How to interpret Result of two way anova test in R? - r

m1 <- lm(AmountSpent~Catalogs*Salary,data=d)
summary(m1)
m2<-lm(AmountSpent~Catalogs+Salary,data=d)
summary(m2)
anova(m2,m1,test="Chisq")
The output is as follows
What is the better model according to test ? Is the order in which we insert models in the method important? Please explain the statistical concept behind this test

The Chi-square test looks into the statistical significance in reduction of the residual sum of squares between the nested linear models. From your R ouput you can see that adding a term to the regression resulted statistically in a better model (the one with the lower RSS value, Model 2).
It is usual to start the comparing with a simpler model and then add terms, however, the docs also mention that it is up to the user.
You should take a look at the docs of the the anova.lm function here.
For comparing models that are not nested rather use AIC or BIC criteria.

Related

Get the AIC or BIC citerium from a gamm, gam, and lme models: How in mgcv? And how can I trust the result? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 3 years ago.
Improve this question
I am new to Gamms and gams, so this question may be a bit basic, I'd appreciate your help on this very much:
I am using the following code:
M.gamm <- gamm (bsigsi ~ s(summodpa, sed,k= 1, fx= TRUE, bs="tp") + s(sumlightpa, sed, k=1, fx= TRUE, bs="tp") , random = list(school=~ 1) , method= "ML", na.action= na.omit, data= Pilot_fitbit2)
The code runs, but gives me this feedback:
Warning messages: 1: In smooth.construct.tp.smooth.spec(object,
dk$data, dk$knots) : basis dimension, k, increased to minimum
possible
2: In smooth.construct.tp.smooth.spec(object, dk$data, dk$knots) :
basis dimension, k, increased to minimum possible
Questions:
My major question is however how I can get an AIC or BIC from this?
I've tried BIC(M.gamm$gam) and BIC(M.gamm$lme), since gamm exists of both parts (lme and gam), and for the latter one (with lme) I do get a value, bot for the first one, I don'get a value. Does anyone know why and how I can get one?
The issue is that I would like to compare this value to the BIC value of a gam model, and I am not sure which one (BIC(M.gamm$lme) or BIC(M.gam$gam)) would be the correct one. It is possible for me to derive a BIC and AIC for the gam and lme model.
If I'd be able to get the AIC or BIC for the gamm model - how can I know I can trust the results? What do I need to be careful with so I interpret the result correctly? Currently, I am using ML in all models and also use the same package (mgcv) to estimate lme, gam, and gamm to estabilish comparability.
Any help/ advice or ideas on this would be greatly appreciated!!
Best wishes,
Noemi
Thank you very much for this!
This warnings come as a result of requesting a smoother basis of a single function for each of your two smooths; this doesn't make any sense as both such bases would only contain equivalent of constant functions, both of which are are unidentifiable given you have another constant term (the intercept) in your model. Once mgcv applies identifiable to constraints the two smooths would get dropped entirely from the model.
Hence the warnings; mgcv didn't do what you wanted. Instead it set k to be the smallest values possible. Set k to something larger; you might as well leave it at the default and not specify it in the s() if you want a low rank smooth. Also, unless you really want an unpenalized spline fit, don't use fix = TRUE.
I'm not really familiar with any theory for BIC applied to GAM(M)s that corrects for smoothness selection. The AIC method for gam() models estimated using REML smoothness selection does have some theory beyond it, including a recent paper by Simon Wood and colleagues.
The mgcv FAQ has the following two things to say
How can I compare gamm models? In the identity link normal errors case, then AIC and hypotheis testing based methods are fine. Otherwise it is best to work out a strategy based on the summary.gam Alternatively, simple random effects can be fitted with gam, which makes comparison straightforward. Package gamm4 is an alternative, which allows AIC type model selection for generalized models.
When using gamm or gamm4, the reported AIC is different for the gam object and the lme or lmer object. Why is this? There are several reasons for this. The most important is that the models being used are actually different in the two representations. When treating the GAM as a mixed model, you are implicitly assuming that if you gathered a replicate dataset, the smooths in your model would look completely different to the smooths from the original model, except for having the same degree of smoothness. Technically you would expect the smooths to be drawn afresh from their distribution under the random effects model. When viewing the gam from the usual penalized regression perspective, you would expect smooths to look broadly similar under replication of the data. i.e. you are really using Bayesian model for the smooths, rather than a random effects model (it's just that the frequentist random effects and Bayesian computations happen to coincide for computing the estimates). As a result of the different assumptions about the data generating process, AIC model comparisons can give rather different answers depending on the model adopted. Which you use should depend on which model you really think is appropriate. In addition the computations of the AICs are different. The mixed model AIC uses the marginal likelihood and the corresponding number of model parameters. The gam model uses the penalized likelihood and the effective degrees of freedom.
So, I'd probably stick to AIC, not use BIC. I'd be thinking about which interpretation of the GAM(M) I was interested most in. I'd also likely fit the random effects you have here using gam() if they are this simple. An equivalent model would include + s(school, bs = 're') in the main formula and exclude the random bit whilst using gam()
gam(bsigsi ~ s(summodpa, sed) + s(sumlightpa, sed) +
s(school, bs = 're'), data = Pilot_fitbit2,
method = 'REML')
Do be careful with 2D isotopic smooths; both sed and summodpa and sumlightpa need to be in the same units have the same degrees of wiggliness in each smooth. If these aren't in the same units or have different wigglinesses, use te() instead of s() for the 2D terms.
Also be careful with variables that appear in two or more smooths like this; mgcv will do it's best to make the models identifiable, but you can easily get into computational problems even so. A better modelling approach would to be estimate the marginal effects of sed and the other terms plus their 2nd order interactions by decomposing the effects in the two 2d smooths as follows:
gam(bsigsi ~ s(sed) + s(summodpa) + s(sumlightpa) +
ti(summodpa, sed) + ti(sumlightpa, sed) +
s(school, bs = 're'), data = Pilot_fitbit2,
method = 'REML')
where the ti() smooths are tensor product interaction bases, when're the main effects of the two marginal variables have been removed from the basis. Hence you can treat them as a pure smooth interaction term. In this way, the main effect of sed is contained in a single smooth term.

