Related
I'm trying to create my first map using ggrepel, but as you can see I've instead created a dumpster fire of overlapping labels. Most of the locations I'm mapping and labelling are clustered in the northeast, so the labels overlap. How do I get some of the labels to slide over beyond the map boundaries (in the ocean, so to speak)? Here's the code I used to create this monster:
plot_usmap(fill = "light blue", alpha = 0.5) +
ggrepel::geom_label_repel(data = top_18_2_transformed, aes(x=x, y=y, label=INSTNM),
size=3,
label.padding = unit(.75,"mm"),
nudge_y = 20,
nudge_x = 20,
box.padding=0.3,
max.overlaps=30,
point.padding=NA,
family="Avenir Next",
fill="gray99",
alpha=1.0,
label.r=unit(0.2,"lines"),
min.segment.length = 0.1,
label.size=unit(.15,"mm"),
segment.color="black",
segment.size=1,seed=1000) +
geom_point(data = top_18_2_transformed, aes(x = x, y = y, size = UGDS),
color = "red",
alpha = 0.75) +
labs(title = "Select Colleges",
size = "Undergrad Enrollment") +
theme(legend.position = "right")
And here's a picture of my problematic map:
Thanks in advance for any corrections you may be able to offer.
UPDATE 31 March 2022: here's the dput(top_18_2_transformed):
structure(list(lon = c(-74.659365, -122.167359, -78.937624, -75.19391,
-71.093226, -77.073463, -118.125878, -117.709837, -71.222839,
-79.941993, -72.926688, -76.483084, -73.961885, -71.169242, -74.025334,
-75.380236, -70.624084, -71.118313), lat = c(40.348732, 37.429434,
36.001135, 39.950929, 42.359243, 38.908809, 34.137349, 34.106515,
42.385995, 40.44357, 41.311158, 42.4472, 40.808286, 42.336213,
40.744776, 40.606822, 41.739072, 42.374471), UNITID = c(186131,
243744, 198419, 215062, 166683, 131496, 110404, 115409, 164739,
211440, 130794, 190415, 190150, 164924, 186867, 213543, 166692,
166027), OPEID = c(262700, 130500, 292000, 337800, 217800, 144500,
113100, 117100, 212400, 324200, 142600, 271100, 270700, 212800,
263900, 328900, 218100, 215500), OPEID6 = c(2627, 1305, 2920,
3378, 2178, 1445, 1131, 1171, 2124, 3242, 1426, 2711, 2707, 2128,
2639, 3289, 2181, 2155), INSTNM = c("Princeton University", "Stanford University",
"Duke University", "University of Pennsylvania", "Massachusetts Institute of Technology",
"Georgetown University", "California Institute of Technology",
"Harvey Mudd College", "Bentley University", "Carnegie Mellon University",
"Yale University", "Cornell University", "Columbia University in the City of New York",
"Boston College", "Stevens Institute of Technology", "Lehigh University",
"Massachusetts Maritime Academy", "Harvard University"), CITY = c("Princeton",
"Stanford", "Durham", "Philadelphia", "Cambridge", "Washington",
"Pasadena", "Claremont", "Waltham", "Pittsburgh", "New Haven",
"Ithaca", "New York", "Chestnut Hill", "Hoboken", "Bethlehem",
"Buzzards Bay", "Cambridge"), STABBR = c("NJ", "CA", "NC", "PA",
"MA", "DC", "CA", "CA", "MA", "PA", "CT", "NY", "NY", "MA", "NJ",
"PA", "MA", "MA"), ZIP = c("08544-0070", "94305", "27708", "19104-6303",
"02139-4307", "20057-0001", "91125", "91711", "02452-4705", "15213-3890",
"6520", "14853", "10027", "2467", "07030-5991", "18015", "02532-1803",
"2138"), ACCREDAGENCY = c("Middle States Commission on Higher Education",
"Western Association of Schools and Colleges Senior Colleges and University Commission",
