NextMethod() explicit argument performance - r

With the S3 object system, in a generic method you can delegate to the next method in a class hierarchy using the NextMethod() function. When Wickham describes this system at http://adv-r.had.co.nz/S3.html, he uses NextMethod() without any arguments in his example:
baz <- function(x) UseMethod("baz", x)
baz.C <- function(x) c("C", NextMethod())
I've always used NextMethod() without argument in my own code as well.
I just noticed that [.Date uses an explicit argument:
> `[.Date`
function (x, ..., drop = TRUE)
{
cl <- oldClass(x)
class(x) <- NULL
val <- NextMethod("[")
class(val) <- cl
val
}
The documentation for ?NextMethod says the following:
Normally 'NextMethod' is used with only one argument, 'generic'
In terms of performance, is calling NextMethod("generic") faster than NextMethod()? Is there any other reason to prefer one usage over the other?

Related

What is the difference between object and .Object in OOP in R?

I'm studying S4 classes and methods and I got confused to know when to use .Object and object (using as an argument to functions on classes). I don't understand if is there any difference between them.
For example, Would be correct:
setGeneric("getTimes",function(object){standardGeneric ("getTimes")})
setMethod("getTimes","Trajectories",
function(object){
return(object#times)
}
)
or:
setGeneric("getTimes",function(.Object){standardGeneric ("getTimes")})
setMethod("getTimes","Trajectories",
function(.Object){
return(.Object#times)
}
)
First, you should avoid the curly braces around {standardGeneric("getTimes")}.
The short answer for your question: there is no difference between the 2 code in your example. You were defining getTimes as a brand new generic function of your own. You can specify its arguments name whatever you like (object, x, xobject, .Object). Then, when you write the methods for the generic function, your methods' arguments name must match with the generic function's arguments name. For example:
setGeneric("getTimes", function(object) standardGeneric("getTimes"))
setMethod("getTimes", "Trajectories", function(object) object#times)
If not follow, there will be error (technically, a warning because R automatically/"silently" correct it. However, in my opinion, R should stop and throw an error in this case):
setGeneric("getTimes", function(object) standardGeneric("getTimes"))
setMethod("getTimes", "Trajectories", function(x) x#times)
# mismatch between `x` argument name in method and `object` argument name in generic
In the case you want to define methods for existing generic, you should use function method.skeleton.
Example 1:
setGeneric("getTimes", function(xobject) standardGeneric("getTimes")) # generic function is defined
getTimes # type function name without parentheses to get a summary of the generic
method.skeleton("getTimes", "Trajectories", stdout())
# copy this method skeleton to your script/source file and modify to your need
Example 2, show is a predefined generic with object as argument (see ?show) or you can type show without parentheses to check. Therefore, setMethod("show", "Trajectories", function(.Object) .Object) will be error. You can proceed using this approach, however, I think method.skeleton is a pretty useful alternative:
> method.skeleton("show", "Trajectories", stdout())
setMethod("show",
signature(object = "Trajectories"),
function (object)
{
stop("need a definition for the method here")
}
)
Example 3, initialize is a generic function and its argument .Object may be defined (type initialize without parentheses to check). From my understanding, the reason .Object is chosen as argument name in this case to invoke the feeling of a prototype object (you can read more at ?initialize). Similarly to Example 2, use the method.skeleton helper function:
> method.skeleton("initialize", "Trajectories", stdout())
setMethod("initialize",
signature(.Object = "Trajectories"),
function (.Object, ...)
{
stop("need a definition for the method here")
}
)
Note: there is a special case for replacement/assignment function (<-), that is its last argument must be named value. Read more. For example:
setClass("Trajectories", slots = c(times = "numeric"))
setGeneric("getTimes", function(x) standardGeneric("getTimes"))
setMethod("getTimes","Trajectories", function(x) x#times)
setGeneric("getTimes<-", function(xobject, value) standardGeneric("getTimes<-"))
setMethod("getTimes<-", c("Trajectories", "ANY"), function(xobject, value) {
xobject#times <- value
xobject
})
# test drive
m <- new("Trajectories", times = 32)
getTimes(m)
getTimes(m) <- 42
getTimes(m)
R will not output any error or warning if you use other name (new_value in below) when defining the generic and accompanying methods. However, when you use it, R will error:
setGeneric("getTimes<-", function(xobject, new_value) standardGeneric("getTimes<-"))
setMethod("getTimes<-", c("Trajectories", "ANY"), function(xobject, new_value) {
xobject#times <- new_value
xobject
})
# test drive
m <- new("Trajectories", times = 32)
getTimes(m)
getTimes(m) <- 42 # error because the right side of <- is always considered as `value` argument

curve3d can't find local function "fn"

