How do I write this function x^.3*(1-x)^.7 - r

I try to write
testFunc = function(x){x^0.3 * (1-x)^0.7}
but when I try
testFunc(2)
R returns NaN result (for any x>1). How can I solve this problem?

If you try to raise a negative floating-point value to a fractional exponent, you'll always get NaN. This is not necessarily the mathematically correct answer - for example, we know that the cube root of -8 (-8^(1/3)) "should" be -2 ((-2)^3 == -8). From ?"^":
Users are sometimes surprised by the value returned, for example
why ‘(-8)^(1/3)’ is ‘NaN’. For double inputs, R makes use of IEC
60559 arithmetic on all platforms, together with the C system
function ‘pow’ for the ‘^’ operator. The relevant standards
define the result in many corner cases. In particular, the result
in the example above is mandated by the C99 standard. On many
Unix-alike systems the command ‘man pow’ gives details of the
values in a large number of corner cases.
If you really want to raise negative values to fractional powers, you could use as.complex():
as.complex(-1)^0.7
[1] -0.5877853+0.809017i
Your function would be
function(x){x^0.3 * as.complex(1-x)^0.7}
but you might need to rethink the mathematical foundations of whatever you're trying to do ...

Related

How can I improve the lindep function's applicability in Pari/GP for integral approximations?

While doing certain computations involving the Rogers L-function, the following result was generated by Wolfram Alpha:
                              
I wanted to verify this result in Pari/GP by means of the lindep function, so I calculated the integral to 20 digits in WA, yielding:
11.3879638800312828875
Then, I used the following code in Pari/GP:
lindep([zeta(2), zeta(3), 11.3879638800312828875])
As pi^2 = 6*zeta(2), one would expect the output to be a vector along the lines of:
[12,12,-3]
because that's the linear dependency suggested by WA's result. However, I got a very elaborate vector from Pari/GP:
[35237276454, -996904369, -4984618961]
I think the first vector should be the "right" output of the Pari code sample.
Questions:
Why is the lindep function in Pari/GP not yielding the output one would expect in this case?
What can I do to make it give the vector that would be more appropriate in this situation?
It comes down to Pari treating your rounded values as exact. Since you must round your values, lindep's solution doesn't always come to the same solution as the true answer due to error.
You can try changing the accuracy of lindep using the second argument. The manual states that you should choose this to be smaller than the number of correct decimal digits. I believe this should solve the issue.
lindep(v, {flag = 0}) finds a small nontrivial integral linear
combination between components of v. If none can be found return an
empty vector.
If v is a vector with real/complex entries we use a floating point
(variable precision) LLL algorithm. If flag = 0 the accuracy is chosen
internally using a crude heuristic. If flag > 0 the computation is
done with an accuracy of flag decimal digits. To get meaningful
results in the latter case, the parameter flag should be smaller than
the number of correct decimal digits in the input.

Why a/0 returns Inf instead of NaN in R? [duplicate]