"Southern Association of Colleges and Schools Commission on Colleges",
"Middle States Commission on Higher Education", "New England Commission on Higher Education",
"Middle States Commission on Higher Education", "Western Association of Schools and Colleges Senior Colleges and University Commission",
"Western Association of Schools and Colleges Senior Colleges and University Commission",
"New England Commission on Higher Education", "Middle States Commission on Higher Education",
"New England Commission on Higher Education", "Middle States Commission on Higher Education",
"Middle States Commission on Higher Education", "New England Commission on Higher Education",
"Middle States Commission on Higher Education", "Middle States Commission on Higher Education",
"New England Commission on Higher Education", "New England Commission on Higher Education"
), INSTURL = c("www.princeton.edu/", "www.stanford.edu/", "www.duke.edu/",
"www.upenn.edu/", "web.mit.edu/", "www.georgetown.edu/", "www.caltech.edu/",
"https://www.hmc.edu/", "www.bentley.edu/", "www.cmu.edu/", "https://www.yale.edu/",
"www.cornell.edu/", "www.columbia.edu/", "www.bc.edu/", "www.stevens.edu/",
"www.lehigh.edu/", "https://www.maritime.edu/", "www.harvard.edu/"
), SCH_DEG = c(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3), PREDDEG = c(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3), HIGHDEG = c(4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4), REGION = c(2, 8, 5, 2, 1, 2, 8, 8, 1, 2, 1,
2, 2, 1, 2, 2, 1, 1), CCBASIC = c(15, 15, 15, 15, 15, 15, 15,
21, 18, 15, 15, 15, 15, 15, 16, 16, 22, 15), ADM_RATE = c(0.0578,
0.0434, 0.076, 0.0766, 0.067, 0.1436, 0.0642, 0.1367, 0.4672,
0.1544, 0.0608, 0.1085, 0.0545, 0.2722, 0.3996, 0.321, 0.9146,
0.0464), ACTCM25 = c(33, 32, 33, 33, 34, 31, 35, 33, 27, 33,
33, 32, 33, 31, 31, 29, 19, 33), ACTCM75 = c(35, 35, 35, 35,
36, 35, 36, 35, 31, 35, 35, 35, 35, 34, 34, 33, 24, 35), SAT_AVG = c(1517,
1503, 1522, 1511, 1547, 1473, 1557, 1526, 1327, 1513, 1517, 1487,
1511, 1437, 1429, 1380, 1100, 1517), DISTANCEONLY = c(0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), UGDS = c(5308,
6994, 6546, 10774, 4516, 7141, 938, 893, 4157, 6535, 6089, 14976,
8221, 9637, 3641, 5164, 1654, 7547), CURROPER = c(1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), COSTT4_A = c(70900,
71587, 75105, 75303, 70240, 73840, 72084, 76953, 68577, 72265,
73900, 73879, 76907, 73053, 68734, 68383, 27858, 73485), COSTT4_P = c("NULL",
"NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NULL",
"NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "NULL",
"NULL"), TUITIONFEE_IN = c(52800, 53529, 58031, 57770, 53790,
56058, 54600, 58660, 51830, 57119, 55500, 57222, 61788, 57910,
54014, 55240, 10018, 51925), TUITIONFEE_OUT = c(52800, 53529,
58031, 57770, 53790, 56058, 54600, 58660, 51830, 57119, 55500,
57222, 61788, 57910, 54014, 55240, 25752, 51925), AVGFACSAL = c(20724,
20865, 16863, 18277, 19624, 15798, 20595, 14397, 14592, 12296,
19830, 15574, 19431, 15599, 15318, 13763, 8928, 20988), PFTFAC = c("0.835",
"0.9881", "0.9364", "0.7779", "0.9885", "0.4815", "0.9289", "0.8992",
"0.6696", "0.9161", "0.717", "0.9074", "0.4521", "0.6662", "1",
"0.8392", "0.5867", "0.862"), C150_4 = c(0.979, 0.9432, 0.9462,
