Draw d observation from a sample n times and calculate the mean - r

Consider the following data:
x <- c(2, 4, 6, 8)
mean(x)
[1] 5
Now I want do draw 2 observations. This gives me 6 combinations. I want to calculate the mean for all 6 combinations, and the mean of these 6 values. That is, I should get the following means:
(2+4)/2 = 3
(2+6)/2 = 4
(2+8)/2 = 5
(4+6)/2 = 5
(4+8)/2 = 6
(6+8)/2 = 7
I know the order could be different from the above, but it should each time give me an average 5 (in the case above: (3+4+5+5+6+7)/6 = 5).
Can anyone help me?

One Line answer:
mean(rowMeans(t(combn(x,2))))
explained step by step:
with 'draw 2 observations' you actually mean to select 2 objects/observations out of x:
x <- c(2, 4, 6, 8)
combn(x, 2)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 2 2 4 4 6
## [2,] 4 6 8 6 8 8
with t() you can transform it to:
t(combn(x,2))
## [,1] [,2]
## [1,] 2 4
## [2,] 2 6
## [3,] 2 8
## [4,] 4 6
## [5,] 4 8
## [6,] 6 8
The means you can calculate by rowMeans()
rowMeans(t(combn(x,2)))
## [1] 3 4 5 5 6 7
If you calculate the mean of that, you get what you want.
mean(rowMeans(t(combn(x,2))))
## [1] 5

I think OP was going in right-direction to use sample in order to draw 2 observations n times (as title suggests). But somehow angle of solution changed towards combn function (which is not a correct option).
An option is to use sample along with replicate as:
x <- c(2, 4, 6, 8)
mean(replicate(6, sample(x,2)))
#[1] 4.666667 #There is random-ness in set of observations selected.
In above attempt, replicate provides 6 sets of 2 observations as:
replicate(6, sample(x,2))
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 2 4 4 4 8 8
# [2,] 6 2 2 8 6 2
Personally, I dont think combn is a correct option to use here. combn returns all possible combination of selected number of observations. That means, every observation (of x) will appear equal number of times in combination set received from combn function. This implies, that mean of combn(x,2) will be same as mean(x). Hence, what's point using combn in this case.

