How to do rounded tapers in sketchup - sketchup

how to do rounded tapers like this on sketchup 2018? What I did was, drawing the shape on both surfaces and tried deleting the surfaces. But it didn't create a new surface on taper. As you can see it has a hole, that you can see inside of that column, I want to fill it with a surface, so it can't be see through.
http://i68.tinypic.com/kbsu1s.jpg -- the sample pic

The simplest way is brute force. Turn on hidden geometry (View -> Hidden Geometry) and connect the opposing points to create faces.
Alternatively if you have a shape that matches the cutout, you can use intersection to create the fill faces. If you are new to SketchUp, I recommend learning about intersection (a simple google search of 'SketchUp intersection' will give you a great starting point).

You can achieve the desired result by doing the following:
1. Create object you wish to taper and draw the taper shape separately
2. Use the Follow Me tool to turn taper into a solid
3. Make it a component
5. Intersect its faces with model
6. Explode
7. Erase unnecessary geometry
8. Ctrl+Eraser to soften remaining geometry
And you end up with this:
final product

Related

2D space organic projection

I'm currently working on a glsl shader (EDIT : I'm starting to think that a shader isn't necessarily the best solution and as I'm doing this in processing, I can consider a vectorial solution too) supposed to render something like this but filling the entire 2D space (or at least a larger surface):
To do so, I want to map the repeating patterns on the general leaves shapes that you can see on the top of the sketch below.
My problem is this mapping part : is it possible to find a function that project XY coordinates on the screen to another position in such a way that I can map my patterns the way I want? The leaves must have some kind of UV coordinates inside them (to be able to apply the repeating pattern) and the transformation must be a conformal map because otherwise, there would be some distortions in the pattern.
I've tried several lines of thought but I haven't managed to get the final result :
recursion :
the idea is to first cut the plane in stripes, then cut the stripes in leaves shapes that touch the top and the bottom of the stripes (because that's easier) and finally recursively cut the leaves in halves until the result looks more random. as long as the borders of the stripe aren't on the screen, it shouldn't be too noticeable. The biggest difficulty here is to avoid the distortion.
voronoi :
it may be possible to find a distance function guided by a vector field such that the Voronoi diagram looks more like what I'm looking for. However I don't think it will be possible to have the UV mapping I want. If it's the case, a good approximation woult do the trick, the result doesn't need to be exact as long as it isn't too noticable.
distortion :
it could also be possible to find a more direct way to do this projection. While desperately looking for a solution, I came across the fact that a continuous complex function is a conform map but I haven't managed to go any further.
Finaly, there may be another solution I haven't thought about and I would be glad if someone gave me a complete solution or just a new idea I haven't tried yet.

How to Minimize the saved points from drawn points using free-flow drawing tool

Currently I'm using "Douglas Peucker" algorithm.
My problem is that when I'm drawing,the previously drawn lines are also changing which of course not realistic. Is there other alternative algorithm to minimize the saved points but not altering the previous drawn points or other way to alter "Douglas Peucker" to fit my need?
Give your pencil drawing tool 2 optional methods for drawing:
Draw a new point on the path using mousemove (which is your current freeform method). This option will let the user add many points which will allow them to be very detailed in their drawing.
Draw a new point on the path only upon mousedown. This option simply connects the previous point on the path to the newly clicked point. This option will let the user add just a few very straight lines which will allow them to outline figures with long running straight edges.
If you are concerned about the freeform path changing while the user is drawing you can apply the simplifying algorithm just once after they have stopped moving the mouse for 1 second.
If you specify the Douglas-Peucker algorithm use a high bias for accuracy then the simplified path will remain quite true to the unsimplified path.
BTW, if you want to draw splines through your points then check out this nice previous post: how to draw smooth curve through N points using javascript HTML5 canvas?

How does a non-tile based map works?