0.96, 0.954, 0.9491, 0.9357, 0.9167, 0.8952, 0.9049, 0.972, 0.9453,
0.9549, 0.9404, 0.8473, 0.8981, 0.7629, 0.971), RET_FT4 = c(0.9768,
0.9876, 0.9827, 0.9808, 0.9946, 0.9679, 0.9826, 0.9744, 0.9201,
0.9732, 0.9892, 0.9748, 0.9853, 0.9467, 0.9394, 0.9349, 0.8672,
0.9722), RET_PT4 = c("NULL", "NULL", "NULL", "0.9245", "NULL",
"0.6667", "NULL", "NULL", "NULL", "NULL", "NULL", "NULL", "0.95",
"NULL", "NULL", "NULL", "NULL", "NULL"), MD_EARN_WNE_P10 = c("95689",
"97798", "93115", "103246", "111222", "96375", "112166", "108988",
"107974", "99998", "88655", "91176", "89871", "93021", "98159",
"95033", "91668", "84918"), PCT25_EARN_WNE_P10 = c("52729", "61965",
"61558", "65218", "67120", "61372", "67501", "69466", "73117",
"62003", "60311", "59566", "56005", "62006", "72669", "65644",
"68187", "56301"), PCT75_EARN_WNE_P10 = c("167686", "172245",
"151838", "174907", "169465", "147685", "175675", "173725", "146079",
"159483", "146102", "147189", "141158", "147010", "127298", "134075",
"129421", "153746"), MD_EARN_WNE_P6 = c("84713", "88873", "77260",
"80445", "112623", "71107", "129420", "112059", "78514", "87824",
"72046", "78779", "79434", "70858", "82237", "79832", "79354",
"77816"), GRAD_DEBT_MDN_SUPP = c("10450", "12000", "13500", "16763",
"13418", "16500", "PrivacySuppressed", "22089", "25000", "22014",
"13142", "14500", "21500", "18000", "27000", "23000", "26000",
"12665"), GRAD_DEBT_MDN10YR_SUPP = c("104.4654099", "119.9602793",
"134.9553142", "167.5745134", "134.1355856", "164.945384", "PrivacySuppressed",
"220.8168841", "249.9172485", "220.0671323", "131.3764992", "144.9520041",
"214.9288337", "179.9404189", "269.9106283", "229.9238686", "259.9139384",
"126.6080781"), C100_4 = c(0.898, 0.7288, 0.8831, 0.8571, 0.8691,
0.9076, 0.8434, 0.8565, 0.8479, 0.7599, 0.8777, 0.8694, 0.8635,
0.9003, 0.4566, 0.8003, 0.6322, 0.8476), ICLEVEL = c(1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), OPENADMP = c(2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), GRADS = c("2997",
"10253", "10037", "14803", "6990", "12080", "1299", "NULL", "1086",
"7562", "7517", "8984", "23235", "4846", "3624", "1775", "97",
"21592"), ACCREDCODE = c("MSACHE", "WASCSR", "SACSCC", "MSACHE",
"NECHE", "MSACHE", "WASCSR", "WASCSR", "NECHE", "MSACHE", "NECHE",
"MSACHE", "MSACHE", "NECHE", "MSACHE", "MSACHE", "NECHE", "NECHE"
), RET_FT4_POOLED = c(0.9788, 0.9879, 0.9793, 0.9821, 0.9909,
0.9651, 0.9806, 0.9716, 0.9262, 0.97, 0.9892, 0.9741, 0.9825,
0.9479, 0.9423, 0.9378, 0.8633, 0.9817), C100_4_POOLED = c(0.8856,
0.739, 0.8788, 0.8546, 0.8602, 0.9009, 0.8242, 0.8551, 0.8326,
0.7546, 0.8772, 0.8766, 0.8677, 0.8918, 0.4515, 0.7621, 0.5955,
0.8573), BOOKSUPPLY = c("1050", "1245", "1434", "1358", "820",
"1200", "1428", "800", "1300", "1000", "1050", "970", "1294",
"1250", "1200", "1000", "1500", "1000"), ADMCON7 = c(1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1), MDCOMP_ALL = c(0.5845,
0.5845, 0.5845, 0.5845, 0.5845, 0.5845, 0.5845, 0.5845, 0.5845,
0.5845, 0.5845, 0.5845, 0.5845, 0.5845, 0.5845, 0.5845, 0.5845,
0.5845), MDCOST_ALL = c(15387.5, 15387.5, 15387.5, 15387.5, 15387.5,
15387.5, 15387.5, 15387.5, 15387.5, 15387.5, 15387.5, 15387.5,
15387.5, 15387.5, 15387.5, 15387.5, 15387.5, 15387.5), MDEARN_ALL = c(37078,