R - Testing for homo/heteroscedasticity and collinearity in a multivariate regression model

I'm trying to optimize a multivariate linear regression model lmMod=lm(depend_var~var1+var2+var3+var4....,data=df) and I'm presently working on the premises of the model: the constant variance of residuals and the absence of auto-correlation. For this I'm using:
Breusch-Pagan test for homo/heteroscedasticity: lmtest::bptest(lmMod) 
Durbin Watson test for auto-correlation: durbinWatsonTest(lmMod)
I found examples which are testing either one independent variable at a time:
example for Breush-Pagan test – one independent variable:
https://datascienceplus.com/how-to-detect-heteroscedasticity-and-rectify-it/
example for Durbin Watson test - one independent variable:
http://math.furman.edu/~dcs/courses/math47/R/library/lmtest/html/dwtest.html
or the whole model with several independent variables at a time:
example for Durbin Watson test – multiple independent variable:
https://www.rdocumentation.org/packages/car/versions/2.1-6/topics/durbinWatsonTest
Here are the questions:
Can durbinWatsonTest() and bptest() be fed with a whole multivariate model
If answer to 1 is yes, how is it then possible to determine which variable is causing heteroscedasticity or auto-correlation in the model in order to fix it as each of those tests give only one p-value for the entire multivariate model?
If answer to 1 is no, the test should be then performed with one dependent variable at a time. But in the case of homoscedasticity, it can only be tested AFTER a particular regression has been modelled. Hence a pattern of homo/heteroscedasticity in an univariate regression model lmMod_1=lm(depend_var~var1, data=df) will be different from the pattern of a multivariate regression model lmMod_2=lm(depend_var~var1+var2+var3+var4....,data=df)
Thank very much in advance for your help!
I would like to try to give a first help
The answer to the first question: Yes, you can use the Breusch-Pagan test and the Durbin Watson test for mutlivariate models. (However, I have always used the dwtest() instead of the durbinWatsonTest()).
Also note that the dwtest() checks only the first-order autocorrelation. Unfortunately, I do not know how to find out which variable is causing heteroscedasticity or auto-correlation. However, if you encounter these problems, then one possible solution is that you use a robust estimation method, e.g. after NeweyWest (using: coeftest (regression model, vcov = NeweyWest)) at autocorrelation or with coeftest(regression model, vcov = vcovHC) at heteroscedasticity, both from the AER package.