Ok, here is the thing. Recently i decided i wanted to understand how Random map generation works. I found some papers and some arguments. The most interesting one was "Diamond Square algorithm" and "Midpoint Displacement". I still have to try to apply those to a software, but other than that, i ran into this site: http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
As you can see, the idea is to use polygons. But i have no idea how to apply that a Tile-Based map, not even how to create those polygons using the tools i have (c++ and sdl). I am assuming there is no way to do it ( please correct me if i am wrong.) But if i am not, how does a non-tile map works, and how are these polygons generated?
This answer will not give you directly the answers you're looking for, but hopefully will get you close enough!
The Problem
I think what blocks you is how to represent the data. You're probably used to a 2D grid that simply represent the type of each tile. As you know, this is fine to handle a tile-based map, but doesn't properly allow you to model worlds where tiles are of a different shape.
Graphs
What I suggest to you, is to see the problem a bit differently. A grid is nothing more than a graph (more info) with nodes that have 4 (or 8 if you allow diagonals) implicit neighbor nodes. So first, what I would do if I was you, would be to move from your strict standard 2D grid to a more "loose" graph, where each node has a position, a position, a list of neighbors (in most cases you'll have corners with 2 neighbors, borders with 3 and "middle" tiles with 4) and finally a rendering component which simply draws your tile on screen at the given position. Once this is done, you should be able to have the exact same results on screen that you currently have with your "2D Tile-Based" engine by simply calling the rendering component with each node who's bounding box (didn't touch it in what you should add to your node, but I'll get back to this later) intersects with the camera's frustum (in a 2D world, it would most likely if the position +/- the size intersects the RECT currently being drawn).
Search
The more generic approach will also help you doing stuff like pathfinding with generic algorithms that explore nodes until they find a valid path (see A* or Dijkstra). Even if you decided to stick to a good old 2D Tile Map game, these techniques would still be useful!
Yeah but I want Polygons
I hear you! So, if you want polygons, basically all you need to do, is add to your nodes a list of vertices and the appropriate data that you might need to render your polygons (either vertex color, textures and U/V maps, etc...) and update your rendering component to do the appropriate OpenGL (this for example should help) calls to draw your nodes. Once again, the first step to iteratively upgrade your 2D Tile Engine to a polygon map engine would be to, for each tile in your map, give each of your nodes two triangles, a texture resource (the tile), and U/V mappings (0,0 - 0,1 - 1,0 and 1,1). Once again, when this step is done, you should have a "generic" polygon based tile map engine. The creation of most of this data can be created procedurally by calculating coordinates based on tile position, tile size, etc...
Convex Polygons
If you decide that you ever might need NPCs to navigate on your map or want to allow your player to navigate by clicking the map, I would suggest that you always use convex polygons (the triangle being the simplest for of a convex polygon). This allows your code that assume that two different positions on the same polygon can be navigated to in straight line.
Complex Maps
Based on the link you provided, you want to have rather complex maps. In this case, the author used Voronoi Diagrams to generate the polygons of the map. There are already solutions to do triangulation like that, but you might also want to use other techniques that are easier to work with if you're just switching to 3D like this one for example. Once you have interesting results, you should consider implementing serialization to save/open your map data from the game. If you want to create an editor, be aware that it might be a lot of work but can be worth it if you want people to help you creating maps or to add elements to the maps (like geometry that's not part of the terrain).
I went all over the place with this answer, but hopefully it helps!
Just iterate over all the tiles, and do a hit-test from the centre of the tile to the polys. Turn the type of the tile into the type of the polygon. Did you need more than that?
EDIT: Sorry, I realize that probably isn't helpful. Playing with procedural algorithms can be fun and profitable. Start with a loop that iterates over all tiles and chooses randomly whether or not the tile is occupied. Then, iterate over them again and choose whether it is occupied or its neighbour is.
Also, check out the source code for this: http://dustinfreeman.org/toys/wall7-dustin.html

Creating an rotating cone with dynamic segments using papervision

I'm trying to create a rotating cone using papervision where all the segments can be filled with a color / image separately. So just like you can use a MaterialsList to render all the sides from a Cube separately.
Also I'd like to be able to check if a specific segment is clicked.
(if you're still listening)
Easiest way I can think of is to apply texture to cone. Use some test texture with colored squares to learn how it maps to object; then you can replace patterns to your colored segments.
If you want to get perfectly sharp boundaries between segments, you should construct your cone yourself and assign material to each segment.

Detect Shapes in an array of points

I have an array of points. I want to know if this array of point represents a circle, a square or a triangle.
Where should i begin? (i use C#)
Thanks
Jon
Depending on your problem, a good approach for this problem may be to use the Hough transform and all its derived algorithm
It consists in a transformation of the image space to an other space where the coordinate represents the objects parameters (angle and initial point for a line, coordinates of the center and radius for a circle)
The algorithm transforms each point of your array of points in points in the other space. Then you have to search in the new space if some points are prevailing. From these points, you will get the parameters of your object.
Of course, you need to do it once to recognize the lines (so you will know how many lines are in your bitmap and where they are) and to it to recognize the circles (it is not exactly the same algorithm)
You may have a look to this lecture (for Hough Circle Transform), but you could easily find the algorithm for line
EDIT: you can also have a look to these answers
Shape recognition algorithm(s)
Detecting an object on the image based on geometrical form
imagine it is each of these one-by-one and try to fit each of these shapes on the data.. for a square, you could find the four extreme points, and try charting out a square that goes through all of them..
Once you have got a shape in place.. you could measure the distance between each of the points and the part of the shape that is nearest to it.. then square these distances and add them up.. the shape which has the smallest sum-of-squares is probably your best bet
Use the Hough Transform.
I'm going to take a wild stab and say if you have 3 points the shape represents a triangle, 4 points is some kind of quadrilateral, any more than that is a circle.
Perhaps there's more information to your problem you could provide.

Resources