(Temporarily) disabling backtracking in Eisbach method - isabelle

I have a method that generates a large number of possible states, and when chaining it using , with a (conditional) fail or tactic no_tac, the resulting combined method takes a very long time to terminate and causes the Isabelle interface to lag. However, when the same methods are applied separately using two applys, termination is very quick. Is there a way to force the Eisbach method to not backtrack on failure, and instead just fail right away? (In essence, functioning as apply <method> apply cond_fail rather than apply (<method>, cond_fail)?)

I don't think there's a way to do this directly in vanilla Eisbach, but it is relatively easy to define new combinators (i.e. higher-order methods).
We have a few of these in https://github.com/seL4/l4v/blob/796887/lib/Eisbach_Methods.thy. For your case specifically, the determ method looks like what you want. It lifts the ML DETERM combinator into Eisbach:
method_setup determ =
\<open>Method.text_closure >> (fn m => fn ctxt => fn facts =>
let
fun tac st' = method_evaluate m ctxt facts st'
in SIMPLE_METHOD (DETERM tac) facts end)
\<close>
(https://github.com/seL4/l4v/blob/796887/lib/Eisbach_Methods.thy#L59)
Those combinators have since been added to the Isabelle distribution and should appear in the upcoming Isabelle2018 release.
DETERM cuts off all backtracking, and passes on only the first alternative. With that
apply (determ <f>, g)
should be equivalent to
apply f
apply g

Related

What is so special about Monads?