I'm just curious, why in IEEE-754 any non zero float number divided by zero results in infinite value? It's a nonsense from the mathematical perspective. So I think that correct result for this operation is NaN.
Function f(x) = 1/x is not defined when x=0, if x is a real number. For example, function sqrt is not defined for any negative number and sqrt(-1.0f) if IEEE-754 produces a NaN value. But 1.0f/0 is Inf.
But for some reason this is not the case in IEEE-754. There must be a reason for this, maybe some optimization or compatibility reasons.
So what's the point?
It's a nonsense from the mathematical perspective.
Yes. No. Sort of.
The thing is: Floating-point numbers are approximations. You want to use a wide range of exponents and a limited number of digits and get results which are not completely wrong. :)
The idea behind IEEE-754 is that every operation could trigger "traps" which indicate possible problems. They are
Illegal (senseless operation like sqrt of negative number)
Overflow (too big)
Underflow (too small)
Division by zero (The thing you do not like)
Inexact (This operation may give you wrong results because you are losing precision)
Now many people like scientists and engineers do not want to be bothered with writing trap routines. So Kahan, the inventor of IEEE-754, decided that every operation should also return a sensible default value if no trap routines exist.
They are
NaN for illegal values
signed infinities for Overflow
signed zeroes for Underflow
NaN for indeterminate results (0/0) and infinities for (x/0 x != 0)
normal operation result for Inexact
The thing is that in 99% of all cases zeroes are caused by underflow and therefore in 99%
of all times Infinity is "correct" even if wrong from a mathematical perspective.
I'm not sure why you would believe this to be nonsense.
The simplistic definition of a / b, at least for non-zero b, is the unique number of bs that has to be subtracted from a before you get to zero.
Expanding that to the case where b can be zero, the number that has to be subtracted from any non-zero number to get to zero is indeed infinite, because you'll never get to zero.
Another way to look at it is to talk in terms of limits. As a positive number n approaches zero, the expression 1 / n approaches "infinity". You'll notice I've quoted that word because I'm a firm believer in not propagating the delusion that infinity is actually a concrete number :-)
NaN is reserved for situations where the number cannot be represented (even approximately) by any other value (including the infinities), it is considered distinct from all those other values.
For example, 0 / 0 (using our simplistic definition above) can have any amount of bs subtracted from a to reach 0. Hence the result is indeterminate - it could be 1, 7, 42, 3.14159 or any other value.
Similarly things like the square root of a negative number, which has no value in the real plane used by IEEE754 (you have to go to the complex plane for that), cannot be represented.
In mathematics, division by zero is undefined because zero has no sign, therefore two results are equally possible, and exclusive: negative infinity or positive infinity (but not both).
In (most) computing, 0.0 has a sign. Therefore we know what direction we are approaching from, and what sign infinity would have. This is especially true when 0.0 represents a non-zero value too small to be expressed by the system, as it frequently the case.
The only time NaN would be appropriate is if the system knows with certainty that the denominator is truly, exactly zero. And it can't unless there is a special way to designate that, which would add overhead.
NOTE:
I re-wrote this following a valuable comment from #Cubic.
I think the correct answer to this has to come from calculus and the notion of limits. Consider the limit of f(x)/g(x) as x->0 under the assumption that g(0) == 0. There are two broad cases that are interesting here:
If f(0) != 0, then the limit as x->0 is either plus or minus infinity, or it's undefined. If g(x) takes both signs in the neighborhood of x==0, then the limit is undefined (left and right limits don't agree). If g(x) has only one sign near 0, however, the limit will be defined and be either positive or negative infinity. More on this later.
If f(0) == 0 as well, then the limit can be anything, including positive infinity, negative infinity, a finite number, or undefined.
In the second case, generally speaking, you cannot say anything at all. Arguably, in the second case NaN is the only viable answer.
Now in the first case, why choose one particular sign when either is possible or it might be undefined? As a practical matter, it gives you more flexibility in cases where you do know something about the sign of the denominator, at relatively little cost in the cases where you don't. You may have a formula, for example, where you know analytically that g(x) >= 0 for all x, say, for example, g(x) = x*x. In that case the limit is defined and it's infinity with sign equal to the sign of f(0). You might want to take advantage of that as a convenience in your code. In other cases, where you don't know anything about the sign of g, you cannot generally take advantage of it, but the cost here is just that you need to trap for a few extra cases - positive and negative infinity - in addition to NaN if you want to fully error check your code. There is some price there, but it's not large compared to the flexibility gained in other cases.
Why worry about general functions when the question was about "simple division"? One common reason is that if you're computing your numerator and denominator through other arithmetic operations, you accumulate round-off errors. The presence of those errors can be abstracted into the general formula format shown above. For example f(x) = x + e, where x is the analytically correct, exact answer, e represents the error from round-off, and f(x) is the floating point number that you actually have on the machine at execution.

Why is NA^0 = 1 in R? [duplicate]