Related

How to repeatedly generate non-repeating smaller groups from a larger set

I have a large set of size M (let's say 10), and I want to, repeatedly for a certain number of occasions (let's say 13), randomly split it into M/N smaller groups of size N (let's say 2). I'd like no element in the large set to be in a repeating group until they have been in a small group with every one else. (The actual problem here: I have a class of 10 people and I want to split them into 5 pairs for a duration of 13 weeks, but I don't want anyone to be in a repeat pairing until they have been in a pairing with everyone in the class.)
How can I do this? I started by [generating non-repeating permutations from my larger group][1], but the trouble I am having is that these unique permutations don't necessarily yield unique groups. (Someone seems to have posed this same question, but [it was resolved in Python][2]. I don't understand Python, and so I'm looking for an easy R solution.)
Any help much appreciated.
Edit: Thanks to all for suggestions. I realize my original question wasn't exactly clear. The solutions suggested below work well when I only want to split the set into a single subset of size N, each time. But my problem is actually that I want to split the set into M/N subsets of size N. For example, in the case of my class, I want to split the 10 students into 5 pairs of 2 on 13 different occasions, and I want pairs to be unique until they no longer can be (i.e., after 9 occasions have passed). Unless I'm failing to see how they can be applied, I don't think any of these solutions quite solves this problem.
I see that the OP has provided a solution from the linked math.so solution, but I would like to provide a working solution of the other answer on that page that gets to the heart of this problem. That solution mentions Round-robin tournament. From the wikipedia page, the algorithm is straightforward.
One simply fixes a position in a matrix and rotates the other indices clockwise. Given M initial players, there are M - 1 unique rounds. Thus, for our given situation, we can only obtain 9 unique sets of groups.
Below, is a very straightforward base R implementation:
roll <- function( x , n ){
if( n == 0 )
return(x)
c(tail(x,n), head(x,-n))
}
RoundRobin <- function(m, n) {
m <- as.integer(m)
n <- as.integer(n)
if (m %% 2L != 0L) {
m <- m + 1L
}
myRounds <- list(n)
myRounds[[1]] <- 1:m
for (i in 2:n) {
myRounds[[i]] <- myRounds[[i - 1L]]
myRounds[[i]][2:m] <- roll(myRounds[[i]][-1], 1)
}
lapply(myRounds, matrix, nrow = 2)
}
The roll function was obtained from this answer.
Here is sample output for 10 students and 4 weeks:
RoundRobin(10, 4)
[[1]]
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
[[2]]
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 4 6 8
[2,] 10 3 5 7 9
[[3]]
[,1] [,2] [,3] [,4] [,5]
[1,] 1 10 3 5 7
[2,] 9 2 4 6 8
[[4]]
[,1] [,2] [,3] [,4] [,5]
[1,] 1 9 2 4 6
[2,] 8 10 3 5 7
When we hit the 10th week, we see our first repeat "round".
RoundRobin(10, 13)[c(1, 2, 9, 10, 11)]
[[1]]
[,1] [,2] [,3] [,4] [,5] ## <- first week
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
[[2]]
[,1] [,2] [,3] [,4] [,5] ## <- second week
[1,] 1 2 4 6 8
[2,] 10 3 5 7 9
[[3]]
[,1] [,2] [,3] [,4] [,5] ## <- ninth week
[1,] 1 4 6 8 10
[2,] 3 5 7 9 2
[[4]]
[,1] [,2] [,3] [,4] [,5] ## <- tenth week
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
[[5]]
[,1] [,2] [,3] [,4] [,5] ## <- eleventh week
[1,] 1 2 4 6 8
[2,] 10 3 5 7 9
Note, this is a deterministic algorithm and given the simplicity, it is pretty efficient. E.g. if you have 1000 students and want to find all 999 unique pairings, you can run this function without fear:
system.time(RoundRobin(1000, 999))
user system elapsed
0.038 0.001 0.039
I think you maybe want something like this. It will produce a data frame with the unique combinations in rows. These are sampled randomly until all unique combinations are exhausted. Thereafter, if more samples are required it will sample randomly with replacement from unique combinations:
create_groups <- function(M, N, samples)
{
df <- seq(N) %>%
lapply(function(x) M) %>%
do.call(expand.grid, .) %>%
apply(1, sort) %>%
t() %>%
as.data.frame() %>%
unique()
df <- df[apply(df, 1, function(x) !any(duplicated(x))), ]
df <- df[sample(nrow(df)), ]
if(samples <= nrow(df)) return(df[seq(samples), ])
rbind(df, df[sample(seq(nrow(df)), samples - nrow(df), TRUE), ])
}
It's easy to see how it works if we want groups of 4 elements from 5 objects (there are only 5 possible combinations):
create_groups(letters[1:5], 4, 5)
#> V1 V2 V3 V4
#> 1 a b d e
#> 2 a b c d
#> 3 a c d e
#> 4 b c d e
#> 5 a b c e
We have a randomly-ordered sample of 4 objects drawn from the set, but no repeats. (the elements within each sample are ordered alphabetically however)
If we want more than 5 samples, the algorithm ensures that all unique combinations are exhausted before resampling:
create_groups(letters[1:5], 4, 6)
#> V1 V2 V3 V4
#> 1 a b c e
#> 2 a c d e
#> 3 a b d e
#> 4 b c d e
#> 5 a b c d
#> 6 a b d e
Here we see there are no repeated rows until row 6, which is a repeat of row 3.
For the example in your question, there are 45 unique combinations of 2 elements drawn from 10 objects, so we get no repeats in our 13 samples:
create_groups(1:10, 2, 13)
#> V1 V2
#> 1 7 8
#> 2 4 10
#> 3 2 8
#> 4 3 10
#> 5 3 9
#> 6 1 8
#> 7 4 9
#> 8 8 9
#> 9 7 9
#> 10 4 6
#> 11 5 7
#> 12 9 10
#> 13 4 7
I am not sure combn + sample can work for your goal
as.data.frame(t(combn(M, N))[sample(K <- choose(length(M), N), i, replace = K < i), ])
which gives
V1 V2
1 4 9
2 4 8
3 1 9
4 6 10
5 5 9
6 2 10
7 3 7
8 7 8
9 6 7
10 1 7
11 6 8
12 5 6
13 3 8
With apologies to all for not writing a clear question, here is a solution based on the solution suggested in this post. (Depending on the seed, it can get stuck, and if weeks are larger, the code to recycle old groups has to be adjusted a little.)
set.seed(1)
m<-10
n<-2
weeks<-13
groupmat<-combn(m,n)
students <- c(1:m)
pickedpairs <- matrix(
data=NA,
nrow=n,
ncol=0
)
while( ncol(pickedpairs) < ((m-1)*(m/n)) ) {
thisweekspairs <- matrix(sample(students),nrow=n,ncol=m/n)
#check if this weeks pairs
#are already in pickedpairs
#if so, skip iteration
pairsprez <- lapply(1:ncol(thisweekspairs),function(j) {
#j<-1
apply(pickedpairs,2,function(x) sum(x%in%thisweekspairs[,j])==n)
}) %>% Reduce(f="|") %>% sum
if(pairsprez>=1) {
pickedpairs<<-pickedpairs
} else {
pickedpairs<<-cbind(pickedpairs,thisweekspairs)
}
print(ncol(pickedpairs))
}
uniquepairs <- lapply(1:(ncol(pickedpairs)/(m/n)),function(i) {
pickedpairs[,(1 + (m/n)*(i-1)):((m/n)*i)]
})
#generate weeks' number of unique pairs
combine(
uniquepairs,
uniquepairs[sample(1:length(uniquepairs),weeks-length(uniquepairs))]
)
We could use slice_sample with combn
library(dplyr)
library(purrr)
combn(M, N, simplify = FALSE) %>%
invoke(rbind, .) %>%
as_tibble %>%
slice_sample(n = i)
# A tibble: 13 x 2
# V1 V2
# <int> <int>
# 1 4 5
# 2 3 8
# 3 9 10
# 4 5 7
# 5 8 9
# 6 3 9
# 7 5 10
# 8 4 10
# 9 2 5
#10 5 6
#11 6 9
#12 2 7
#13 4 9