37078, 37078, 37078, 37078, 37078, 37078, 37078, 37078, 37078,
37078, 37078, 37078, 37078, 37078, 37078, 37078, 37078), PPTUG_EF = c(0,
0, 0.0031, 0.0537, 0.0064, 0.0214, 0, 0.0011, 0.0118, 0.017,
2e-04, 3e-04, 0.0633, 0.0127, 0, 0.0128, 0.023, 0.0745), INEXPFTE = c(60048,
113338, 68756, 56874, 80756, 31693, 105185, 34419, 15842, 28167,
57231, 29893, 96463, 23266, 12504, 24995, 9687, 46272), C150_4_POOLED = c(0.9712,
0.9435, 0.9512, 0.9574, 0.9477, 0.9452, 0.9278, 0.9179, 0.8917,
0.8968, 0.969, 0.9452, 0.9566, 0.9297, 0.8608, 0.886, 0.7484,
0.974), GRAD_DEBT_MDN = c("10450", "12000", "13500", "16763",
"13418", "16500", "17747", "22089", "25000", "22014", "13142",
"14500", "21500", "18000", "27000", "23000", "26000", "12665"
), x = c(2107384.76948701, -1933340.27810509, 1876178.25472949,
2077243.02501463, 2314261.77712267, 1955381.08673633, -1660141.85673732,
-1623368.30493136, 2303424.70345276, 1678023.03854027, 2211596.23078863,
1896995.53745184, 2147624.50302849, 2309370.68277906, 2144734.86774305,
2041573.64168227, 2373567.48443726, 2311783.20749272), y = c(-188894.792987744,
-582296.149881856, -762721.806918975, -245389.810253038, 123275.753360416,
-404107.357328073, -1027748.36033576, -1039201.65863312, 122405.777575308,
-300870.762534603, -39714.5927185968, -7748.73302456512, -121333.925485063,
118650.586978148, -129820.607837031, -179439.260821836, 71069.0976923304,
124173.1993115)), class = "data.frame", row.names = c(NA, -18L
))
With a little data manipulation, you could move the labels out to either side of the country an draw segments to connect the labels to the universities:
top_18_2_transformed <- top_18_2_transformed[order(-top_18_2_transformed$y),]
colleges_east <- top_18_2_transformed[top_18_2_transformed$x > 0,]
colleges_west <- top_18_2_transformed[top_18_2_transformed$x < 0,]
colleges_west$lab_x <- -2300000
colleges_west$lab_y <- seq(-1000000, -1500000, -250000)
colleges_east$lab_x <- 2800000
colleges_east$lab_y <- seq(1000000, -2500000, -250000)
plot_usmap(fill = "light blue", alpha = 0.5) +
geom_text(data = colleges_west,
aes(x = lab_x, y = lab_y, label =stringr::str_wrap(INSTNM, 25)),
hjust = 1, size = 3, lineheight = 0.8) +
geom_text(data = colleges_east,
aes(x = lab_x, y = lab_y, label = stringr::str_wrap(INSTNM, 25)),
hjust = 0, size = 3, lineheight = 0.8) +
geom_point(data = top_18_2_transformed, aes(x = x, y = y, size = UGDS),
color = "red",
alpha = 0.75) +
geom_segment(data = colleges_east,
aes(x, y, xend = lab_x - 100000, yend = lab_y)) +
geom_segment(data = colleges_west,
aes(x, y, xend = lab_x + 100000, yend = lab_y)) +
labs(title = "Select Colleges",
size = "Undergrad Enrollment") +
theme(legend.position = c(0.35, 0),
legend.direction = 'horizontal') +
coord_cartesian(xlim = c( -3500000, 4000000),
ylim = c(-3000000, 1500000))
It looks like ggrepel::geom_*_repel() won't take xlim within aes() nor can it accept a list of vectors to split the constraints of west and east coast labels. However, you can just split them into two separate layers and then it's easier to control. Below I made a function to supply that position to avoid duplicating the code for those layers. Then you have to customize the exact values used in xlim and expand_limits() to get things to look nice depending on your graphics device etc.