Prompted by a spot of earlier code golfing why would:
>NaN^0
[1] 1
It makes perfect sense for NA^0 to be 1 because NA is missing data, and any number raised to 0 will give 1, including -Inf and Inf. However NaN is supposed to represent not-a-number, so why would this be so? This is even more confusing/worrying when the help page for ?NaN states:
In R, basically all mathematical functions (including basic
Arithmetic), are supposed to work properly with +/- Inf and NaN as
input or output.
The basic rule should be that calls and relations with Infs really are
statements with a proper mathematical limit.
Computations involving NaN will return NaN or perhaps NA: which of
those two is not guaranteed and may depend on the R platform (since
compilers may re-order computations).
Is there a philosophical reason behind this, or is it just to do with how R represents these constants?
This is referenced in the help page referenced by ?'NaN'
"The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.
http://en.wikipedia.org/wiki/NaN."
And there you find this statement regarding what should create a NaN:
"There are three kinds of operations that can return NaN:[5]
Operations with a NaN as at least one operand.
It is probably is from the particular C compiler, as signified by the Note you referenced. This is what the GNU C documentation says:
http://www.gnu.org/software/libc/manual/html_node/Infinity-and-NaN.html
" NaN, on the other hand, infects any calculation that involves it. Unless the calculation would produce the same result no matter what real value replaced NaN, the result is NaN."
So it seems that the GNU-C people have a different standard in mind when writing their code. And the 2008 version of ANSI/IEEE 754 Floating-Point Standard is reported to make that suggestion:
http://en.wikipedia.org/wiki/NaN#Function_definition
The published standard is not free. So if you are have access rights or money you can look here:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4610933
The answer can be summed up by "for historical reasons".
It seems that IEEE 754 introduced two different power functions - pow and powr, with the latter preserving NaN's in the OP case and also returning NaN for Inf^0, 0^0, 1^Inf, but eventually the latter was dropped as explained briefly here.
Conceptually, I'm in the NaN preserving camp, because I'm coming at the issue from viewpoint of limits, but from convenience point of view I expect current conventions are slightly easier to deal with, even if they don't make a lot of sense in some cases (e.g. sqrt(-1)^0 being equal to 1 while all operations are on real numbers makes little sense if any).
Yes, I'm late here, but as R Core member who was involved in this design, let me recall what I commented above. NaN preserving and NA preserving work "equivalently" in R, so if you agree that NA^0 should give 1, NaN^0 |-> 1 is a consequence.
Indeed (as others said) you should really read R's help pages and not C or
IEEE standards, to answer such questions,
and SimonO101 correctly cited
1 ^ y and y ^ 0 are 1, always
and I'm pretty sure that I was heavily involved (if not the author) of that.
Note that it is good, not bad, to be able to provide non-NaN answers, also in cases other programming languages do differently.
The consequence of such a rule is that more things work automatically correctly;
in the other case, the R programmer would have been urged to do more special casing herself.
Or put differently, a simple rule as the above (returning non-NaN in all cases) is a good rule, because it propagates continuity in a mathematical sense: lim_x f(x) = f(lim x).
We have had a few cases where it was clearly advantageous (i.e. did not need special casing, I'm repeating..) to adhere to the above "= 1" rule, rather than to propagate NaN. As I said further up, the sqrt(-1)^0 is also such an example, as 1 is the correct result as soon as you extend to the complex plane.
Here's one reasoning. From Goldberg:
In IEEE 754, NaNs are often represented as floating-point numbers with
the exponent e_max + 1 and nonzero significands.
So NaN is a floating-point number, though with a special meaning. Raising a number to the power zero sets its exponent to zero, therefore it will no longer be NaN.
Also note:
> 1^NaN
[1] 1
One is a number whose exponent is zero already.
Conceptually, the only problem with NaN^0 == 1 is that zero values can come about at least four different ways, but the IEEE format uses the same representation for three of them. The above formula equality sense for the most common case (which is one of the three), but not for the others.
BTW, the four cases I would recognize would be:
A literal zero
Unsigned zero: the difference between two numbers that are indistinguishable
Positive infinitesimal: The product or quotient of two numbers of matching sign, which is too small to be distinguished from zero.
Negative infinitesimal: The product or quotient of two numbers of opposite sign, which is too small to be distinguished from zero.
Some of these may be produced via other means (e.g. literal zero could be produced as the sum of two literal zeros; positive infinitesimal by the division of a very small number by a very large one, etc.).
If a floating-point recognized the above, it could usefully regard raising NaN to a literal zero as yielding one, and raising it to any other kind of zero as yielding NaN; such a rule would allow a constant result to be assumed in many cases where something that might be NaN would be raised to something the compiler could identify as a constant zero, without such assumption altering program semantics. Otherwise, I think the issue is that most code isn't going to care whether x^0 might would NaN if x is NaN, and there's not much point to having a compiler add code for conditions code isn't going to care about. Note that the issue isn't just the code to compute x^0, but for any computations based on that which would be constant if x^0 was.
If you look at the type of NaN, it is still a number, it's just not a specific number that can be represented by the numeric type.
EDIT:
For example, if you were to take 0/0. What is the result? If you tried to solve this equation on paper, you get stuck at the very first digit, how many zero's fit into another 0? You can put 0, you can put 1, you can put 8, they all fit into 0*x=0 but it's impossible to know which one the correct answer is. However, that does not mean the answer is no longer a number, it's just not a number that can be represented.
Regardless, any number, even a number that you can't represent, to the power of zero is still 1. If you break down some math x^8 * x^0 can be further simplified by x^(8+0) which equates to x^8, where did the x^0 go? It makes sense if x^0 = 1 because then the equation x^8 * 1 explains why x^0 just sort of disappears from existence.

