Cutting Stock Optimization:Finding all Possible combinations in R - r

I am looking at the cutting stock problem as described here. Now the starting point of the problem is where they say for the given possible cuts namely 14,31,36,45 a plank of length 100 can be cut into 37 possible patterns. One pattern can be 1,0,1,1, while another can be 1,1,0,1 or 0,0,0,2 etc. Is there an existing algorithm which can be used in R that will list down all possible combinations for a given over all size and individual cuts in this case 37

Here's a brute force approach. Create a vector that has the "max" for each cut. Then create a grid of possibilities. Then do matrix multiplication on the grid against the cuts to get the total "length" of the combination -- anything less than or equal to (lteq) 100 is "legit". Noting there are 38 combinations because one case is 0,0,0,0 which you probably want to throw out.
cuts <- c(14, 31, 36, 45)
# Get the max number of each length of cut
max_of_each <- floor(100 / cuts)
possibilities <- lapply(max_of_each, function(i) seq(0, i))
grid_possibilities <- expand.grid(possibilities)
idx_lteq_100 <- as.matrix(grid_possibilities) %*% cuts <= 100
grid_possibilities[idx_lteq_100, ]
nrow(grid_possibilities[idx_lteq_100, ])
# [1] 38

Related

Finding the Proportion of a specific difference between the average of two vectors

I have a question for an assignment I'm doing.
Q:
"Set the seed at 1, then using a for-loop take a random sample of 5 mice 1,000 times. Save these averages.
What proportion of these 1,000 averages are more than 1 gram away from the average of x ?"
I understand that basically, I need to write a code that says: What percentage of "Nulls" is +or- 1 gram from the average of "x." I'm not really certain how to write that given that this course hasn't given us the information on how to do that yet is asking us to do so. Any help on how to do so?
url <- "https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata/femaleControlsPopulation.csv"
filename <- basename(url)
download(url, destfile=filename)
x <- unlist( read.csv(filename) )
set.seed(1)
n <- 1000
nulls<-vector("numeric", n)
for(i in 1:n){
control <- sample(x, 5)
nulls[i] <-mean(control)
##I know my last line for this should be something like this
## mean(nulls "+ or - 1")> or < mean(x)
## not certain if they're asking for abs() to be involved.
## is the question asking only for those that are 1 gram MORE than the avg of x?
}
Thanks for any help.
Z
I do think that the absolute distance is what they're after here.
Vectors in R are nice in that you can just perform arithmetic operations between a vector and a scalar and it will apply it element-wise, so computing the absolute value of nulls - mean(x) is easy. The abs function also takes vectors as arguments.
Logical operators (such as < and >) can also be used in the same way, making it equally simple to compare the result with 1. This will yield a vector of booleans (TRUE/FALSE) where TRUE means the value at that index was indeed greater than 1, but booleans are really just numbers (1 or 0), so you can just sum that vector to find the number of TRUE elements.
I don't know what programming level you are on, but I hope this helps without giving the solution away completely (since you said it's for an assignment).

Iterating a vector over a list in R

I am dealing with some computational feature extracting problem from RNA data, and I found myself unable to deal with this question:
I have n sequences (say two for example) from which I obtained an iterated statistic i times (kind of doing a Monte Carlo iteration for analizing distribution of obtained statistics compared with original).
Example:
Say we iterate 10 times
n <- 10
I got a vector of 20 values with all the iterations, but this vector corresponds to two different sequences, so I must divide this vector in two equal parts (the iterations are ordered 1:10 - 1:10 for each sequence).
MFEit <- c(10, 12, 34, 32, 12 .....) ## vector of length 20
MFEit.split <- split(MFEit, ceiling(MFEit.along/n5))
This generates a list of two items each with 10 values, named $1 and $2
On the other hand I have a vector of two values which are the original statistics, each corresponding to each original sequence
MFE <- c(25, 15)
What I want to do is to know how many values of first item in the list MFEit.split, are equal or less than the first value of MFE, and, iteratively, how many values of second item in the list MFEit.split, are equal or less than the second value of MFE, and so on, provided that I would have more than two values or items.
I know how to do it one by one, say:
R <- length(subset(MFEit.split$`1`, MFEit.split$`1`<=MFE[1]))
R <- length(subset(MFEit.split$`2`, MFEit.split$`1`<=MFE[2]))
But... how to include this into a loop so that I can get iteratively each comparison, no matter how many MFE values or items in the list I have?
The desired output would be a vector called R, with n values corresponding to each comparison.
Any help?...

