sure about the results of predictions on the test set. It looks like the predictions for observations are shuffled and I am not able to find a way to check which prediction refers to which image(observation). I have seen some threads on that issue: github medium 1 medium 2.
Nevertheless, I am really new to Keras and Python and I have hard time applying the suggested solutions in R. What is the easiest way to track which prediction refers to which image from the test set in predict_generator output?
I figured it out and the answer is simple. The shuffling is caused by argument shuffle which by default is set to true. After changing it, predictions correspond to the order of test_image_array_gen$filenames However, bear in mind that the order of predictions (and filenames) is different than the one on Windows which may be a bit confusing.
Order in Windows: Photo 1 Photo 2 ... Photo 10 Photo 11
Order in R: Photo 1 Photo 10 Photo 11 ... Photo 2
# test images
test_image_array_gen <- flow_images_from_directory(test_image_files_path,
test_data_gen,
target_size = target_size,
class_mode = "categorical",
classes = view_list,
seed = 42,
shuffle = FALSE)
#prediction
a <- model %>% predict_generator(test_image_array_gen, steps = ceiling(test_samples/32), verbose = 1, workers = 1)
#bind predictions with photos names
b <- cbind.data.frame(a, test_image_array_gen$filenames)
I have a question regarding applying a neural network in categorical data.
1- I have one output which is numeric (Connection.Duration)
2- I have 5 inputs, 4 of them (EVSE.ID, User.ID, Fee, Day) are categorical and 1 (Time) is numeric.
I want to apply a neural network to predict the Connection.Duration. I do not know the correct command to use for categorical data. I used model.matrix but I did not how to continue with the new data frame (m) which contains the categorical data.
I would like to ask for help please.
data$Fee <- as.factor(data$Fee)
data$EVSE.ID <- as.factor(data$EVSE.ID)
data$User.ID <- as.factor(data$User.ID)
data$Day <- as.factor(data$Day)
data$Time <- as.factor(data$Time)
data$Connection.Duration <- as.factor(data$Connection.Duration)
m <- model.matrix(Connection.Duration ~ EVSE.ID+Time+Day+Fee+User.ID,
data= data)
# Neural Networks
n <- neuralnet(Connection.Duration ~ EVSE.ID+Time+Day+Fee+User.ID,
data = m,
hidden=c(100,60))
# Data partition
set.seed(1234)
ind <- sample(2, nrow(m), replace = TRUE, prob = c(0.7, 0.3))
training <- m[ind==1,1:5]
testing <- m[ind==2,1:5]
trainingtarget <- m[ind==1, 6]
testingtarget <- m[ind==2, 6]
# Normalize
m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
testing <- scale(testing, center = m, scale = s)
# Create Model
model <- keras_model_sequential()
model %>%
layer_dense(units = 5, activation = 'relu', input_shape = c(5)) %>%
layer_dense(units = 1)
# Compile
model %>% compile(loss= 'mse',
optimizer= 'rmsprop',
metrics='mae')
# Fit model
mymodel <- model %>%
fit(training,
trainingtarget,
epochs= 100,
batch_size = 32,
validation_split = 0.2)
# Evaluate
model %>% evaluate(testing, testingtarget)
pred <- model %>% predict(testing)
mean(testingtarget- pred^2)
plot(testingtarget, pred)
# Fine-tune Model
model <- keras_model_sequential()
model %>%
layer_dense(units = 100, activation = 'relu', input_shape = c(5)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 60, activation = 'relu', input_shape = c(5)) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 1)
# Compile
model %>% compile(loss= 'mse',
optimizer= optimizer_rmsprop(lr=0.0001),
metrics='mae')
# Fit model
mymodel <- model %>%
fit(training,
trainingtarget,
epochs= 100,
batch_size = 32,
validation_split = 0.2)
# Evaluate
model %>% evaluate(testing, testingtarget)
pred <- model %>% predict(testing)
mean(testingtarget- pred^2)
plot(testingtarget, pred)
What you're looking for is called "one hot encoding". There are functions in tensorflow/keras to help out with the encoding.
But otherwise, I would try to do it up front. I would not rely on model.matrix as it doesn't give you quite what you want.
You can easily write your own function, but here's an example using the mltools package:
library(data.table)
library(mltools)
one_hot(data.table(x = factor(letters), n = 1:26))
Note: it requires data.table rather than data.frame but you can convert your data back and forth.
This is a rather lengthy one, so please bear with me, unfortunately enough the error occurs right at the very end...I cannot predict on the unseen test set!
I would like to perform text classification with word embeddings (that I have trained on my data set) that are embedded into neural networks.
I simply have column with textual descriptions = input and four different price classes = target.
