Tidyverse friendly hack on combn - r

Problem is simple and in many other posts, but I haven't found satisfactory answer.
Say you have a tibble with one column of labels (here letters) and other values in other columns (here just one 'value').
data <- tibble(letter = letters[1:5], value = 1:5)
Now what you want is generate all the pairs without permutations and keep the value attached to each of the pair element. Here's the solution I have and which I believe is valid but...inelegant.
combn(data$letter, m = 2) %>%
t() %>%
as_tibble() %>%
rename(letter_1 = V1, letter_2 = V2) %>%
left_join(data, by = c("letter_1" = "letter")) %>%
left_join(data, by = c("letter_2" = "letter"), suffix = c("_1", "_2"))
Which outputs the desired result:
# A tibble: 10 x 4
letter_1 letter_2 value_1 value_2
<chr> <chr> <int> <int>
1 a b 1 2
2 a c 1 3
3 a d 1 4
4 a e 1 5
5 b c 2 3
6 b d 2 4
7 b e 2 5
8 c d 3 4
9 c e 3 5
10 d e 4 5
I'm really looking for a tidyverse approach. I'm a fan boy :)
Thank you in advance for any help.

Here is a tidyverse solution using expand (instead of combn):
data %>%
expand(letter_1 = letter, letter_2 = letter) %>%
mutate(
value_1 = match(letter_1, letters),
value_2 = match(letter_2, letters)) %>%
filter(letter_1 != letter_2) %>%
rowwise() %>%
mutate(id = paste0(sort(c(letter_1, letter_2)), collapse = " ")) %>%
distinct(id, .keep_all = TRUE) %>%
select(-id)
## A tibble: 15 x 4
# letter_1 letter_2 value_1 value_2
# <chr> <chr> <int> <int>
# 2 a b 1 2
# 3 a c 1 3
# 4 a d 1 4
# 5 a e 1 5
# 7 b c 2 3
# 8 b d 2 4
# 9 b e 2 5
#11 c d 3 4
#12 c e 3 5
#13 d d 4 4
#14 d e 4 5

One option could be using combn as:
data <- tibble(letter = letters[1:5], value = 1:5)
res <- cbind(data.frame(t(combn(data$letter, 2))), data.frame(t(combn(data$value, 2))))
names(res) <- c("letter_1", "letter_2", "value_1", "value_2")
res
# letter_1 letter_2 value_1 value_2
# 1 a b 1 2
# 2 a c 1 3
# 3 a d 1 4
# 4 a e 1 5
# 5 b c 2 3
# 6 b d 2 4
# 7 b e 2 5
# 8 c d 3 4
# 9 c e 3 5
# 10 d e 4 5

I find the rowwise() function to work inconsistently in my machine. You might want to try map() functions in the purrr pacakge.
Here's a way to implement this:
library(purrr)
data %>%
expand(letter_1 = letter, letter_2 = letter) %>%
mutate(
value_1 = match(letter_1, letters),
value_2 = match(letter_2, letters)) %>%
filter(letter_1 != letter_2) %>%
mutate(
id = map2_chr(letter_1, letter_2, function(x, y) {
paste(sort(c(x, y)), collapse = " ")
})
) %>%
distinct(id, .keep_all = TRUE) %>%
select(-id)
# # A tibble: 10 x 4
# letter_1 letter_2 value_1 value_2
# <chr> <chr> <int> <int>
# 1 a b 1 2
# 2 a c 1 3
# 3 a d 1 4
# 4 a e 1 5
# 5 b c 2 3
# 6 b d 2 4
# 7 b e 2 5
# 8 c d 3 4
# 9 c e 3 5
# 10 d e 4 5

Related

R: expand grid of all possible combinations within groups and apply functions across all the pairs