Diff function transposes matrix when used with apply over rows

I need to find the difference between columns in a matrix. The diff() function will work with a matrix for differences between rows for each column, but I need differences between columns for each row. I tried using apply() with diff() over the row index, but this returns a transposed result. Why does it return the transpose and am I using it incorrectly?
# make a small sample matrix
m <- matrix(seq(1, 20, by = 1), nrow = 2, ncol = 10)
# apply the diff function to the rows, I expect a 2 by 10 matrix here, should I just transpose it?
apply(m, 1, diff)
[,1] [,2]
[1,] 2 2
[2,] 2 2
[3,] 2 2
[4,] 2 2
[5,] 2 2
[6,] 2 2
[7,] 2 2
[8,] 2 2
[9,] 2 2
To elaborate on the "transpose effect" of apply:
According to ?apply, apply applies a function to the row vectors (MARGIN = 1) or column vectors (MARGIN = 2) of an array (e.g. a matrix) and returns
an array of dimension ‘c(n, dim(X)[MARGIN])’ if ‘n > 1’
where n is the length of the vector returned by an individual call of the function to either the row or column vector.
So in your case dim(m) is 2 10 (i.e. a 2x10 matrix) and MARGIN = 1, so the array dimension of the return object is 9 2, which means a 9x2 matrix (as diff returns a vector of length n=9).
You can see the same "transpose effect" when you do
apply(m, 1, c)
# [,1] [,2]
# [1,] 1 2
# [2,] 3 4
# [3,] 5 6
# [4,] 7 8
# [5,] 9 10
# [6,] 11 12
# [7,] 13 14
# [8,] 15 16
# [9,] 17 18
#[10,] 19 20
If all what's confusing you is the format 9 2 instead of 2 9, then you are right, just transpose it.
Because you very well are already computing the differences over the columns, i.e.
for(k in 1:nrow(m)) diff(m[k,])
yields exactly what you already have. A simple t(apply(m, 1, diff)) will do the trick.
> t(apply(m, 1, diff))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 2 2 2 2 2 2 2 2 2
[2,] 2 2 2 2 2 2 2 2 2
PS You can't get a 10 2/2 10 structure because diff will obviously return an element of size n - 1.