A monad is a mathematical structure which is heavily used in (pure) functional programming, basically Haskell. However, there are many other mathematical structures available, like for example applicative functors, strong monads, or monoids. Some have more specific, some are more generic. Yet, monads are much more popular. Why is that?
One explanation I came up with, is that they are a sweet spot between genericity and specificity. This means monads capture enough assumptions about the data to apply the algorithms we typically use and the data we usually have fulfills the monadic laws.
Another explanation could be that Haskell provides syntax for monads (do-notation), but not for other structures, which means Haskell programmers (and thus functional programming researchers) are intuitively drawn towards monads, where a more generic or specific (efficient) function would work as well.
I suspect that the disproportionately large attention given to this one particular type class (Monad) over the many others is mainly a historical fluke. People often associate IO with Monad, although the two are independently useful ideas (as are list reversal and bananas). Because IO is magical (having an implementation but no denotation) and Monad is often associated with IO, it's easy to fall into magical thinking about Monad.
(Aside: it's questionable whether IO even is a monad. Do the monad laws hold? What do the laws even mean for IO, i.e., what does equality mean? Note the problematic association with the state monad.)
If a type m :: * -> * has a Monad instance, you get Turing-complete composition of functions with type a -> m b. This is a fantastically useful property. You get the ability to abstract various Turing-complete control flows away from specific meanings. It's a minimal composition pattern that supports abstracting any control flow for working with types that support it.
Compare this to Applicative, for instance. There, you get only composition patterns with computational power equivalent to a push-down automaton. Of course, it's true that more types support composition with more limited power. And it's true that when you limit the power available, you can do additional optimizations. These two reasons are why the Applicative class exists and is useful. But things that can be instances of Monad usually are, so that users of the type can perform the most general operations possible with the type.
Edit:
By popular demand, here are some functions using the Monad class:
ifM :: Monad m => m Bool -> m a -> m a -> m a
ifM c x y = c >>= \z -> if z then x else y
whileM :: Monad m => (a -> m Bool) -> (a -> m a) -> a -> m a
whileM p step x = ifM (p x) (step x >>= whileM p step) (return x)
(*&&) :: Monad m => m Bool -> m Bool -> m Bool
x *&& y = ifM x y (return False)
(*||) :: Monad m => m Bool -> m Bool -> m Bool
x *|| y = ifM x (return True) y
notM :: Monad m => m Bool -> m Bool
notM x = x >>= return . not
Combining those with do syntax (or the raw >>= operator) gives you name binding, indefinite looping, and complete boolean logic. That's a well-known set of primitives sufficient to give Turing completeness. Note how all the functions have been lifted to work on monadic values, rather than simple values. All monadic effects are bound only when necessary - only the effects from the chosen branch of ifM are bound into its final value. Both *&& and *|| ignore their second argument when possible. And so on..
Now, those type signatures may not involve functions for every monadic operand, but that's just a cognitive simplification. There would be no semantic difference, ignoring bottoms, if all the non-function arguments and results were changed to () -> m a. It's just friendlier to users to optimize that cognitive overhead out.
Now, let's look at what happens to those functions with the Applicative interface.
ifA :: Applicative f => f Bool -> f a -> f a -> f a
ifA c x y = (\c' x' y' -> if c' then x' else y') <$> c <*> x <*> y
Well, uh. It got the same type signature. But there's a really big problem here already. The effects of both x and y are bound into the composed structure, regardless of which one's value is selected.
whileA :: Applicative f => (a -> f Bool) -> (a -> f a) -> a -> f a
whileA p step x = ifA (p x) (whileA p step <$> step x) (pure x)
Well, ok, that seems like it'd be ok, except for the fact that it's an infinite loop because ifA will always execute both branches... Except it's not even that close. pure x has the type f a. whileA p step <$> step x has the type f (f a). This isn't even an infinite loop. It's a compile error. Let's try again..
whileA :: Applicative f => (a -> f Bool) -> (a -> f a) -> a -> f a
whileA p step x = ifA (p x) (whileA p step <*> step x) (pure x)
Well shoot. Don't even get that far. whileA p step has the type a -> f a. If you try to use it as the first argument to <*>, it grabs the Applicative instance for the top type constructor, which is (->), not f. Yeah, this isn't gonna work either.
In fact, the only function from my Monad examples that would work with the Applicative interface is notM. That particular function works just fine with only a Functor interface, in fact. The rest? They fail.
Of course it's to be expected that you can write code using the Monad interface that you can't with the Applicative interface. It is strictly more powerful, after all. But what's interesting is what you lose. You lose the ability to compose functions that change what effects they have based on their input. That is, you lose the ability to write certain control-flow patterns that compose functions with types a -> f b.
Turing-complete composition is exactly what makes the Monad interface interesting. If it didn't allow Turing-complete composition, it would be impossible for you, the programmer, to compose together IO actions in any particular control flow that wasn't nicely prepackaged for you. It was the fact that you can use the Monad primitives to express any control flow that made the IO type a feasible way to manage the IO problem in Haskell.