data <- tibble(time = c(1,1,2,2), a = c(1,2,3,4), b =c(4,3,2,1), c = c(1,1,1,1))
The result will look like this
result <- tibble(
t = c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2),
firm1 = c("a","a","a","b","b","b","c","c","c","a","a","a","b","b","b","c","c","c"),
firm2 = c("a","b","c","a","b","c","a","b","c","a","b","c","a","b","c","a","b","c"),
value = c(6,10,5,10,14,9,5,9,4,14,10,9,10,6,5,9,5,4))
result
The function could be
function(x, y){sum(x, y)}
Basically I am looking for a tidy solution to expand.grid data at each point of time and apply functions across columns. Can anyone help?
I tried this, but I could not have time in front of the pairs.
expected_result<-expand.grid(names(data[-1]), names(data[-1])) %>%
mutate(value = map2(Var1, Var2, ~ fun1(data[.x], data[.y])))
expected_result
Use exand.grid you get all possible combination of columns, split the data by time and apply fun for each row of tmp.
library(dplyr)
library(purrr)
tmp <- expand.grid(firm1 = names(data[-1]), firm2 = names(data[-1]))
fun <- function(x, y) sum(x, y)
result <- data %>%
group_split(time) %>%
map_df(~cbind(time = .x$time[1], tmp,
value = apply(tmp, 1, function(x) fun(.x[[x[1]]], .x[[x[2]]]))))
result
# time firm1 firm2 value
#1 1 a a 6
#2 1 b a 10
#3 1 c a 5
#4 1 a b 10
#5 1 b b 14
#6 1 c b 9
#7 1 a c 5
#8 1 b c 9
#9 1 c c 4
#10 2 a a 14
#11 2 b a 10
#12 2 c a 9
#13 2 a b 10
#14 2 b b 6
#15 2 c b 5
#16 2 a c 9
#17 2 b c 5
#18 2 c c 4
You may also do this in base R -
result <- do.call(rbind, by(data, data$time, function(x) {
cbind(time = x$time[1], tmp,
value = apply(tmp, 1, function(y) fun(x[[y[1]]], x[[y[2]]])))
}))
We may use
library(dplyr)
library(tidyr)
library(purrr)
data1 <- data %>%
group_by(time) %>%
summarise(across(everything(), sum, na.rm = TRUE), .groups = 'drop') %>%
pivot_longer(cols = -time) %>%
group_split(time)
map_dfr(data1, ~ {dat <- .x
crossing(firm1 = dat$name, firm2 = dat$name) %>%
mutate(value = c(outer(dat$value, dat$value, FUN = `+`))) %>%
mutate(time = first(dat$time), .before = 1)})
-output
# A tibble: 18 × 4
time firm1 firm2 value
<dbl> <chr> <chr> <dbl>
1 1 a a 6
2 1 a b 10
3 1 a c 5
4 1 b a 10
5 1 b b 14
6 1 b c 9
7 1 c a 5
8 1 c b 9
9 1 c c 4
10 2 a a 14
11 2 a b 10
12 2 a c 9
13 2 b a 10
14 2 b b 6
15 2 b c 5
16 2 c a 9
17 2 c b 5
18 2 c c 4