How to perform complex looping operation on matrix

I have a sample matrix like
5 4 3
2 6 8
1 9 7
and I want output like
max(5*6,5*8,5*9,5*7) // i!=j condition
max(4*2,4*8,4*1,4*7)
max(3*2,3*6,3*1,3*9)
And so on...
This maximum values obtained after computation should be in matrix form. I need to generalize it, therefore I need a generic code.
This gets the job done but is a pretty unimaginative solution, in that it just loops through the rows and columns performing the requested calculation instead of doing anything vectorized.
sapply(1:ncol(m), function(j) sapply(1:nrow(m), function(i) max(m[i,j]*m[-i,-j])))
# [,1] [,2] [,3]
# [1,] 45 32 27
# [2,] 18 42 72
# [3,] 8 72 42
Data:
(m <- matrix(c(5, 2, 1, 4, 6, 9, 3, 8, 7), nrow=3))
# [,1] [,2] [,3]
# [1,] 5 4 3
# [2,] 2 6 8
# [3,] 1 9 7

Nested for loop for evaluating surrounding cells of matrix in R

I have a 7x7 matrix:
Mat<-matrix(nrow=7,ncol=7)
With certain elements:
Mat[2,2]<-37
Mat[2,4]<-39
Mat[2,6]<-24
Mat[4,2]<-35
Mat[4,4]<-36
Mat[4,6]<-26
Mat[6,2]<-26
Mat[6,4]<-31
Mat[6,6]<-39
I am generating random elements and want to test if they add up to the specified values
I have written the following code:
TF<-c()
TF[1]<-isTRUE(Mat[2,2]==sum(Mat[1,1],Mat[1,2],Mat[1,3],Mat[2,1],Mat[2,3],Mat[3,1],Mat[3,2],Mat[3,3]))
TF[2]<-isTRUE(Mat[2,4]==sum(Mat[1,3],Mat[1,4],Mat[1,5],Mat[2,3],Mat[2,5],Mat[3,3],Mat[3,4],Mat[3,5]))
TF[3]<-isTRUE(Mat[2,6]==sum(Mat[1,5],Mat[1,6],Mat[1,7],Mat[2,5],Mat[2,7],Mat[3,5],Mat[3,6],Mat[3,7]))
TF[4]<-isTRUE(Mat[4,2]==sum(Mat[3,1],Mat[3,2],Mat[3,3],Mat[4,3],Mat[4,5],Mat[5,1],Mat[5,2],Mat[5,3]))
TF[5]<-isTRUE(Mat[4,4]==sum(Mat[3,3],Mat[3,4],Mat[3,5],Mat[4,3],Mat[4,5],Mat[5,3],Mat[5,4],Mat[5,5]))
TF[6]<-isTRUE(Mat[4,6]==sum(Mat[3,5],Mat[3,6],Mat[3,7],Mat[4,5],Mat[4,7],Mat[5,5],Mat[5,6],Mat[5,7]))
TF[7]<-isTRUE(Mat[6,2]==sum(Mat[5,1],Mat[5,2],Mat[5,3],Mat[6,1],Mat[6,3],Mat[7,1],Mat[7,2],Mat[7,3]))
TF[8]<-isTRUE(Mat[6,4]==sum(Mat[5,3],Mat[5,4],Mat[5,5],Mat[6,3],Mat[6,5],Mat[7,3],Mat[7,4],Mat[7,5]))
TF[9]<-isTRUE(Mat[6,6]==sum(Mat[5,5],Mat[5,6],Mat[5,7],Mat[6,5],Mat[6,7],Mat[7,5],Mat[7,6],Mat[7,7]))
Now i am trying to make it more efficient with a nested for loop:
O<-c(2,4,6)
for (G in O)
{
for (H in O)
{
TF[]<-isTRUE(Mat[G,H]==sum(Mat[G-1,H-1],Mat[G-1,H],Mat[G-1,H+1],Mat[G,H-1],Mat[G,H+1],Mat[G+1,H-1],Mat[G+1,H],Mat[G+1,H+1]))
}
}
The problem is that the vector element will be overwritten and it does not make any sense to add another for loop.
I also have problem to find a way to rerun the simulation if one false is found.
Let's start first by answering the following question:
How do you compute the sum of every surrounding cell for each cell in a matrix?
This is actually not trivial as far as I can tell (curious to see if anyone else comes up with something cool). Here is a potential solution, though not even close to being succinct. Let's start by seeing the results of the function. Here we will create matrices of only 1 so we can check that the results make sense (corners should add to 3 since there are only three contiguous cells, insides to 8, etc.):
> compute_neighb_sum(matrix(1, nrow=3, ncol=3))