For a reproducible example, here are the necessary data set and the word embedding:
DF: https://www.dropbox.com/s/it0jsbv8e7nkryt/DF.csv?dl=0
WordEmb: https://www.dropbox.com/s/ia5fmio2e0plwkr/WordEmb.txt?dl=0
And here my code:
set.seed(2077)
DF = read.delim("DF.csv", header = TRUE, sep = ",",
dec = ".", stringsAsFactors = FALSE)
DF <- DF[,-1]
# parameters
max_num_words = 9000 # simply see number of observations
validation_split = 0.3
embedding_dim = 300
##### Data Preparation #####
# split into training and test set
set.seed(2077)
n <- nrow(DF)
shuffled <- DF[sample(n),]
# Split the data in train and test
train <- shuffled[1:round(0.7 * n),]
test <- shuffled[(round(0.7 * n) + 1):n,]
rm(n, shuffled)
# predictor/target variable
x_train <- train$Description
x_test <- test$Description
y_train <- train$Price_class
y_test <- test$Price_class
### encode target variable ###
# One hot encode training target values
trainLabels <- to_categorical(y_train)
trainLabels <- trainLabels[, 2:5]
# One hot encode test target values
testLabels <- keras::to_categorical(y_test)
testLabels <- testLabels[, 2:5]
### encode predictor variable ###
# pad sequences
tokenizer <- text_tokenizer(num_words = max_num_words)
# finally, vectorize the text samples into a 2D integer tensor
set.seed(2077)
tokenizer %>% fit_text_tokenizer(x_train)
train_data <- texts_to_sequences(tokenizer, x_train)
tokenizer %>% fit_text_tokenizer(x_test)
test_data <- texts_to_sequences(tokenizer, x_test)
# determine average length of document -> set as maximal sequence length
seq_mean <- stri_count(train_data, regex="\\S+")
mean((seq_mean))
max_sequence_length = 70
# This turns our lists of integers into a 2D integer tensor of shape`(samples, maxlen)`
x_train <- keras::pad_sequences(train_data, maxlen = max_sequence_length)
x_test <- keras::pad_sequences(test_data, maxlen = max_sequence_length)
word_index <- tokenizer$word_index
Encoding(names(word_index)) <- "UTF-8"
#### PREPARE EMBEDDING MATRIX ####
embeddings_index <- new.env(parent = emptyenv())
lines <- readLines("WordEmb.txt")
for (line in lines) {
values <- strsplit(line, ' ', fixed = TRUE)[[1]]
word <- values[[1]]
coefs <- as.numeric(values[-1])
embeddings_index[[word]] <- coefs
}
embedding_dim <- 300
embedding_matrix <- array(0,c(max_num_words, embedding_dim))
for(word in names(word_index)){
index <- word_index[[word]]
if(index < max_num_words){
embedding_vector <- embeddings_index[[word]]
if(!is.null(embedding_vector)){
embedding_matrix[index+1,] <- embedding_vector
}
}
}
##### Convolutional Neural Network #####
# load pre-trained word embeddings into an Embedding layer
# note that we set trainable = False so as to keep the embeddings fixed
num_words <- min(max_num_words, length(word_index) + 1)
embedding_layer <- keras::layer_embedding(
input_dim = num_words,
output_dim = embedding_dim,
weights = list(embedding_matrix),
input_length = max_sequence_length,
trainable = FALSE
)
# train a 1D convnet with global maxpooling
sequence_input <- layer_input(shape = list(max_sequence_length), dtype='int32')
preds <- sequence_input %>%
embedding_layer %>%
layer_conv_1d(filters = 128, kernel_size = 1, activation = 'relu') %>%
layer_max_pooling_1d(pool_size = 5) %>%
layer_conv_1d(filters = 128, kernel_size = 1, activation = 'relu') %>%
layer_max_pooling_1d(pool_size = 5) %>%
layer_conv_1d(filters = 128, kernel_size = 1, activation = 'relu') %>%
layer_max_pooling_1d(pool_size = 2) %>%
layer_flatten() %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dense(units = 4, activation = 'softmax')
model <- keras_model(sequence_input, preds)
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = c('acc')
)
model %>% keras::fit(
x_train,
trainLabels,
batch_size = 1024,
epochs = 20,
validation_split = 0.3
)
Now here is where I get stuck:
I cannot use the results of the NN to predict on the unseen test data set:
# Predict the classes for the test data
classes <- model %>% predict_classes(x_test, batch_size = 128)
I get this error:
Error in py_get_attr_impl(x, name, silent) :
AttributeError: 'Model' object has no attribute 'predict_classes'
Afterwards, I'd proceed like this:
# Confusion matrix
table(y_test, classes)
# Evaluate on test data and labels
score <- model %>% evaluate(x_val, testLabels, batch_size = 128)
# Print the score
print(score)
For now the actual accuracy does not really matter since this is only a small example of my data set.
I know this is a long one but AAANNY help would be very muuuch appreciated.
I'm trying to build a toy model to demonstrate how LSTMs can predict the next few iteration of a sequence. My code runs without any errors until the last line.
# Simulating dummy data
seq <- data.frame(x_train = (seq(0,8, 1)/10), y_train = (seq(0,8, 1)/10))
seq$x_train <- seq$x_train + 0.1
# Reshaping
x_train <- array_reshape(seq$x_train, dim = c(9,1,1))
y_train <- array_reshape(seq$y_train, dim = c(9,1))
# Checking dimensions
dim(x_train); dim(y_train)
# Building the model
m <- keras_model_sequential()
m %>%
layer_lstm(units = 10, input_shape =c(9,1), batch_size = 9, return_sequences = T, stateful = T) %>%
layer_dense(units = 1)
summary(m)
# Compiling
m %>% compile(loss = "mse", optimizer = "adam")
This is where the issue arises -
for (i in 1:9) {
m %>% fit(object = x_train, y_train, batch_size = 1, shuffle = FALSE)
m %>% reset_states()
}
I get the following error, and I'm not sure why:
Error: $ operator is invalid for atomic vectors
Anyone know what I'm doing wrong?