Extract rows where value appears in any of multiple columns

Let' say I have two data.frames
name_df = read.table(text = "player_name
a
b
c
d
e
f
g", header = T)
game_df = read.table(text = "game_id winner_name loser_name
1 a b
2 b a
3 a c
4 a d
5 b c
6 c d
7 d e
8 e f
9 f a
10 g f
11 g a
12 f e
13 a d", header = T)
name_df contains a unique list of all the winner_name or loser_name values in game_df. I want to create a new data.frame that has, for each person in the name_df a row if a given name (e.g. a) appears in either the winner_name or loser_name column
So I essentially want to merge game_df with name_df, but the key column (name) can appear in either winner_name or loser_name.
So, for just a and b the final output would look something like:
final_df = read.table(text = "player_name game_id winner_name loser_name
a 1 a b
a 2 b a
a 3 a c
a 4 a d
a 9 f a
a 11 g a
a 13 a d
b 1 a b
b 2 b a
b 5 b c", header = T)
We can loop over the elements in 'name_df' for 'player_name', filter the rows from 'game_df' for either the 'winner_name' or 'loser_name'
library(dplyr)
library(purrr)
map_dfr(setNames(name_df$player_name, name_df$player_name),
~ game_df %>%
filter(winner_name %in% .x|loser_name %in% .x), .id = 'player_name')
Or if there are many columns, use if_any
map_dfr(setNames(name_df$player_name, name_df$player_name),
~ {
nm1 <- .x
game_df %>%
filter(if_any(c(winner_name, loser_name), ~ . %in% nm1))
}, .id = 'player_name')
Dedicated to our teacher and mentor dear #akrun
I think we can also make use of the add_row() function you first taught me the other day. Unbelievable!!!
library(dplyr)
library(purrr)
library(tibble)
game_df %>%
rowwise() %>%
mutate(player_name = winner_name) %>%
group_split(game_id) %>%
map_dfr(~ add_row(.x, game_id = .x$game_id, winner_name = .x$winner_name,
loser_name = .x$loser_name, player_name = .x$loser_name)) %>%
arrange(player_name) %>%
relocate(player_name)
# A tibble: 26 x 4
player_name game_id winner_name loser_name
<chr> <int> <chr> <chr>
1 a 1 a b
2 a 2 b a
3 a 3 a c
4 a 4 a d
5 a 9 f a
6 a 11 g a
7 a 13 a d
8 b 1 a b
9 b 2 b a
10 b 5 b c
# ... with 16 more rows
This can be directly expressed in SQL:
library(sqldf)
sqldf("select *
from name_df
left join game_df on winner_name = player_name or loser_name = player_name")
Without using purrr. I think this is appropriate use case of tidyr::unite with argument remove = F where we can first unite the winners' and losers' names and then use tidyr::separate_rows to split new column into rows.
library(tidyr)
library(dplyr)
game_df %>% unite(Player_name, winner_name, loser_name, remove = F, sep = ', ') %>%
separate_rows(Player_name) %>%
relocate(Player_name) %>%
arrange(Player_name)
# A tibble: 26 x 4
Player_name game_id winner_name loser_name
<chr> <int> <chr> <chr>
1 a 1 a b
2 a 2 b a
3 a 3 a c
4 a 4 a d
5 a 9 f a
6 a 11 g a
7 a 13 a d
8 b 1 a b
9 b 2 b a
10 b 5 b c
# ... with 16 more rows
A Base R approach :
result <- do.call(rbind, lapply(name_df$player_name, function(x)
cbind(plaername = x,
subset(game_df, winner_name == x | loser_name == x))))
rownames(result) <- NULL
result
# playername game_id winner_name loser_name
#1 a 1 a b
#2 a 2 b a
#3 a 3 a c
#4 a 4 a d
#5 a 9 f a
#6 a 11 g a
#7 a 13 a d
#8 b 1 a b
#...
#...

Count freq of word and which column it appears in using R

I have a dataset of a series of names in different columns. Each column determines the time in which the names were entered into the system. Is it possible to find the number of times ALL the names appear and the most recent column entry. I added a picture to show how the dataset works.
Here's one method:
library(dplyr)
set.seed(42)
dat <- setNames(as.data.frame(replicate(4, sample(letters, size = 10, replace = TRUE))), 1:4)
dat
# 1 2 3 4
# 1 q x c c
# 2 e g i z
# 3 a d y a
# 4 y y d j
# 5 j e e x
# 6 d n m k
# 7 r t e o
# 8 z z t v
# 9 q r b z
# 10 o o h h
tidyverse
library(dplyr)
library(tidyr)
pivot_longer(dat, everything(), names_to = "colname", values_to = "word") %>%
mutate(colname = as.integer(colname)) %>%
group_by(word) %>%
summarize(n = n(), latest = max(colname), .groups = "drop")
# # A tibble: 20 x 3
# word n latest
# <chr> <int> <int>
# 1 a 2 4
# 2 b 1 3
# 3 c 2 4
# 4 d 3 3
# 5 e 4 3
# 6 g 1 2
# 7 h 2 4
# 8 i 1 3
# 9 j 2 4
# 10 k 1 4
# 11 m 1 3
# 12 n 1 2
# 13 o 3 4
# 14 q 2 1
# 15 r 2 2
# 16 t 2 3
# 17 v 1 4
# 18 x 2 4
# 19 y 3 3
# 20 z 4 4
data.table
library(data.table)
melt(as.data.table(dat), integer(0), variable.name = "colname", value.name = "word")[
, colname := as.integer(colname)
][, .(n = .N, latest = max(colname)), by = .(word) ]
(though it is not sorted by word, the values are the same)