Also IMHO this visualization is very hard to easily get much information out of. The points in the northeast are mostly overlapping and there are so many labels that even when spaced very nicely it is a bit tricky to follow them all. Instead it may be better to have a zoomed in plot for that region and avoid showing lots of space with no data in your plot or other ways to increase the legibility of the plot.
library(tidyverse)
library(ggrepel)
library(usmap)
# create function to generate labels and constrain outside map away from the center of the map
college_layers <- function(d) {
xlimz <- if (all(d$x > 0)) {c(2.5e6, NA)} else {c(NA, -2e6)}
geom_text_repel(
data = d,
aes(x, y, label = INSTNM),
xlim = xlimz,
ylim = c(-Inf, Inf),
size = 3,
force = 20,
box.padding = 0.3,
max.overlaps = 30,
point.padding = NA,
alpha = 1.0,
min.segment.length = 0.1,
segment.color = "black",
segment.size = 1,
seed = 1000
)
}
# plot with separate layer for west coast and east coast
plot_usmap(fill = "light blue", alpha = 0.5) +
geom_point(
data = d,
aes(x = x, y = y, size = UGDS),
color = "red",
alpha = 0.75
) +
college_layers(d = filter(d, x > 0)) +
college_layers(d = filter(d, x < 0)) +
expand_limits(x = c(-3.9e6, 4.6e6),
y = c(-3e6, 2e6)) +
labs(title = "Select Colleges",
size = "Undergrad Enrollment") +
theme(legend.position = c(0.35, 0),
legend.direction = 'horizontal',
plot.title = element_text(hjust = 0.5))
Created on 2022-04-01 by the reprex package (v2.0.1)
Data:
d <- structure(list(INSTNM = c("Princeton University", "Stanford University",
"Duke University", "University of Pennsylvania", "Massachusetts Institute of Technology",
"Georgetown University", "California Institute of Technology",
"Harvey Mudd College", "Bentley University", "Carnegie Mellon University",
"Yale University", "Cornell University", "Columbia University in the City of New York",
"Boston College", "Stevens Institute of Technology", "Lehigh University",
"Massachusetts Maritime Academy", "Harvard University"), x = c(2107384.76948701,
-1933340.27810509, 1876178.25472949, 2077243.02501463, 2314261.77712267,
1955381.08673633, -1660141.85673732, -1623368.30493136, 2303424.70345276,
1678023.03854027, 2211596.23078863, 1896995.53745184, 2147624.50302849,
2309370.68277906, 2144734.86774305, 2041573.64168227, 2373567.48443726,
2311783.20749272), y = c(-188894.792987744, -582296.149881856,
-762721.806918975, -245389.810253038, 123275.753360416, -404107.357328073,
-1027748.36033576, -1039201.65863312, 122405.777575308, -300870.762534603,
-39714.5927185968, -7748.73302456512, -121333.925485063, 118650.586978148,
-129820.607837031, -179439.260821836, 71069.0976923304, 124173.1993115
), UGDS = c(5308, 6994, 6546, 10774, 4516, 7141, 938, 893, 4157,
6535, 6089, 14976, 8221, 9637, 3641, 5164, 1654, 7547)), class = "data.frame", row.names = c(NA,
-18L))
How do I correlate 8 subsets separately against two different dependent variables? I keep getting the same correlation coefficient for the two different subsets (example below). Here is the input:
with(subset(mydata2, PARTYID_Strength = 1), cor.test(PARTYID_Strength,
mean.legit))