Many more types than just IO have semantically valid Monad interfaces. And it happens that Haskell has the language facilities to abstract over the entire interface. Due to those factors, Monad is a valuable class to provide instances for, when possible. Doing so gets you access to all the existing abstract functionality provided for working with monadic types, regardless of what the concrete type is.
So if Haskell programmers seem to always care about Monad instances for a type, it's because it's the most generically-useful instance that can be provided.
First, I think that it is not quite true that monads are much more popular than anything else; both Functor and Monoid have many instances that are not monads. But they are both very specific; Functor provides mapping, Monoid concatenation. Applicative is the one class that I can think of that is probably underused given its considerable power, due largely to its being a relatively recent addition to the language.
But yes, monads are extremely popular. Part of that is the do notation; a lot of Monoids provide Monad instances that merely append values to a running accumulator (essentially an implicit writer). The blaze-html library is a good example. The reason, I think, is the power of the type signature (>>=) :: Monad m => m a -> (a -> m b) -> m b. While fmap and mappend are useful, what they can do is fairly narrowly constrained. bind, however, can express a wide variety of things. It is, of course, canonized in the IO monad, perhaps the best pure functional approach to IO before streams and FRP (and still useful beside them for simple tasks and defining components). But it also provides implicit state (Reader/Writer/ST), which can avoid some very tedious variable passing. The various state monads, especially, are important because they provide a guarantee that state is single threaded, allowing mutable structures in pure (non-IO) code before fusion. But bind has some more exotic uses, such as flattening nested data structures (the List and Set monads), both of which are quite useful in their place (and I usually see them used desugared, calling liftM or (>>=) explicitly, so it is not a matter of do notation). So while Functor and Monoid (and the somewhat rarer Foldable, Alternative, Traversable, and others) provide a standardized interface to a fairly straightforward function, Monad's bind is considerably more flexibility.
In short, I think that all your reasons have some role; the popularity of monads is due to a combination of historical accident (do notation and the late definition of Applicative) and their combination of power and generality (relative to functors, monoids, and the like) and understandability (relative to arrows).
Well, first let me explain what the role of monads is: Monads are very powerful, but in a certain sense: You can pretty much express anything using a monad. Haskell as a language doesn't have things like action loops, exceptions, mutation, goto, etc. Monads can be expressed within the language (so they are not special) and make all of these reachable.
There is a positive and a negative side to this: It's positive that you can express all those control structures you know from imperative programming and a whole bunch of them you don't. I have just recently developed a monad that lets you reenter a computation somewhere in the middle with a slightly changed context. That way you can run a computation, and if it fails, you just try again with slightly adjusted values. Furthermore monadic actions are first class, and that's how you build things like loops or exception handling. While while is primitive in C in Haskell it's actually just a regular function.
The negative side is that monads give you pretty much no guarantees whatsoever. They are so powerful that you are allowed to do whatever you want, to put it simply. In other words just like you know from imperative languages it can be hard to reason about code by just looking at it.
The more general abstractions are more general in the sense that they allow some concepts to be expressed which you can't express as monads. But that's only part of the story. Even for monads you can use a style known as applicative style, in which you use the applicative interface to compose your program from small isolated parts. The benefit of this is that you can reason about code by just looking at it and you can develop components without having to pay attention to the rest of your system.
What is so special about monads?
The monadic interface's main claim to fame in Haskell is its role in the replacement of the original and unwieldy dialogue-based I/O mechanism.
As for their status in a formal investigative context...it is merely an iteration of a seemingly-cyclic endeavour which is now (2021 Oct) approximately one half-century old:
During the 1960s, several researchers began work on proving things about programs. Efforts were
made to prove that:
A program was correct.
Two programs with different code computed the same answers when given the
same inputs.
One program was faster than another.
A given program would always terminate.
While these are abstract goals, they are all, really, the same as the practical goal of "getting the
program debugged".
Several difficult problems emerged from this work. One was the problem of specification: before
one can prove that a program is correct, one must specify the meaning of "correct", formally and
unambiguously. Formal systems for specifying the meaning of a program were developed, and they
looked suspiciously like programming languages.
The Anatomy of Programming Languages, Alice E. Fischer and Frances S. Grodzinsky.
(emphasis by me.)
...back when "programming languages" - apart from an intrepid few - were most definitely imperative.
Anyone for elevating this mystery to the rank of Millenium problem? Solving it would definitely advance the science of computing and the engineering of software, one way or the other...
Monads are special because of do notation, which lets you write imperative programs in a functional language. Monad is the abstraction that allows you to splice together imperative programs from smaller, reusable components (which are themselves imperative programs). Monad transformers are special because they represent enhancing an imperative language with new features.

