Avoid floating point zero when summing scaled set of numbers in R - r

I am rescaling a set of numbers and want to avoid getting a floating point zero for the sum of the rescaled numbers:
x <- c(-5, 1, 8)
y <- scale(x)
sum(y)
# [1] 1.249001e-16
Is there a way to around this to force the sum to zero? I do not care about precision beyond a three decimal places.

I think you should not just "switch" to integers at some point. The scaling was computed with floating point numbers and is therefore not 100% precise. Forcing some values to 0 would indicate a precision that is not available and should thus be avoided.
If you need to compare floating point values use isTRUE(all.equal(...)) as suggested by R documentation. https://stat.ethz.ch/R-manual/R-devel/library/base/html/all.equal.html

Related

Clamp values in gnuplot splot?

I'm using splot to visualize the fitness histogram for an optimization problem. In this scenario positive Z values (say in the +2 - +15 range) representing good solutions are of particular interest whereas negative values don't provide much insight, i.e. it doesn't matter if a bad solution as a Z value of -50, -500 or -5000.
Using the autorange option all the interesting bits around +/- 0 are 'scaled away' (i.e. mostly flat to include neg. peaks in the surface) so I'm now using an explicit zrange of [-bestValue:bestValue] to focus the plot on the interesting Z values.
Now the development of best solutions close to 0 can be traced much better, however the surface is rendered with 'holes' for neg. Z values exceeding the range:
This is very confusing to look at/interpret.
(FWIW the hidden3d option is enabled)
Can we (gnuplot) 'fill' the holes in some way, e.g. by clamping neg. values in the surface plot instead of just dropping the points from the surface?

Rotation matrix, normalization, determinant -1

I'm currently implementing an algorithm for 3D pointcloud filtering following a scientific paper.
I run in some problems when computing the rotation matrix for specific values. The goal is to rotate points into the coordinatesystem which is defined by the direction of the normal vector ( Z Axis). Since the following query is rotationally symmetric in X,Y axis, the orientation of these axis does not matter.
R is defined as follows: Rotationmatrix
[1 1 -(nx+ny)/nz]
R = [ (row1 x row3)' ]
[nx ny nz ]
n is normalized. The problem occures when n_z becomes really small or zero. Therefore i considered to normalize row 1 before computing the crossproduct for row 2.
Nevertheless the determinant becomes -1. Will the rotationmatrix sill lead to correct results? R is orthogonal but det|R| not +1
thanks for any suggestions
You always get that
det(a, a×b, b) = - det( a, b, a×b)
= - dot(a×b, a×b)
is always negative. Thus you need to change the second row by negating it or by re-arranging the overall order of the rows.
Are you interested in rotating points around arbitrary axis? If yes, maybe quaternions is good solution.
You can check this if you want to transform a quaternion to matrix before you actually use it.

How to compute something like the angle between two non-unit vectors

I need to sort a set of vectors in circular order. The simplest approach would be to use the angle between the vectors and a fixed axis. To get the angle, one would have to normalize the vectors which includes performing an expensive square root calculation.
As I want to avoid the costs and I don't need the particular angle - just some value that gives me the same order - I was wondering if there is a way to calculate a value for each vector that does not require the vector to be normalized and yields a similar value like the angle (i.e. if angle(x) > angle(y) then f(x) > f(y)).
The ratio of the y component to the x component should be enough to order the vectors without normalizing them. if the y:x ratio is larger, then the angle will be steeper. That'll work at least for the 1st quadrant (0 to 90 degrees), but the general idea should be enough to get you started.