Expected value of the difference between a sum of variables and a threshold

I had a custom deck consisting of eight cards of the sequence 2^n, n=0,..,6. I draw cards (without replacement) until the sum is equal or greater than the threshold. How can I implement in R a function that calculates the mean of the difference between the sum and the threshold??
I tried to do it using this How to store values in a vector with nested functions
but it takes ages... I think there is a way to do it with probabilities/simulations but I can figure out.
The threshold could be greater than the value of one single card, ie, threshold=500 or less than the value of a single card, ie, threshold=50
What I have done so far is to find all the subsets that meet the condition of the sum greater or equal to the threshold. Then I will only substract the threshold and calculate the mean.
I am using the following code in R. For a small set I get the answer quite fast. However, I have been running the function for several ours with the set containing the 56 numbers and is still working.
set<-c(rep(1,8),rep(2,8), rep(4,8),rep(8,8),rep(16,8),rep(32,8),rep(64,8))
recursive.subset <-function(x, index, current, threshold, result){
for (i in index:length(x)){
if (current + x[i] >= threshold){
store <<- append(store, sum(c(result,x[i])))
} else {
recursive.subset(x, i + 1, current+x[i], threshold, c(result,x[i]))
}
}
}
store <- vector()
inivector <- vector(mode="numeric", length=0) #initializing empty vector
recursive.subset (set, 1, 0, threshold, inivector)
I don't know if it is possible to get an exact solution, simply because there are so many possible combinations. It is probably better to do simulations, i.e. write a script for 1 full draw and then rerun that script many times. Since the solutions are very similar, the simulation should give a pretty good approximation.
Ok, here goes:
set <- rep(2^(0:6), each = 8)
thr <- 500
fun <- function(set,thr){
x <- cumsum(sample(set))
value <- x[min(which(x >= thr))]
value
}
system.time(a <- replicate(100000, fun(set,thr)))
# user system elapsed
# 1.10 0.00 1.09
mean(a - thr)
# [1] 21.22992
Explanation: Rather than drawing a card one at a time, I draw all cards simultaneously (sample) and then calculate the cumulative sum (cumsum). I then find the point where the cards at up to the threshold or larger, and find the sum of those cards back in x. We run this function many times with replicate, to obtain a vector of the values. We use mean(a-thr) to calculate the mean difference.
Edit: Made a really stupid typo in the code, fixed it now.
Edit2: Shortened the function a little.