I'm trying to use the curve3d function in the emdbook-package to create a contour plot of a function defined locally inside another function as shown in the following minimal example:
library(emdbook)
testcurve3d <- function(a) {
fn <- function(x,y) {
x*y*a
}
curve3d(fn(x,y))
}
Unexpectedly, this generates the error
> testcurve3d(2)
Error in fn(x, y) : could not find function "fn"
whereas the same idea works fine with the more basic curve function of the base-package:
testcurve <- function(a) {
fn <- function(x) {
x*a
}
curve(a*x)
}
testcurve(2)
The question is how curve3d can be rewritten such that it behaves as expected.
You can temporarily attach the function environment to the search path to get it to work:
testcurve3d <- function(a) {
fn <- function(x,y) {
x*y*a
}
e <- environment()
attach(e)
curve3d(fn(x,y))
detach(e)
}
Analysis
The problem comes from this line in curve3d:
eval(expr, envir = env, enclos = parent.frame(2))
At this point, we appear to be 10 frames deep, and fn is defined in parent.frame(8). So you can edit the line in curve3d to use that, but I'm not sure how robust this is. Perhaps parent.frame(sys.nframe()-2) might be more robust, but as ?sys.parent warns there can be some strange things going on:
Strictly, sys.parent and parent.frame refer to the context of the
parent interpreted function. So internal functions (which may or may
not set contexts and so may or may not appear on the call stack) may
not be counted, and S3 methods can also do surprising things.
Beware of the effect of lazy evaluation: these two functions look at
the call stack at the time they are evaluated, not at the time they
are called. Passing calls to them as function arguments is unlikely to
be a good idea.
The eval - parse solution bypasses some worries about variable scope. This passes the value of both the variable and function directly as opposed to passing the variable or function names.
library(emdbook)
testcurve3d <- function(a) {
fn <- eval(parse(text = paste0(
"function(x, y) {",
"x*y*", a,
"}"
)))
eval(parse(text = paste0(
"curve3d(", deparse(fn)[3], ")"
)))
}
testcurve3d(2)
I have found other solution that I do not like very much, but maybe it will help you.
You can create the function fn how a call object and eval this in curve3d:
fn <- quote((function(x, y) {x*y*a})(x, y))
eval(call("curve3d", fn))
Inside of the other function, the continuous problem exists, a must be in the global environment, but it is can fix with substitute.
Example:
testcurve3d <- function(a) {
fn <- substitute((function(x, y) {
c <- cos(a*pi*x)
s <- sin(a*pi*y/3)
return(c + s)
})(x, y), list(a = a))
eval(call("curve3d", fn, zlab = "fn"))
}
par(mfrow = c(1, 2))
testcurve3d(2)
testcurve3d(5)

Override base assignment function

I'm attempting to override base (non-S3) methods to provide colnames methods for a custom R object. I want to do this with S3 not S4.
For the colnames accessor, this can be achieved by setting the base function to be the default method, then providing a method for my class:
colnames <- function(x, ...) UseMethod("colnames")
colnames.default <- base::colnames
colnames.myclass <- function(x, ...) {
# some code here
}
However, how would one override the setter method. I would hope something like this should work?
"colnames<-" <- function(x, value) UseMethod("colnames<-")
"colnames<-.default" <- "base::colnames<-"
"colnames<-.myclass" <- function(x, value) {
print("Setting colnames for myclass")
# Some code
}
However, this seems to fail to call the base function correctly for a regular matrix:
> test <- matrix(1:10, 5)
> colnames(test) <- c("a", "b")
Error in UseMethod("colnames<-") :
no applicable method for 'colnames<-' applied to an object of class "c('matrix', 'integer', 'numeric')"
You set colnames<-.default to a character string (i.e. not a function). That's not going to work.
"colnames<-.default" <- "base::colnames<-"
Use backticks to reference objects with non-syntactic names.
`colnames<-.default` <- base::`colnames<-`

S3 Method dispatch for ... or equivalent

How do I define a method for a list of objects of the same class?
Eg.
foo <- letters[1:5]
foo2 <- letters[6:10]
class(foo) <- "abc"
class(foo2) <- "abc"
new_method <- function(...) {UseMethod("new_method", ...)}
new_method.abc <- function(...) {do.call("c", list(...))}
# use results in error
new_method(foo,foo2)
Error in new_method(foo, foo2) : '...' used in an incorrect context
Here I want ... to be an arbitrary length list of objects all of which have the same class and I want to do something with them (combine them, specific to my real class's use case).
It makes sense to me that ... doesn't have a class that can be sent to method dispatch; but a simple re-write also doesn't work since new_method.list doesn't / shouldn't exist
new_method <- function(...) {UseMethod("new_method", list(...))}
new_method(foo,foo2)
Error in UseMethod("new_method", list(...)) :
no applicable method for 'new_method' applied to an object of class "list"