Fixed-Point Combinators

I am new to the world of fixed-point combinators and I guess they are used to recurse on anonymous lambdas, but I haven't really got to use them, or even been able to wrap my head around them completely.
I have seen the example in Javascript for a Y-combinator but haven't been able to successfully run it.
The question here is, can some one give an intuitive answer to:
What are Fixed-point combinators, (not just theoretically, but in context of some example, to reveal what exactly is the fixed-point in that context)?
What are the other kinds of fixed-point combinators, apart from the Y-combinator?
Bonus Points: If the example is not just in one language, preferably in Clojure as well.
UPDATE:
I have been able to find a simple example in Clojure, but still find it difficult to understand the Y-Combinator itself:
(defn Y [r]
((fn [f] (f f))
(fn [f]
(r (fn [x] ((f f) x))))))
Though the example is concise, I find it difficult to understand what is happening within the function. Any help provided would be useful.
Suppose you wanted to write the factorial function. Normally, you would write it as something like
function fact(n) = if n=0 then 1 else n * fact(n-1)
But that uses explicit recursion. If you wanted to use the Y-combinator instead, you could first abstract fact as something like
function factMaker(myFact) = lamba n. if n=0 then 1 else n * myFact(n-1)
This takes an argument (myFact) which it calls were the "true" fact would have called itself. I call this style of function "Y-ready", meaning it's ready to be fed to the Y-combinator.
The Y-combinator uses factMaker to build something equivalent to the "true" fact.
newFact = Y(factMaker)
Why bother? Two reasons. The first is theoretical: we don't really need recursion if we can "simulate" it using the Y-combinator.
The second is more pragmatic. Sometimes we want to wrap each function call with some extra code to do logging or profiling or memoization or a host of other things. If we try to do this to the "true" fact, the extra code will only be called for the original call to fact, not all the recursive calls. But if we want to do this for every call, including all the recursive call, we can do something like
loggingFact = LoggingY(factMaker)
where LoggingY is a modified version of the Y combinator that introduces logging. Notice that we did not need to change factMaker at all!
All this is more motivation why the Y-combinator matters than a detailed explanation from how that particular implementation of Y works (because there are many different ways to implement Y).
To answer your second question about fix-point combinators other than Y. There are countably infinitely many standard fix-point combinators, that is, combinators fix that satisfy the equation
fix f = f (fix f)
There are also contably many non-standard fix-point combinators, which satisfy the equation
fix f = f (f (fix f))
etc. Standard fix-point combinators are recursively enumerable, but non-standard are not. Please see the following web page for examples, references and discussion.
http://okmij.org/ftp/Computation/fixed-point-combinators.html#many-fixes

Folds versus recursion in Erlang

According to Learn you some Erlang :
Pretty much any function you can think of that reduces lists to 1 element can be expressed as a fold. [...]
This means fold is universal in the sense that you can implement pretty much any other recursive function on lists with a fold
My first thought when writing a function that takes a lists and reduces it to 1 element is to use recursion.
What are the guidelines that should help me decide whether to use recursion or a fold?
Is this a stylistic consideration or are there other factors as well (performance, readability, etc.)?
I personally prefer recursion over fold in Erlang (contrary to other languages e.g. Haskell). I don't see fold more readable than recursion. For example:
fsum(L) -> lists:foldl(fun(X,S) -> S+X end, 0, L).
or
fsum(L) ->
F = fun(X,S) -> S+X end,
lists:foldl(F, 0, L).
vs
rsum(L) -> rsum(L, 0).
rsum([], S) -> S;
rsum([H|T], S) -> rsum(T, H+S).
Seems more code but it is pretty straightforward and idiomatic Erlang. Using fold requires less code but the difference becomes smaller and smaller with more payload. Imagine we want a filter and map odd values to their square.
lcfoo(L) -> [ X*X || X<-L, X band 1 =:= 1].
fmfoo(L) ->
lists:map(fun(X) -> X*X end,
lists:filter(fun(X) when X band 1 =:= 1 -> true; (_) -> false end, L)).
ffoo(L) -> lists:foldr(
fun(X, A) when X band 1 =:= 1 -> [X|A];
(_, A) -> A end,
[], L).
rfoo([]) -> [];
rfoo([H|T]) when H band 1 =:= 1 -> [H*H | rfoo(T)];
rfoo([_|T]) -> rfoo(T).
Here list comprehension wins but recursive function is in the second place and fold version is ugly and less readable.
And finally, it is not true that fold is faster than recursive version especially when compiled to native (HiPE) code.
Edit:
I add a fold version with fun in variable as requested:
ffoo2(L) ->
F = fun(X, A) when X band 1 =:= 1 -> [X|A];
(_, A) -> A
end,
lists:foldr(F, [], L).
I don't see how it is more readable than rfoo/1 and I found especially an accumulator manipulation more complicated and less obvious than direct recursion. It is even longer code.
folds are usually both more readable (since everybody know what they do) and faster due to optimized implementations in the runtime (especially foldl which always should be tail recursive). It's worth noting that they are only a constant factor faster, not on another order, so it's usually premature optimization if you find yourself considering one over the other for performance reasons.
Use standard recursion when you do fancy things, such as working on more than one element at a time, splitting into multiple processes and similar, and stick to higher-order functions (fold, map, ...) when they already do what you want.
I expect fold is done recursively, so you may want to look at trying to implement some of the various list functions, such as map or filter, with fold, and see how useful it can be.
Otherwise, if you are doing this recursively you may be re-implementing fold, basically.
Learn to use what comes with the language, is my thought.
This discussion on foldl and recursion is interesting:
Easy way to break foldl
If you look at the first paragraph in this introduction (you may want to read all of it), he states better than I did.
http://www.cs.nott.ac.uk/~gmh/fold.pdf
Old thread but my experience is that fold works slower than a recursive function.