with(subset(mydata2, PARTYID_Strength = 1), cor.test(PARTYID_Strength,
mean.leegauthor))
with(subset(mydata2, PARTYID_Strength = 2), cor.test(PARTYID_Strength,
mean.legit))
with(subset(mydata2, PARTYID_Strength = 2), cor.test(PARTYID_Strength,
mean.leegauthor))
Output (I get this for both PARTY_Strength = 1 and 2):
Pearson's product-moment correlation
data: PARTYID_Strength and mean.legit t = 3.1005, df = 607, p-value
= 0.002022 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval:
0.0458644 0.2023031 sample estimates:
cor
0.1248597
Pearson's product-moment correlation
data: PARTYID_Strength and mean.leegauthor t = 2.8474, df = 607,
p-value = 0.004557 alternative hypothesis: true correlation is not
equal to 0 95 percent confidence interval:
0.03568431 0.19250344 sample estimates:
cor
0.1148091
Sample data:
> dput(head(mydata2, 10))
``structure(list(PARTYID = c(1, 3, 1, 1, 1, 4, 3, 1, 1, 1), PARTYID_Other =
c("NA",
"NA", "NA", "NA", "NA", "Green", "NA", "NA", "NA", "NA"), PARTYID_Strength =
c(1,
7, 1, 2, 1, 8, 1, 6, 1, 1), PARTYID_Strength_Other = c("NA",
"NA", "NA", "NA", "NA", "Green", "NA", "NA", "NA", "NA"), THERM_Dem = c(80,
65, 85, 30, 76, 15, 55, 62, 90, 95), THERM_Rep = c(1, 45, 10,
5, 14, 14, 0, 4, 10, 3), Gender = c("Female", "Male", "Male",
"Female", "Female", "Male", "Male", "Female", "Female", "Male"
), `MEAN Age` = c(29.5, 49.5, 29.5, 39.5, 29.5, 21, 39.5, 39.5,
29.5, 65), Age = c("25 - 34", "45 - 54", "25 - 34", "35 - 44",
"25 - 34", "18 - 24", "35 - 44", "35 - 44", "25 - 34", "65+"),
Ethnicity = c("White or Caucasian", "Asian or Asian American",
"White or Caucasian", "White or Caucasian", "Hispanic or Latino",
"White or Caucasian", "White or Caucasian", "White or Caucasian",
"White or Caucasian", "White or Caucasian"), Ethnicity_Other = c("NA",
"NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA"), States = c("Texas",
"Texas", "Ohio", "Texas", "Puerto Rico", "New Hampshire",
"South Carolina", "Texas", "Texas", "Texas"), Education = c("Master's
degree",
"Bachelor's degree in college (4-year)", "Bachelor's degree in college (4-
year)",
"Master's degree", "Master's degree", "Less than high school degree",
"Some college but no degree", "Master's degree", "Master's degree",
"Some college but no degree"), `MEAN Income` = c(30000, 140000,
150000, 60000, 80000, 30000, 30000, 120000, 150000, 60000
), Income = c("Less than $30,000", "$130,001 to $150,000",
"More than $150,000", "$50,001 to $70,000", "$70,001 to $90,000",
"Less than $30,000", "Less than $30,000", "$110,001 to $130,000",
"More than $150,000", "$50,001 to $70,000"), mean.partystrength = c(3.875,
2.875, 2.375, 3.5, 2.625, 3.125, 3.375, 3.125, 3.25, 3.625
), mean.traitrep = c(2.5, 2.625, 2.25, 2.625, 2.75, 1.875,
2.75, 2.875, 2.75, 3), mean.traitdem = c(2.25, 2.625, 2.375,
2.75, 2.625, 2.125, 1.875, 3, 2, 2.5), mean.leegauthor = c(1,
2, 2, 4, 1, 4, 1, 1, 1, 1), mean.legit = c(1.71428571428571,
3.28571428571429, 2.42857142857143, 2.42857142857143, 2.14285714285714,
1.28571428571429, 1.42857142857143, 1.14285714285714, 2.14285714285714,
1.28571428571429)), row.names = c(NA, -10L), class = c("tbl_df",
"tbl", "data.frame"))``
Thank you!