Negative Exponents throwing NaN in Fortran

Very basic Fortran question. The following function returns a NaN and I can't seem to figure out why:
F_diameter = 1. - (2.71828**(-1.0*((-1. / 30.)**1.4)))
I've fed 2.71... in rather than using exp() but they both fail the same way. I've noticed that I only get a NaN when the fractional part (-1 / 30) is negative. Positives evaluate ok.
Thanks a lot
The problem is that you are taking a root of a negative number, which would give you a complex answer. This is more obvious if you imagine e.g.
(-1) ** (3/2)
which is equivalent to
(1/sqrt(-1))**3
In other words, your fractional exponent can't trivially operate on a negative number.
There is another interesting point here I learned today and I want to add to ire_and_curses answer: The fortran compiler seems to compute powers with integers with successive multiplications.
For example
PROGRAM Test
PRINT *, (-23) ** 6
END PROGRAM
work fine and gives 148035889 as an answer.
But for REAL exponents, the compiler uses logarithms: y**x = 10**(x * log(y)) (maybe compilers today do differently, but my book says so). Now that negative logarithms give a complex result, this does not work:
PROGRAM Test
PRINT *, (-23) ** 6.1
END PROGRAM
and even gives an compiler error:
Error: Raising a negative REAL at (1) to a REAL power is prohibited
From an mathematical point of view, this problem seems also be quite interesting: https://math.stackexchange.com/questions/1211/non-integer-powers-of-negative-numbers

Why does Gnu Octave have negative zeroes?

This is an odd one I'm puzzled about. I recently noticed at the Gnu Octave prompt, it's possible to enter in negative zeroes, like so:
octave:2> abomination = -0
And it remembers it, too:
octave:3> abomination
abomination = -0
In the interest of sanity, negative zero does equal regular zero. But I also noticed that the sign has some other effects. Like these:
octave:6> 4 * 0
ans = 0
octave:7> 4 * -0
ans = -0
octave:8> 4 / 0
warning: division by zero
ans = Inf
octave:9> 4 / -0
warning: division by zero
ans = -Inf
As one can see, the sign is preserved through certain operations. But my question is why. This seems like a radical departure from standard mathematics, where zero is essentially without sign. Are there some attractive mathematical properties for having this? Does this matter in certain fields of mathematics?
FYI: Matlab, which octave is modeled after, does not have negative zeros. Any attempts to use them are treated as regular zeros.
EDIT:
Matlab does have negative zeros, but they are not displayed in the default output.
Signed zero are part of the IEEE-754 formats, and their semantics are completely specified by those formats. They turn out to be quite useful, especially when dealing with complex branch cuts and transformations of the complex plane (see many of W. Kahan's writings on the subject for more details, such as the classic "Branch Cuts for Complex Elementary Functions, or Much Ado about Nothing's Sign Bit").
Short version: negative zero is often a good thing to have in numerical calculations, and programs that try to protect users from encountering it are often doing them a disservice. FWIW, MATLAB does seem to use negative zero as well, but since it prints numbers using the host's printf routine, they display the same as positive zero on Windows.
See this discussion on the MATLAB forums for more details on signed zero in MATLAB.
IEEE-754 floating point numbers have this property too. It might come in handy for limits and infinities. For example, the limit of 1/x with x → +∞ is 0, but the function approaches from the positive side of the axis, with x → −∞ the function approaches from the negative side so one might give the limit as −0, in that case.
Signed Zero
Signed zero echoes the mathematical
analysis concept of approaching 0 from
below as a one-sided limit, which may
be denoted by x → 0−, x → 0−, or x →
↑0. The notation "−0" may be used
informally to denote a negative number
that has been rounded to zero. The
concept of negative zero also has some
theoretical applications in
statistical mechanics and other
disciplines.

Resources