How does one implement a "stackless" interpreted language?

I am making my own Lisp-like interpreted language, and I want to do tail call optimization. I want to free my interpreter from the C stack so I can manage my own jumps from function to function and my own stack magic to achieve TCO. (I really don't mean stackless per se, just the fact that calls don't add frames to the C stack. I would like to use a stack of my own that does not grow with tail calls). Like Stackless Python, and unlike Ruby or... standard Python I guess.
But, as my language is a Lisp derivative, all evaluation of s-expressions is currently done recursively (because it's the most obvious way I thought of to do this nonlinear, highly hierarchical process). I have an eval function, which calls a Lambda::apply function every time it encounters a function call. The apply function then calls eval to execute the body of the function, and so on. Mutual stack-hungry non-tail C recursion. The only iterative part I currently use is to eval a body of sequential s-expressions.
(defun f (x y)
(a x y)) ; tail call! goto instead of call.
; (do not grow the stack, keep return addr)
(defun a (x y)
(+ x y))
; ...
(print (f 1 2)) ; how does the return work here? how does it know it's supposed to
; return the value here to be used by print, and how does it know
; how to continue execution here??
So, how do I avoid using C recursion? Or can I use some kind of goto that jumps across c functions? longjmp, perhaps? I really don't know. Please bear with me, I am mostly self- (Internet- ) taught in programming.
One solution is what is sometimes called "trampolined style". The trampoline is a top-level loop that dispatches to small functions that do some small step of computation before returning.
I've sat here for nearly half an hour trying to contrive a good, short example. Unfortunately, I have to do the unhelpful thing and send you to a link:
http://en.wikisource.org/wiki/Scheme:_An_Interpreter_for_Extended_Lambda_Calculus/Section_5
The paper is called "Scheme: An Interpreter for Extended Lambda Calculus", and section 5 implements a working scheme interpreter in an outdated dialect of Lisp. The secret is in how they use the **CLINK** instead of a stack. The other globals are used to pass data around between the implementation functions like the registers of a CPU. I would ignore **QUEUE**, **TICK**, and **PROCESS**, since those deal with threading and fake interrupts. **EVLIS** and **UNEVLIS** are, specifically, used to evaluate function arguments. Unevaluated args are stored in **UNEVLIS**, until they are evaluated and out into **EVLIS**.
Functions to pay attention to, with some small notes:
MLOOP: MLOOP is the main loop of the interpreter, or "trampoline". Ignoring **TICK**, its only job is to call whatever function is in **PC**. Over and over and over.
SAVEUP: SAVEUP conses all the registers onto the **CLINK**, which is basically the same as when C saves the registers to the stack before a function call. The **CLINK** is actually a "continuation" for the interpreter. (A continuation is just the state of a computation. A saved stack frame is technically continuation, too. Hence, some Lisps save the stack to the heap to implement call/cc.)
RESTORE: RESTORE restores the "registers" as they were saved in the **CLINK**. It's similar to restoring a stack frame in a stack-based language. So, it's basically "return", except some function has explicitly stuck the return value into **VALUE**. (**VALUE** is obviously not clobbered by RESTORE.) Also note that RESTORE doesn't always have to return to a calling function. Some functions will actually SAVEUP a whole new computation, which RESTORE will happily "restore".
AEVAL: AEVAL is the EVAL function.
EVLIS: EVLIS exists to evaluate a function's arguments, and apply a function to those args. To avoid recursion, it SAVEUPs EVLIS-1. EVLIS-1 would just be regular old code after the function application if the code was written recursively. However, to avoid recursion, and the stack, it is a separate "continuation".
I hope I've been of some help. I just wish my answer (and link) was shorter.
What you're looking for is called continuation-passing style. This style adds an additional item to each function call (you could think of it as a parameter, if you like), that designates the next bit of code to run (the continuation k can be thought of as a function that takes a single parameter). For example you can rewrite your example in CPS like this:
(defun f (x y k)
(a x y k))
(defun a (x y k)
(+ x y k))
(f 1 2 print)
The implementation of + will compute the sum of x and y, then pass the result to k sort of like (k sum).
Your main interpreter loop then doesn't need to be recursive at all. It will, in a loop, apply each function application one after another, passing the continuation around.
It takes a little bit of work to wrap your head around this. I recommend some reading materials such as the excellent SICP.
Tail recursion can be thought of as reusing for the callee the same stack frame that you are currently using for the caller. So you could just re-set the arguments and goto to the beginning of the function.