To run the tests, create a vector of the columns of interest and then sapply an anonymous function to each of them.
fixed <- "PARTYID_Strength"
cols <- c("mean.leegauthor", "mean.legit")
cor_test_result <- sapply(cols, function(x){
fmla <- paste(fixed, x, sep = "+")
fmla <- as.formula(paste("~", fmla))
cor.test(fmla, mydata2)
}, simplify = FALSE)
cor_test_result$mean.leegauthor
#
# Pearson's product-moment correlation
#
#data: PARTYID_Strength and mean.leegauthor
#t = 1.4804, df = 8, p-value = 0.177
#alternative hypothesis: true correlation is not equal to 0
#95 percent confidence interval:
# -0.2343269 0.8462610
#sample estimates:
# cor
#0.4637152
I am attempting to adjust my standard errors by running the following code:
#################################################################################
# Metaregression -- Academic Model
#################################################################################
# save list of moderators to include
terms_1 <- c("Targeted_c",
"MOOSES_Rating_5_c", "Middle_c","High_c")
# Student_report_c is reference variable
# format moderators into formula (an R-specifc type)
formula_academic <- reformulate(termlabels = c(terms_1))
formula_academic
# estimate a covariance matrix
V_list_academic <- impute_covariance_matrix(vi = full_academic$variance, #known correlation vector
cluster = full_academic$Study_ID, #study ID
r = 0.80) #assumed correlation
MVfull_academic <- rma.mv(yi=ES_adjusted, #effect size
V = V_list_academic, #variance (ThIS IS WHAt CHANGES FROM HEmodel)
mods = formula_academic, #ADD COVS HERE
random = ~1 | Study_ID/ES_ID, #nesting structure
test= "t", #use t-tests
data=full_academic, #define data
method="REML") #estimate variances using REML
MVfull_academic
#t-tests of each covariate #
MVfull.coef_academic <- coef_test(MVfull_academic,#estimation model above
cluster=full_academic$Study_ID, #define cluster IDs
vcov = "CR2") #estimation method (CR2 is best)
MVfull.coef_academic
This is the part that returns an error:
MVfull_academic
#t-tests of each covariate #
MVfull.coef_academic <- coef_test(MVfull_academic,#estimation model above
cluster=full_academic$Study_ID, #define cluster IDs
vcov = "CR2") #estimation method (CR2 is best)
MVfull.coef_academic
The error is the following:
Error in x[fac == f, fac == f, drop = FALSE] :
(subscript) logical subscript too long
It sounds like something is not fitting within my data, but I'm not sure what it could be. It looks like everything in the daataset is the same lenghth. How to I fix this error?
Here is my data:
structure(list(APA = structure(c("Barr et al. (2015)", "Blair & Ravor (2014)",
"Bos et al. (2019)", "Bos et al. (2019)", "Conduct Problems Prevention Research Group (1999)",
"Conduct Problems Prevention Research Group (1999)"), label = "APA", format.stata = "%215s"),
Intervention = structure(c("Facing History and Ourselves",
"Tools of the Mind", "BARR", "BARR", "Fast Track (Selective)",
"Fast Track (Selective)"), label = "Intervention", format.stata = "%74s"),
TxCluster = structure(c(32, 16, 1, 1, 27, 27), label = "Tx.\nCluster", format.stata = "%10.0g"),
ControlCluster = structure(c(30, 13, 1, 1, 27, 27), label = "Control.\nCluster", format.stata = "%10.0g"),
UnitofCluster = structure(c("schools", "schools", "", "",
"schools", "schools"), label = "Unit of Cluster", format.stata = "%10s"),
TxN = structure(c(587, 408, 1467, 1466, 419, 275), label = "Tx.N", format.stata = "%10.0g"),
