Constraints on BsplinesComp - openmdao

I am using BsplinesComp for a sample problem.
The objective is to maximize the area under the line.
My problem arises when I want to set a constraint for one of the values in the output array that bspline gives. So a value such that the spline goes through that no matter what configuration it is in.
I tried this in two ways and I have uploaded the codes. They are both very badly coded so i think there is a neater way to do so. Links to codes:
https://gist.github.com/stackoverflow38/5eae1e86c5802a4df91becdf580d28c5
1- Using an extra explicit component in which the middle array value is imposed to be a selected value
2- Tried to use an execcomp but I get an error. Target shapes do not match.
I vaguely remember reading such a question but could not find it.
Overall I am trying to set a constraint for either the first, middle or last value of the bspline and some range that it should be in.
Similar to the plots here

So, I think you want to know the best way to do this, and the best way is to not use any extra components at all. You can directly constrain a single point in the output of the BsplinesComp by using the "indices" argument in the add_constraint call. Here, I constrain the first point in the spline to lie on the interval [-1, 1].
model.add_constraint('interp.h', lower=-1, upper=1, indices=[0])
Running the model gives me a shape that looks more like one of the ones you included.
Just for reference, for the errors you got with 1 and 2:
Not sure what is wrong here, but maybe the version you uploaded isn't the latest. You never used the AeraComp in a constraint, so it didn't do anything.
The exception was due to a size mismatch in connecting the vector output of the Bsplines comp to a scaler expression. You can do this by specifying the "src_indices", giving it a list of which indices in the array to connect to the target. model.connect('interp.h', 'execcomp.x', src_indices=[0])

Related

What are the rules for ppp objects? Is selecting two variables possible for an sapply function?

Working with code that describes a poisson cluster process in spatstat. Breaking down each line of code one at a time to understand. Easy to begin.
library(spatstat)
lambda<-100
win<-owin(c(0,1),c(0,1))
n.seeds<-lambda*win$xrange[2]*win$yrange[2]
Once the window is defined I then generate my points using a random generation function
x=runif(min=win$xrange[1],max=win$xrange[2],n=pmax(1,n.seeds))
y=runif(min=win$yrange[1],max=win$yrange[2],n=pmax(1,n.seeds))
This can be plotted straight away I know using the ppp function
seeds<-ppp(x=x,
y=y,
window=win)
plot(seeds)
The next line I add marks to the ppp object, it is apparently describing the angle of rotation of the points, I don't understand how this works right now but that is okay, I will figure out later.
marks<-data.frame(angles=runif(n=pmax(1,n.seeds),min=0,max=2*pi))
seeds1<-ppp(x=x,
y=y,
window=win,
marks=marks)
The first problem I encounter is that an objects called pops, describing the populations of the window, is added to the ppp object. I understand how the values are derived, it is a poisson distribution given the input value mu, which can be any value and the total number of observations equal to points in the window.
seeds2<-ppp(x=x,
y=y,
window=win,
marks=marks,
pops=rpois(lambda=5,n=pmax(1,n.seeds)))
My first question is, how is it possible to add a variable that has no classification in the ppp object? I checked the ppp documentation and there is no mention of pops.
The second question I have is about using double variables, the next line requires an sapply function to define dimensions.
dim1<-pmax(1,sapply(seeds1$marks$pops, FUN=function(x)rpois(n=1,sqrt(x))))
I have never seen the $ function being used twice, and seeds2$marks$pop returns $ operator is invalid for atomic vectors. Could you explain what is going on here?
Many thanks.
That's several questions - please ask one question at a time.
From your post it is not clear whether you are trying to understand someone else's code, or developing code yourself. This makes a difference to the answer.
Just to clarify, this code does not come from inside the spatstat package; it is someone's code using the spatstat package to generate data. There is code in the spatstat package to generate simulated realisations of a Poisson cluster process (which is I think what you want to do), and you could look at the spatstat code for rPoissonCluster to see how it can be done correctly and efficiently.
The code you have shown here has numerous errors. But I will start by answering the two questions in your title.
The rules for creating ppp objects are set out in the help file for ppp. The help says that if the argument window is given, then unmatched arguments ... are ignored. This means that in the line seeds2<-ppp(x=x,y=y,window=win,marks=marks,pops=rpois(lambda=5,n=pmax(1,n.seeds)))
the argument pops will be ignored.
The idiom sapply(seeds1$marks$pops, FUN=f) is perfectly valid syntax in R. If the object seeds1 is a structure or list which has a component named marks, which in turn is a structure or list which has a component named pops, then the idiom seeds1$marks$pops would extract it. This has nothing particularly to do with sapply.
Now turning to errors in the code,
The line n.seeds<-lambda*win$xrange[2]*win$yrange[2] is presumably meant to calculate the expected number of cluster parents (cluster seeds) in the window. This would only work if the window is a rectangle with bottom left corner at the origin (0,0). It would be safer to write n.seeds <- lambda * area(win).
However, the variable n.seeds is used later as it it were the number of cluster parents (cluster seeds). The author has forgotten that the number of seeds is random with a Poisson distribution. So, the more correct calculation would be n.seeds <- rpois(1, lambda * area(win))
However this is still not correct because cluster parents (seed points) outside the window can also generate offspring points inside the window. So, seed points must actually be generated in a larger window obtained by expanding win. The appropriate command used inside spatstat to generate the cluster parents is bigwin <- grow.rectangle(Frame(win), cluster_diameter) ; Parents <- rpoispp(lambda, bigwin)
The author apparently wants to assign two mark values to each parent point: a random angle and a random number pops. The correct way to do this is to make the marks a data frame with two columns, for example marks(seeds1) <- data.frame(angles=runif(n.seeds, max=2*pi), pops=rpois(n.seeds, 5))

