'row.names' is not a character vector of length - r

I am simply trying to create a dataframe.
I read in data by doing:
>example <- read.csv(choose.files(), header=TRUE, sep=";")
The data contains 2 columns with 8736 rows plus a header.
I then simply want to combine this with the column of a dataframe with the same amount of rows (!) by doing:
>data_frame <- as.data.frame(example$x, example$y, otherdata$z)
It produces the following error
Warning message:
In as.data.frame.numeric(example$x, example$y, otherdata$z) :
'row.names' is not a character vector of length 8736 -- omitting it. Will be an error!
I have never had this problem before. It seems so easy to tackle but I cant help myself at the moment.

Overview
As long as the nrow(example) equals length(otherdata$z), use cbind.data.frame to combine columns into one data frame. An advantage with cbind.data.frame() is that there is no need to call the individual columns within example when binding them with otherdata$z.
# create a new data frame that adds the 'z' field from another source
df_example <- cbind.data.frame(example, otherdata$z)

Related

Dropping Columns of Specific Name in R

I'm working, in RStudio, with data for patients that are either normal, have Crohn's disease, or ulcerative colitis. Now, the data is structured in such a way that patient information is in a separate data frame (called sampleInfo), and the data I want to use for analysis is in a different data frame (called expressionData). For my analysis, I would like to remove the patients that are 'normal' from the dataset and only keep those with Crohn's disease or ulcerative colitis.
So, what I did was first run the following command to make a new data frame from sampleInfo containing all the patients (aka rows) with the normal disease state, using the following command:
bad_patients <- sampleInfo[sampleInfo$characteristics_ch1.3 == "disease state: normal", ]
bad_patients has a column called geoaccession, which contains the patient ID, which also corresponds with the column names for the same patient in expressionData.
I save the names of these IDs using
patient_names <- bad_patients$geo_accession.
Now, I want to remove the columns with these names from expressionData. I looked at a lot of different StackOverflow posts, as well as posts on the R help forum, and found two main ways, both of which I have tried. The first is done with the following command:
newDataFrame <- expressionData[ , !names(expressionData) %in% patient_names]
Though this method does produce a new matrix called newDataFrame, attempting to view this matrix in RStudio gives the following error:
Error in View : 'names' attribute [1] must be the same length as the vector [0]
I also tried a second subset method with the following command:
newDataFrame <- subset(expressionData, -patient_names)
which raises the error: Error in -patient_names : invalid argument to unary operator
I also tried this subset method by explicity typing out the columns I wanted to remove as follows:
newDataFrame <- subset(expressionData, -c('ID090190', ...) (where ... corresponds to the rest of the IDs) and got the same exact error.
Can someone tell me what I'm doing wrong, or how to work around this?
Couple of solutions:
Subsetting based on names
newDataFrame <- expressionData[!(names(expressionData) %in% patient_names)]
One problem with your attempt was that you hadn't wrapped the whole expression evaluated by ! in parentheses. As it was, you were looking for !names(expressionData) in patient_names. ! here would coerce names(expressionData) into a logical and likely return a vector full of FALSEs
I've subset with only one dimension (x[this] rather than x[,this]). You can do this with the columns of data frames because a data frame is a list of its columns. This subsetting method preserves the data.frame class of the returned object, whereas the two-dimensional subset will just return a vector if you select only one column. (Tibbles will return a tibble with both methods, which is one big advantage of tibbles)
Tidyverse solution: use dplyr::select with dplyr::all_of
newDataFrame <- dplyr::select(expressionData, -dplyr::all_of(patientnames))
Edit: Make sure your data really is a data.frame
If you're getting this error Error in UseMethod("select_") : no applicable method for 'select_' applied to an object of class "c('matrix', 'array', 'double', 'numeric')", it's because your data is a matrix, rather than a data frame. You may have inadvertently coerced it in processing.
Use as.data.frame to return to a data frame object, which will be compabtible with the methods above. If you wish to keep your data as a matrix, use colnames:
expressionData[ , !(colnames(expressionData) %in% patient_names)] to subset the columns.
If expressionData is a matrix, you'll need to subset the columns with colnames, rather than names. The names of a data.frame are identical to its colnames (because a df is a list of its columns), but the names of a matrix are the names of every element in the matrix, because a matrix is just an array with dimensionality. You'll want to check colnames(expressionData) to make sure that there are colnames to subset.
You might want to try:
newDataFrame <- expressionData[ , !colnames(expressionData) %in% patient_numbers]
names(expressionData) is NULL, hence your error; you want the column names
in your example, your list of sample names was called patient_numbers, not patient_names