R slide window through tibble

I got a simple question that I cannot figure out solutions.
Also, I didn't find an answer that I understand.
Imagine I got this data frame
(ts <- tibble(
+ a = LETTERS[1:10],
+ b = c(rep(1, 5), rep(2,5))
+ ))
# A tibble: 10 x 2
a b
<chr> <dbl>
1 A 1
2 B 1
3 C 1
4 D 1
5 E 1
6 F 2
7 G 2
8 H 2
9 I 2
10 J 2
What I want is simple. I want to build a df with the column b indexing a sliding window which sizes n f the column a.
The output can be something like this:
# A tibble: 8 x 2
b a
<dbl> <chr>
1 1 A B
2 1 B C
3 1 C D
4 1 D E
5 2 F G
6 2 G H
7 2 H I
8 2 I J
I don't care if the column a contains an array (nest values).
I just need a new data frame based on the sliding window.
Since this operation will run in a relational database I'd like a function compatible with DBI-PostgresSQL.
Any help is appreciated.
Thanks in advance
We can group by 'b', create the new column based on the lead of 'a', remove the NA rows with na.omit
library(dplyr)
ts %>%
group_by(b) %>%
mutate(a2 = lead(a)) %>%
ungroup %>%
na.omit %>%
select(b, everything())
# A tibble: 8 x 3
# b a a2
# <dbl> <chr> <chr>
#1 1 A B
#2 1 B C
#3 1 C D
#4 1 D E
#5 2 F G
#6 2 G H
#7 2 H I
#8 2 I J
If lead doesn't works, then just remove the first element, append NA at the end in the mutate step
ts %>%
group_by(b) %>%
mutate(a2 = c(a[-1], NA)) %>%
ungroup %>%
na.omit %>%
select(b, everything())

How to replace NA with set of values

I have the following data frame:
library(dplyr)
library(tibble)
df <- tibble(
source = c("a", "b", "c", "d", "e"),
score = c(10, 5, NA, 3, NA ) )
df
It looks like this:
# A tibble: 5 x 2
source score
<chr> <dbl>
1 a 10 . # current max value
2 b 5
3 c NA
4 d 3
5 e NA
What I want to do is to replace NA in score column with values ranging for existing max + n onwards. Where n range from 1 to total number of rows of the df
Resulting in this (hand-coded) :
source score
a 10
b 5
c 11 # obtained from 10 + 1
d 3
e 12 # obtained from 10 + 2
How can I achieve that?
Another option :
transform(df, score = pmin(max(score, na.rm = TRUE) +
cumsum(is.na(score)), score, na.rm = TRUE))
# source score
#1 a 10
#2 b 5
#3 c 11
#4 d 3
#5 e 12
If you want to do this in dplyr
library(dplyr)
df %>% mutate(score = pmin(max(score, na.rm = TRUE) +
cumsum(is.na(score)), score, na.rm = TRUE))
A base R solution
df$score[is.na(df$score)] <- seq(which(is.na(df$score))) + max(df$score,na.rm = TRUE)
such that
> df
# A tibble: 5 x 2
source score
<chr> <dbl>
1 a 10
2 b 5
3 c 11
4 d 3
5 e 12
Here is a dplyr approach,
df %>%
mutate(score = replace(score,
is.na(score),
(max(score, na.rm = TRUE) + (cumsum(is.na(score))))[is.na(score)])
)
which gives,
# A tibble: 5 x 2
source score
<chr> <dbl>
1 a 10
2 b 5
3 c 11
4 d 3
5 e 12
With dplyr:
library(dplyr)
df %>%
mutate_at("score", ~ ifelse(is.na(.), max(., na.rm = TRUE) + cumsum(is.na(.)), .))
Result:
# A tibble: 5 x 2
source score
<chr> <dbl>
1 a 10
2 b 5
3 c 11
4 d 3
5 e 12
A dplyr solution.
df %>%
mutate(na_count = cumsum(is.na(score)),
score = ifelse(is.na(score), max(score, na.rm = TRUE) + na_count, score)) %>%
select(-na_count)
## A tibble: 5 x 2
# source score
# <chr> <dbl>
#1 a 10
#2 b 5
#3 c 11
#4 d 3
#5 e 12
Another one, quite similar to ThomasIsCoding's solution:
> df$score[is.na(df$score)]<-max(df$score, na.rm=T)+(1:sum(is.na(df$score)))
> df
# A tibble: 5 x 2
source score
<chr> <dbl>
1 a 10
2 b 5
3 c 11
4 d 3
5 e 12
Not quite elegant as compared to the base R solutions, but still possible:
library(data.table)
setDT(df)
max.score = df[, max(score, na.rm = TRUE)]
df[is.na(score), score :=(1:.N) + max.score]
Or in one line but a bit slower:
df[is.na(score), score := (1:.N) + df[, max(score, na.rm = TRUE)]]
df
source score
1: a 10
2: b 5
3: c 11
4: d 3
5: e 12

Resources