Get the attribute of a packaged function from within itself

Suppose we have this functions in a R package.
prova <- function() {
print(attr(prova, 'myattr'))
print(myattr(prova))
invisible(TRUE)
}
'myattr<-' <- function(x, value) {
attr(x, 'myattr') <- value
x
}
myattr <- function(x) attr(x, 'myattr')
So, I install the package and then I test it. This is the result:
prova()
# NULL
# NULL
myattr(prova) <- 'ciao' # setting 'ciao' for 'myattr' attribute
prova()
# NULL
# NULL # Why NULL here ?
myattr(prova)
# [1] "ciao"
attr(prova, 'myattr')
# [1] "ciao"
The question is: how to get the attribute of the function from within itself?
Inside the function itself I cannot get its attribute, as demonstrated by the example.
I suppose that the solution will be of the serie "computing on the language" (match.call()[[1L]], substitute, environments and friends). Am I wrong?
I think that the important point here is that this function is in a package (so, it has its environment and namespace) and I need its attribute inside itself, in the package, not outside.
you can use get with the envir argument.
prova <- function() {
print(attr(get("prova", envir=envir.prova), 'myattr'))
print(myattr(prova))
invisible(TRUE)
}
eg:
envir.prova <- environment()
prova()
# NULL
# NULL
myattr(prova) <- 'ciao'
prova()
# [1] "ciao"
# [1] "ciao"
Where envir.prova is a variable whose value you set to the environment in which prova is defined.
Alternatively you can use get(.. envir=parent.frame()), but that is less reliable as then you have to track the calls too, and ensure against another object with the same name between the target environment and the calling environment.
Update regarding question in the comments:
regarding using parent.frame() versus using an explicit environment name: parent.frame, as the name suggests, goes "up one level." Often, that is exactly where you want to go, so that works fine. And yet, even when your goal is get an object in an environment further up, R searches up the call stack until it finds the object with the matching name. So very often, parent.frame() is just fine.
HOWEVER if there are multiple calls between where you are invoking parent.frame() and where the object is located AND in one of the intermediary environments there exists another object with the same name, then R will stop at that intermediary environment and return its object, which is not the object you were looking for.
Therefore, parent.frame() has an argument n (which defaults to 1), so that you can tell R to begin it's search at n levels back.
This is the "keeping track" that I refer to, where the developer has to be mindful of the number of calls in between. The straightforward way to go about this is to have an n argument in every function that is calling the function in question, and have that value default to 1. Then for the envir argument, you use: get/assign/eval/etc (.. , envir=parent.frame(n=n) )
Then if you call Func2 from Func1, (both Func1 and Func2 have an n argument), and Func2 is calling prova, you use:
Func1 <- function(x, y, ..., n=1) {
... some stuff ...
Func2( <some, parameters, etc,> n=n+1)
}
Func2 <- function(a, b, c, ..., n=1) {
.... some stuff....
eval(quote(prova()), envir=parent.frame(n=n) )
}
As you can see, it is not complicated but it is * tedious* and sometimes what seems like a bug creeps in, which is simply forgetting to carry the n over.
Therefore, I prefer to use a fixed variable with the environment name.
The solution that I found is:
myattr <- function(x) attr(x, 'myattr')
'myattr<-' <- function(x, value) {
# check that x is a function (e.g. the prova function)
# checks on value (e.g. also value is a function with a given precise signature)
attr(x, 'myattr') <- value
x
}
prova <- function(..., env = parent.frame()) {
# get the current function object (in its environment)
this <- eval(match.call()[[1L]], env)
# print(eval(as.call(c(myattr, this)), env)) # alternative
print(myattr(this))
# print(attr(this, 'myattr')
invisible(TRUE)
}
I want to thank #RicardoSaporta for the help and the clarification about keeping tracks of the calls.
This solution doesn't work when e.g. myattr(prova) <- function() TRUE is nested in func1 while prova is called in func2 (that it's called by func1). Unless you do not properly update its parameter env ...
For completeness, following the suggestion of #RicardoSaporta, I slightly modified the prova function:
prova <- function(..., pos = 1L) {
# get the current function object (in its environment)
this <- eval(match.call()[[1L]], parent.frame(n = pos)
print(myattr(this))
# ...
}
This way, it works also when nested, if the the correct pos parameter is passed in.
With this modification it is easier to go to fish out the environment in which you set the attribute on the function prova.
myfun1 <- function() {
myattr(prova) <- function() print(FALSE)
myfun2(n = 2)
}
myfun2 <- function(n) {
prova(pos = n)
}
myfun1()
# function() print(FALSE)
# <environment: 0x22e8208>

Resources