can we get probabilities the same way that we get them in logistic regression through random forest?

I have a data structure with binary 0-1 variable (click & Purchase; click & not-purchase) against a vector of the attributes. I used logistic regression to get the probabilities of the purchase. How can I use Random Forest to get the same probabilities? Is it by using Random Forest regression? or is it Random Forest classification with type='prob' in R which gives the probability of categorical variable?
It won't give you the same result since the structure of the two method are different. Logistic regression is given by a definitive linear specification, where RF is a collective vote from multiple independent/random trees. If specification and input feature are properly tuned for both, they can produce comparable results. Here is the major difference between the two:
RF will give more robust fit against noise, outliers, overfitting or multicollinearity etc which are common pitfalls in regression type of solution. Basically if you don't know or don't want to know much about whats going in with the input data, RF is a good start.
logistic regression will be good if you know expertly about the data and how to properly specify the equation. Or somehow want to engineer how the fit/prediction works. The explicit form of GLM specification will allow you to do that.

what is the difference between lmFit and rlm

I want to use robust limma on my microarray data and R's user guide says rlm is the correct function to use according to:
http://rss.acs.unt.edu/Rdoc/library/limma/html/mrlm.html
I currently have:
lmFit(ExpressionMatrix, design, method = "robust", na.omit=T)
I can see that I chose the method to be robust. Does that mean that rlm will be called by this lmFit? and if I want it not to be robust, what method should I use?
The help page says:
The function mrlm is used if method="robust".
And then goes on:
If method="ls", then gls.series is used if a correlation structure has been specified, i.e., if ndups>1 or block is non-null and correlation is different from zero. If method="ls" and there is no correlation structure, lm.series is used.
If you follow the links from the help page for lmFit (06.LinearModels)
Fitting Models
The main function for model fitting is lmFit. This is recommended
interface for most users. lmFit produces a fitted model object of
class MArrayLM containing coefficients, standard errors and residual
standard errors for each gene. lmFit calls one of the following three
functions to do the actual computations:
lm.series
Straightforward least squares fitting of a linear model for
each gene.
mrlm
An alternative to lm.series using robust regression as
implemented by the rlm function in the MASS package.
gls.series
Generalized least squares taking into account correlations
between duplicate spots (i.e., replicate spots on the same array) or
related arrays. The function duplicateCorrelation is used to estimate
the inter-duplicate or inter-block correlation before using
gls.series.

Model fitting: glm vs glmmPQL

I am fitting a model regarding absence-presence data and I would like to check whether the random factor is significant or not.
To do this, one should compare a glmm with a glm and check with the LR-test which one is most significant, if I understand correct.
But if I perform an ANOVA(glm,glmm) , I get an analysis of Deviance Table and no output that compares the models.
How do I get the output that I desire, thus comparing both models?
Thanks in advance,
Koen
Somewhere you got the wrong impression about using anova() for this. Below re was fit using glmmPQL() in MASS package. fe was fit using glm() from base:
> anova(re,fe)
#Error in anova.glmmPQL(re, fe) : 'anova' is not available for PQL fits
That message appears to be the sole reason anova.glmmPQL() was created.
See this thread for verification and vague explanation:
https://stat.ethz.ch/pipermail/r-help/2002-July/022987.html
simply anova does not work with glmmPQL you need to use glmer from lme4 package to be able to use anova.

Resources