Finding the coordinates of points from distance matrix

I have a set of points (with unknow coordinates) and the distance matrix. I need to find the coordinates of these points in order to plot them and show the solution of my algorithm.
I can set one of these points in the coordinate (0,0) to simpify, and find the others. Can anyone tell me if it's possible to find the coordinates of the other points, and if yes, how?
Thanks in advance!
EDIT
Forgot to say that I need the coordinates on x-y only
The answers based on angles are cumbersome to implement and can't be easily generalized to data in higher dimensions. A better approach is that mentioned in my and WimC's answers here: given the distance matrix D(i, j), define
M(i, j) = 0.5*(D(1, j)^2 + D(i, 1)^2 - D(i, j)^2)
which should be a positive semi-definite matrix with rank equal to the minimal Euclidean dimension k in which the points can be embedded. The coordinates of the points can then be obtained from the k eigenvectors v(i) of M corresponding to non-zero eigenvalues q(i): place the vectors sqrt(q(i))*v(i) as columns in an n x k matrix X; then each row of X is a point. In other words, sqrt(q(i))*v(i) gives the ith component of all of the points.
The eigenvalues and eigenvectors of a matrix can be obtained easily in most programming languages (e.g., using GSL in C/C++, using the built-in function eig in Matlab, using Numpy in Python, etc.)
Note that this particular method always places the first point at the origin, but any rotation, reflection, or translation of the points will also satisfy the original distance matrix.
Step 1, arbitrarily assign one point P1 as (0,0).
Step 2, arbitrarily assign one point P2 along the positive x axis. (0, Dp1p2)
Step 3, find a point P3 such that
Dp1p2 ~= Dp1p3+Dp2p3
Dp1p3 ~= Dp1p2+Dp2p3
Dp2p3 ~= Dp1p3+Dp1p2
and set that point in the "positive" y domain (if it meets any of these criteria, the point should be placed on the P1P2 axis).
Use the cosine law to determine the distance:
cos (A) = (Dp1p2^2 + Dp1p3^2 - Dp2p3^2)/(2*Dp1p2* Dp1p3)
P3 = (Dp1p3 * cos (A), Dp1p3 * sin(A))
You have now successfully built an orthonormal space and placed three points in that space.
Step 4: To determine all the other points, repeat step 3, to give you a tentative y coordinate.
(Xn, Yn).
Compare the distance {(Xn, Yn), (X3, Y3)} to Dp3pn in your matrix. If it is identical, you have successfully identified the coordinate for point n. Otherwise, the point n is at (Xn, -Yn).
Note there is an alternative to step 4, but it is too much math for a Saturday afternoon
If for points p, q, and r you have pq, qr, and rp in your matrix, you have a triangle.
Wherever you have a triangle in your matrix you can compute one of two solutions for that triangle (independent of a euclidean transform of the triangle on the plane). That is, for each triangle you compute, it's mirror image is also a triangle that satisfies the distance constraints on p, q, and r. The fact that there are two solutions even for a triangle leads to the chirality problem: You have to choose the chirality (orientation) of each triangle, and not all choices may lead to a feasible solution to the problem.
Nevertheless, I have some suggestions. If the number entries is small, consider using simulated annealing. You could incorporate chirality into the annealing step. This will be slow for large systems, and it may not converge to a perfect solution, but for some problems it's the best you and do.
The second suggestion will not give you a perfect solution, but it will distribute the error: the method of least squares. In your case the objective function will be the error between the distances in your matrix, and actual distances between your points.
This is a math problem. To derive coordinate matrix X only given by its distance matrix.
However there is an efficient solution to this -- Multidimensional Scaling, that do some linear algebra. Simply put, it requires a pairwise Euclidean distance matrix D, and the output is the estimated coordinate Y (perhaps rotated), which is a proximation to X. For programming reason, just use SciKit.manifold.MDS in Python.
The "eigenvector" method given by the favourite replies above is very general and automatically outputs a set of coordinates as the OP requested, however I noticed that that algorithm does not even ask for a desired orientation (rotation angle) for the frame of the output points, the algorithm chooses that orientation all by itself!
People who use it might want to know at what angle the frame will be tipped before hand so I found an equation which gives the answer for the case of up to three input points, however I have not had time to generalize it to n-points and hope someone will do that and add it to this discussion. Here are the three angles the output sides will form with the x-axis as a function of the input side lengths:
angle side a = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2-b^2)^2)/(a^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
angle side b = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2+b^2-a^2)^2)/(4*b^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
angle side c = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2+b^2-a^2)^2)/(4*c^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
Those equations also lead directly to a solution to the OP's problem of finding the coordinates for each point because: the side lengths are already given from the OP as the input, and my equations give the slope of each side versus the x-axis of the solution, thus revealing the vector for each side of the polygon answer, and summing those sides through vector addition up to a desired vertex will produce the coordinate of that vertex. So if anyone can extend my angle equations to handling beyond three input lengths (but I note: that might be impossible?), it might be a very fast way to the general solution of the OP's question, since slow parts of the algorithms that people gave above like "least square fitting" or "matrix equation solving" might be avoidable.

Calculating 'up vector' from transformation matrix in 3D

I just came to strange problem with my project in 3D. Everyone knows algorythm of calculating LookAt vector, but it is not so easly to calculate "up" vector from transformation matrix (or at least maybe I simple missed something).
The problem is following:
"Up" vector is (0, 1, 0) for identity rotation matrix and rotate with matrix, but do not scale nor translate. If you have simple rotation matrix procedure is easy (multiply vector and matrix). BUT if matrix contains also translation and rotation (e.g. it was produced by multiplying several other matrices), this won't work, as vector would be translated and scaled.
My question is how to get this "up" vector from single transformation matrix, presuming vector (0, 1, 0) correspond to identity rotation matrix.
Translation actually does affect it. Let's say in the example the transformation matrix didn't do any scaling or rotation, but did translate it 2 units in the Z direction. Then when you transform (0,1,0) you get (0,1,2), and then normalizing it gives (0,1/sqrt(5), 2/sqrt(5)).
What you want to do is take the difference between the transformation of (0,1,0) and the transformation of (0,0,0), and then normalize the resulting vector. In the above example you would take (0,1,2) minus (0,0,2) (0,0,2 being the transformation of the zero vector) to get (0,1,0) as desired.
Apply your matrix to both endpoints of the up vector -- (0, 0, 0) and (0, 1, 0). Calculate the vector between those two points, and then scale it to get a unit vector. That should take care of the translation concern.
Simply multiply the up vector (0,1,0) with the transformation, and normalize. You'll get the new calculated up vector that way.
I'm no expert at matrix calculations, but it strikes me as a simple matter of calculating the up vector for the multiplied matrix and normalizing the resulting vector to a unit vector. Translation shouldn't affect it at all, and scaling is easily defeated by normalizing.
I am aware this is an OLD thread, but felt it was necessary to point this out to anyone else stumbling upon this question.
In linear Algebra, we are taught to look at a Matrix as a collection of Basis Vectors, Each representing a direction in space available to describe a relative position from the origin.
The basis vectors of any matrix (the vectors that describe the cardinal directions) can be directly read from the associated matrix column.
Simply put your first column is your "x++" vector, your second is the "y++" vector, the third is the "z++" vector. If you are working with 4x4 Matrices in 3d, the last elements of these columns and the last column are relating to translation of the origin. In this case, the last element of each of these vectors and the last column of any such matrix can be ignored for the sake of simplicity.
Example: Let us consider a matrix representing a 90 degree rotation about the y axis.
[0, 0, -1]
[0, 1, 0]
[1, 0, 0]
The up vector can be plainly extracted from the third column as (-1, 0, 0), because the matrix is applying a 90 degree rotation about the y axis the up vector now points down the x axis (as the vector says), You can acquire the basis vectors to acquire the positive cardinal directions, and negating them will give you their opposite counterparts.
Once you have a matrix from which to extract the directions, no non-trivial calculations are necessary.

Resources