Selecting unique values from single column of a data frame

I have a data frame consisting of five character variables which represent specific bacteria. I then have thousands of observations of each variable that all begin with the letter K. eg
x <- c(K0001,K0001,K0003,K0006)
y <- c(K0001,K0001,K0002,K0003)
z <- c(K0001,K0002,K0007,K0008)
r <- c(K0001,K0001,K0001,K0001)
o <- c(K0003,K0009,K0009,K0009)
I need to identify unique observations in the first column that don't appear in any of the remaining four columns. I have tried the approach suggested here which I think would work if I could create individual vectors using select ...
How to tell what is in one vector and not another?
but when I try to create a vector for analysis using the code ...
x <- select(data$x)
I get the error
Error in UseMethod("select_") :
no applicable method for 'select_' applied to an object of class "character
I have tried to mutate the vectors using as.factor and as.numeric but neither of these approaches work as the first gives an equivalent error as above, and as.numeric returns NAs.
Thanks in advance
The reference that you cited recommended using setdiff. The only thing that you need to do to apply that solution is to convert the four columns into one, so that it can be treated as a set. You can do that with unlist
setdiff(data$x, unlist(data[,2:5]))
"K0006"

Change data frame with factors to a big matrix R

I have a big data frame (22k rows, 400 columns) which is generated using read.csv from a csv file. It appears that every column is a factor and all the row values are the levels of this factor.
I now want to do some analysis (like PCA) but I can't work with it unless it is a matrix, but even when I try it like matrix, all I get is
> prcomp(as.matrix(my_data))
Error in colMeans(x, na.rm = TRUE) : 'x' must be numeric
Is there a way of transforming this data frame with factors to a simple big matrix?
I am new in R so forgive all the (maybe terrible) mistakes.
Thanks
You can do it that way:
df<-data.frame(a=as.factor(c(1,2,3)), b=as.factor(c(2,3,4)))
m<-apply(apply(df, 1, as.character), 1, as.numeric)
apply uses a method on the given data.frame. It is important not to leave out to transform it to character first, because otherwise it will be converted to the internal numeric representation of the factor.
To add column names, do this:
m<-m[-1,] # removes the first 'empty' row
colnames(m)<-c("a", "b") # replace the right hand side with your desired column names, e.g. the first row of your data.frame
One more tip. You probably read the data.frame from a file, when you set the parameter header=TRUE, the first row will not be the header but the column names of the data.frame will be correct.

Removing rows causes "row.names" column to appear when displayed with View()

To remove rows from a data frame, I use the following command:
data <- data[-1, ]
for example to remove the first row. I need to remove the first 6 rows, so I used the following:
data <- data[-c(1,2,3,4,5,6), ]
OR
data <- data[-(1:6), ]
this works as far as removing the row names, but introduced a new column called row.names that I cannot get rid of unless I use the command:
row.names(data) <- NULL
What is the reason for this? Is there a better way of removing a number of rows/columns with one command?
Example:
after the following code:
tquery <- tquery[-(1:6), ]
This is the data:
Although it seems as such, you are not actually adding a column to the data. What you are seeing is just a result of using View(). The function is showing the "row.names" attribute of the data frame as the first column, but you didn't really add the column.
This is expected and documented behavior. From the Details section of help(View)
If there are row names on the data frame that are not 1:nrow, they are displayed in a separate first column called row.names.
So since you subsetted the data, the row names are technically not 1:nrow any more and hence the new column is introduced in the viewer.
Print your data in the console and you'll see the difference.
View(mtcars) ## because the mtcars row names are not 1:nrow
versus
mtcars
Basically, don't trust View() to display an exact representation of the actual data. Instead use attributes(), *names(), dim(), length(), etc. or just peek at the data with head().
See r help via "?row.names" for more info. From the documentation, "All data frames have a row names attribute"
?row.names ## get more information about row.names from r help
row.names is not a new column, but rather an attribute of every single data frame. This is simply meta data and is ignored by most data. When you output this data (i.e. CSV) or use it in a function, this data will not interfere. This is similar to how excel has row numbers on the left margin, which is referential data for the application.
str(your_dataframe) ## see that those columns don't exist
colnames(your_dataframe) ## see column names

Removing levels in data frame when importing csv data

I am importing csv data to R using
data <- read.csv(file="file_name.csv")
This data has 9 columns and 5000 rows and data values are real number. Now I want to use this data as a data frame. But the first columns occurs with some levels. I don't want this levels.
Here is a sample data in .csv format
Could any one please help me to remove the levels from the first column after it is imported to R.
Here is my attempt:
data$col_1 = as.numeric(as.character(data$col_1))
But it showing warning:
Warning message:
NAs introduced by coercion
read.csv is basically a wrapper around read.table, turn off stringsAsFactors will work.
data <- read.csv(file="filename", stringsAsFactors=FALSE)
Then I guess that column will be treated as characters. Then you can do this to convert to numeric.:
data$col <- as.numeric(data$col)
Note: if you have a clean column containing only numbers, read.csv will read in as numeric intelligently, if it read in as factors, it means R detected something that is text or nonnumeric. you might want to pay attention to the warnings see which records got converted to NA due to what reason.
For example, I have a csv file.
When I read in, the id column will be treated as characters simply because there is one row contains ohyeah (if it is empty or NA, R still will treat as column as numeric). I would recommend you to first subset the records that have been contaminated, see if it is a big issue or not.
> subset(data, is.na(as.numeric(id)))
name id
4 dan ohyeah
Warning message:
In eval(expr, envir, enclos) : NAs introduced by coercio

Resources