In R: sort the maximum dissimilarity between rows in a matrix

I have a matrix, which includes 100 rows and 10 columns, here I want to compare the diversity between rows and sort them. And then, I want to select the 10 maximum dissimilarity rows from it, Which method can I use?
set.seed(123)
mat <- matrix(runif(100 * 10), nrow = 100, ncol = 10)
My initial method is to calculate the similarity (e.g. saying tanimoto coefficient or others: http://en.wikipedia.org/wiki/Jaccard_index ) between two rows, and dissimilairty = 1 - similarity, and then compare the dissimilarty values. At last I will sort all dissimilarity value, and select the 10 maximum dissimilarity values. But it seems that the result is a 100 * 100 matrix, maybe need efficient method to such calculation if there are a large number of rows. However, this is just my thought, maybe not right, so I need help.
[update]
After looking for some literatures. I find the one definition for the maximum dissimilarity method.
Maximum dissimilarity method: It begins by randomly choosing a data record as the first cluster center. The record maximally distant from the first point is selected as the next cluster center. The record maximally distant from both current points is selected after that . The process repeats itself until there is a sufficient number of cluster centers.
Here in my question, the sufficient number should be 10.
Thanks.
First of all, the Jacard Index is not right for you. From the wikipedia page
The Jaccard coefficient measures similarity between finite sample sets...
Your matrix has samples of floats, so you have a different problem (note that the Index in question is defined in terms of intersections; that should be a red flag right there :-).
So, you have to decide what you mean by dissimilarity. One natural interpretation would be to say row A is more dissimilar from the data set than row B if it has a greater Euclidean distance to the center of mass of the data set. You can think of the center of mass of the data set as the vector you get by taking the mean of each of the colums and putting them together (apply(mat, 2, mean)).
With this, you can take the distance of each row to that central vector, and then get an ordering on those distances. From that you can work back to the rows you desire from the original matrix.
All together:
center <- apply(mat, 2, mean)
# not quite the distances, actually, but their squares. That will work fine for us though, since the order
# will still be the same
dists <- apply(mat, 1, function(row) sum((row - center) ** 2))
# this gives us the row indices in order of least to greaest dissimiliarity
dist.order <- order(dists)
# Now we just grab the 10 most dissimilar of those
most.dissimilar.ids <- dist.order[91:100]
# and use them to get the corresponding rows of the matrix
most.dissimilar <- mat[most.dissimilar.ids,]
If I was actually writing this, I probably would have compressed the last three lines as most.dissimilar <- mat[order(dists)[91:100],], but hopefully having it broken up like this makes it a little easier to see what's going on.
Of course, if distance from the center of mass doesn't make sense as the best way of thinking of "dissimilarity" in your context, then you'll have to amend with something that does.

how to select a matrix column based on column name

I have a table with shortest paths obtained with:
g<-barabasi.game(200)
geodesic.distr <- table(shortest.paths(g))
geodesic.distr
# 0 1 2 3 4 5 6 7
# 117 298 3002 2478 3342 3624 800 28
I then build a matrix with 100 rows and same number of columns as length(geodesic.distr):
geo<-matrix(0, nrow=100, ncol=length(unlist(labels(geodesic.distr))))
colnames(geo) <- unlist(labels(geodesic.distr))
Now I run 100 experiments where I create preferential attachment-based networks with
for(i in seq(1:100)){
bar <- barabasi.game(vcount(g))
geodesic.distr <- table(shortest.paths(bar))
distance <- unlist(labels(geodesic.distr))
for(ii in distance){
geo[i,ii]<-WHAT HERE?
}
}
and for each experiment, I'd like to store in the matrix how many paths I have found.
My question is: how to select the right column based on the column name? In my case, some names produced by the simulated network may not be present in the original one, so I need not only to find the right column by its name, but also the closest one (suppose my max value is 7, I may end up with a path of length 9 which is not present in the geo matrix, so I want to add it to the column named 7)
There is actually a problem with your approach. The length of the geodesic.distr table is stochastic, and you are allocating a matrix to store 100 realizations based on a single run. What if one of the 100 runs will give you a longer geodesic.distr vector? I assume you want to make the allocated matrix bigger in this case. Or, even better, you want run the 100 realizations first, and allocate the matrix after you know its size.
Another potential problem is that if you do table(shortest.paths(bar)), then you are (by default) considering undirected distances, will end up with a symmetric matrix and count all distances (expect for self-distances) twice. This may or may not be what you want.
Anyway, here is a simple way, with the matrix allocated after the 100 runs:
dists <- lapply(1:100, function(x) {
bar <- barabasi.game(vcount(g))
table(shortest.paths(bar))
})
maxlen <- max(sapply(dists, length))
geo <- t(sapply(dists, function(d) c(d, rep(0, maxlen-length(d)))))

Resources