Nested functions: Improper use of side-effects?

I'm learning functional programming, and have tried to solve a couple problems in a functional style. One thing I experienced, while dividing up my problem into functions, was it seemed I had two options: use several disparate functions with similar parameter lists, or using nested functions which, as closures, can simply refer to bindings in the parent function.
Though I ended up going with the second approach, because it made function calls smaller and it seemed to "feel" better, from my reading it seems like I may be missing one of the main points of functional programming, in that this seems "side-effecty"? Now granted, these nested functions cannot modify the outer bindings, as the language I was using prevents that, but if you look at each individual inner function, you can't say "given the same parameters, this function will return the same results" because they do use the variables from the parent scope... am I right?
What is the desirable way to proceed?
Thanks!
Functional programming isn't all-or-nothing. If nesting the functions makes more sense, I'd go with that approach. However, If you really want the internal functions to be purely functional, explicitly pass all the needed parameters into them.
Here's a little example in Scheme:
(define (foo a)
(define (bar b)
(+ a b)) ; getting a from outer scope, not purely functional
(bar 3))
(define (foo a)
(define (bar a b)
(+ a b)) ; getting a from function parameters, purely functional
(bar a 3))
(define (bar a b) ; since this is purely functional, we can remove it from its
(+ a b)) ; environment and it still works
(define (foo a)
(bar a 3))
Personally, I'd go with the first approach, but either will work equally well.
Nesting functions is an excellent way to divide up the labor in many functions. It's not really "side-effecty"; if it helps, think of the captured variables as implicit parameters.
One example where nested functions are useful is to replace loops. The parameters to the nested function can act as induction variables which accumulate values. A simple example:
let factorial n =
let rec facHelper p n =
if n = 1 then p else facHelper (p*n) (n-1)
in
facHelper 1 n
In this case, it wouldn't really make sense to declare a function like facHelper globally, since users shouldn't have to worry about the p parameter.
Be aware, however, that it can be difficult to test nested functions individually, since they cannot be referred to outside of their parent.
Consider the following (contrived) Haskell snippet:
putLines :: [String] -> IO ()
putLines lines = putStr string
where string = concat lines
string is a locally bound named constant. But isn't it also a function taking no arguments that closes over lines and is therefore referentially intransparent? (In Haskell, constants and nullary functions are indeed indistinguishable!) Would you consider the above code “side-effecty” or non-functional because of this?

Resources