FancyRpartPlot - What does the number inside the node mean?

anyone know what does it means? I have a confusion on the information inside the decision tree below. I tried to find the number sources inside the variable. Hence, i could not find anything
Normally you see the probability of each class and the percentage of cases falling in that class when you plot with fancyRplot- but in your case, your attribute perhaps is a numeric, and then in the box is the mean of responses for that split.

What is the meaning of RescaleType = 'LOG_E REL' in a DICOM file?

I am trying to figure out the meaning of RescaleType = 'LOG_E REL' in a DICOM file. To be more specific, I need to know how to process the raw pixel values to get the image displayed in a proper way. Up to now I have only seen files with RescaleType = 'P-VALUES', which seemed to be correctly processed when applying formula:
pixVal = rescaleIntercept + rescaleSlope * pixRaw.
What would be the rescaling formula to apply when RescaleType = 'LOG_E REL'?
I am not sure if this value is part of the Dicom standard or it is just a specific value for a given manufacturer.
I am telling that because I only have seen these values for the images generated by an old (currently out of service) Agfa ADC compact CR
In the documentation you can read this:
LOG_E REL: pixel values are linearly related to the Log Exposure on
the image plate; the maximum pixel value corresponds to a delta LogE
of 3.2767 above the LogE for the minimum pixel value; in this case, a
VOI module (sequenced item) is present, also containing a lookup
table. Only 12 bit is supported.
I do not know if you should apply a rescaling formula or this is just a note related to some kind of postprocessing algorithm having been applied to the original image.
I assume you should just apply the given VOI LUT instead of trying to apply a rescale equation.
It would help if you could share an example of such dataset. In any way, I believe this is a Type 3 tag in which case, the information is not really required. Just apply the Rescale Slope/Intercept as usual and see what it does.

Bubblesort in LabVIEW formula node

I'm trying to create a histogram of an image. I was thinking to first bubblesort the array of the pixels so every number is sorted from low to high.
Then its easier to count how many times a specific value of a pixels appears. And then later I can put it in a graph.
But it always gives an error then I don't understand.
I also want to make everything with the formula node instead of just blocks.
Visual:
http://i.stack.imgur.com/ZlmW2.png
Error:
http://i.stack.imgur.com/91TbS.png
In your code numbers is a scalar not an array.
Besides that the formula node does not maintain state, you'll need a feedback node to get history. Is there any reason why do you want to use the formula node instead of native LabVIEW code?
You need to remove the two nested LabVIEW for loops, you are iterating through your array inside the formula node so you don't need to do it with the loops.

Returning Multiple Output Parameters from Optim

Im running an optimisation routine using optim in R and im telling the programme what i want returned. for example, if i put return(op1$par), it will return all 4 of my variable values. Thats fine, and if i run return(op1), I obviously get all the information from the optimisation routine (par, value, convergence etc). However, in this format, the par values arent accessible in the output, it simply details that there are 4 values.
Now what i need is to the get the parameter values and the convergence information at the same time. R wont let me call this return(op1$par, op1$convergence) so im looking for the best way to get these two entities in one run?
I should specify that im writing this to a file for 1000s of iterations and not just looking to call it up once on screen.
Cheers
Try something like this:
return(c(Parameters=op1$par, Convergence=op1$convergence))
The names Parameters and Convergence are only for identifying what are the parameters and what is the convergence, since this result will be a vector.
By design, a function can return only one object (or else assignments like a <- fn(b) would get confusing; which thing do you assign?). But that object can be a vector, or a list (which is what optim does). So wrap your arguments in something like
return(c(par=op1$par, convergence=op1$convergence))
or more generally (for objects of different types),
return(list(par=op1$par, convergence=op1$convergence))

Resources