[,1] [,2] [,3]
[1,] 3 5 3
[2,] 5 8 5
[3,] 3 5 3
> compute_neighb_sum(matrix(1, nrow=3, ncol=5))
[,1] [,2] [,3] [,4] [,5]
[1,] 3 5 5 5 3
[2,] 5 8 8 8 5
[3,] 3 5 5 5 3
> compute_neighb_sum(matrix(1, nrow=7, ncol=7))
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 3 5 5 5 5 5 3
[2,] 5 8 8 8 8 8 5
[3,] 5 8 8 8 8 8 5
[4,] 5 8 8 8 8 8 5
[5,] 5 8 8 8 8 8 5
[6,] 5 8 8 8 8 8 5
[7,] 3 5 5 5 5 5 3
This works!
Now, let's answer your actual question:
compute_neighb_sum(mx) == mx
and this should return TRUE for all cells that are equal to the sum of their surroundings. Lets confirm:
mx <- matrix(1, nrow=7, ncol=7)
mx[cbind(c(3, 6), c(3, 6))] <- 8 # make two interior cells equal two 8, which will be equal to sum of surroundings
which(compute_neighb_sum(mx) == mx, arr.ind=T) # you should look at `mx` to see what's going on
Sure enough, we get back the coordinates that we expect:
row col
[1,] 3 3
[2,] 6 6
Now, here is the function:
compute_neighb_sum <- function(mx) {
mx.ind <- cbind( # create a 2 wide matrix of all possible indices in input
rep(seq.int(nrow(mx)), ncol(mx)),
rep(seq.int(ncol(mx)), each=nrow(mx))
)
sum_neighb_each <- function(x) {
near.ind <- cbind( # for each x, y coord, create an index of all surrounding values
rep(x[[1]] + -1:1, 3),
rep(x[[2]] + -1:1, each=3)
)
near.ind.val <- near.ind[ # eliminate out of bound values, or the actual x,y coord itself
!(
near.ind[, 1] < 1 | near.ind[, 1] > nrow(mx) |
near.ind[, 2] < 1 | near.ind[, 2] > ncol(mx) |
(near.ind[, 1] == x[[1]] & near.ind[, 2] == x[[2]])
),
]
sum(mx[near.ind.val]) # Now sum the surrounding cell values
}
`dim<-`( # this is just to return in same matrix format as input
sapply(
split(mx.ind, row(mx.ind)), # For each x, y coordinate in input mx
sum_neighb_each # compute the neighbor sum
),
c(nrow(mx), ncol(mx)) # dimensions of input
)
}

R cut one row into multiple rows of equal length

I am trying to cut one row
x = [1 2 3 4 5 6 7 8 9 10 11 12]
into multiple rows of equal length so that
y(row1) = [1 2 3 4
y(row2) = 5 6 7 8
y(row3) = 9 10 11 12]
I know I can achieve this using a combination of rbind and cbind, but the dataset I am trying to apply this to is much larger than the example, so I am looking for a way to do it more quickly and automatically. I tried cut and cut2 but those didnt work either
jelle
The function matrix() is your friend here:
> matrix(1:12, nrow = 3, byrow = TRUE)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
Note the optional parameter, byrow. The default is FALSE and will fill the matrix by columns, setting it to true in this case gets the data arranged in the order that you described.Just something to be careful about, since R won't throw an error if you fill by column, but your data won't be in the right format!
Use matrix:
> y <- 1:12
> y
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> matrix(y,3,4,byrow=1)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
Edit: I included the byrow=TRUE argument to matrix (pointed out by Chase in the comments) which fills the matrix along the rows instead of down the columns.

Resources