ControlN = structure(c(700, 282, 1916, 1910, 418, 276), label = "Control.N", format.stata = "%10.0g"),
Total_N = structure(c(1287, 690, 3383, 3376, 837, 551), label = "Total_N", format.stata = "%10.0g"),
WebsiteCategoryacademicemot = structure(c("Academic", "Academic",
"Academic", "Academic", "Academic", "Academic"), label = "Website Category (academic, emotion, relations, problem behavior)", format.stata = "%20s"),
MOOSES = structure(c(4, 5, 5, 5, 5, 5), label = "MOOSES rating\n1= cognitive/lower level skills (e.g. emotional recog.; pencil tap", format.stata = "%10.0g"),
ES = structure(c(0.14, 0.13, 0.31, 0.11, -0.01, 0.17), label = "ES", format.stata = "%10.0g"),
TypeofMeasure = structure(c("student self-report", "Standardized assessment",
"school record", "school record", "official report", "standardized assessment"
), label = "Type of Measure", format.stata = "%23s"), ES_ID = structure(c(22,
41, 58, 59, 135, 138), format.stata = "%9.0g"), Study_ID = structure(c(5,
9, 11, 11, 19, 19), label = "group(APA)", format.stata = "%9.0g"),
Targeted = structure(c(0, 0, 0, 0, 0, 0), format.stata = "%9.0g"),
Primary = structure(c(0, 1, 0, 0, 1, 1), format.stata = "%9.0g"),
Middle = structure(c(0, 0, 0, 0, 0, 0), format.stata = "%9.0g"),
High = structure(c(1, 0, 1, 1, 0, 0), format.stata = "%9.0g"),
Significant = structure(c(1, 1, 1, 1, 1, 1), format.stata = "%9.0g"),
MOOSES_Rating_4 = structure(c(1, 0, 0, 0, 0, 0), format.stata = "%9.0g"),
MOOSES_Rating_5 = structure(c(0, 1, 1, 1, 1, 1), format.stata = "%9.0g"),
MOOSES_Rating_4_c = structure(c(0.295774638652802, -0.704225361347198,
-0.704225361347198, -0.704225361347198, -0.704225361347198,
-0.704225361347198), format.stata = "%9.0g"), MOOSES_Rating_5_c = structure(c(-0.253521114587784,
0.746478855609894, 0.746478855609894, 0.746478855609894,
0.746478855609894, 0.746478855609894), format.stata = "%9.0g"),
Targeted_c = structure(c(-0.239436626434326, -0.239436626434326,
-0.239436626434326, -0.239436626434326, -0.239436626434326,
-0.239436626434326), format.stata = "%9.0g"), Primary_c = structure(c(-0.718309879302979,
0.281690150499344, -0.718309879302979, -0.718309879302979,
0.281690150499344, 0.281690150499344), format.stata = "%9.0g"),
Middle_c = structure(c(-0.126760557293892, -0.126760557293892,
-0.126760557293892, -0.126760557293892, -0.126760557293892,
-0.126760557293892), format.stata = "%9.0g"), High_c = structure(c(0.845070421695709,
-0.154929578304291, 0.845070421695709, 0.845070421695709,
-0.154929578304291, -0.154929578304291), format.stata = "%9.0g"),
Full_Sample = structure(c(1287, 690, 3383, 3376, 837, 551
), format.stata = "%9.0g"), Clusters_Total = structure(c(62,
29, 2, 2, 54, 54), format.stata = "%9.0g"), ES_adjusted = structure(c(0.12521980702877,
0.116275534033775, 0.277272433042526, 0.0983869880437851,
-0.00894427206367254, 0.152052626013756), format.stata = "%9.0g"),
SE = structure(c(0.05644915625453, 0.0780460089445114, 0.0353467278182507,
0.0349567793309689, 0.0690869837999344, 0.0861022993922234
), format.stata = "%9.0g"), variance = structure(c(0.0439638122916222,
0.0306105446070433, 0.00127180037088692, 0.001214295392856,
0.02976069226861, 0.100570656359196), format.stata = "%9.0g")), row.names = c(NA,
-6L), class = c("tbl_df", "tbl", "data.frame"))
I just found an NA in my data, I think it may be that!
I have an issue related to displaying legends. I am not even sure it is something I can solve with ggplot, but since I am quite a basic user of R, I am confident it is just my ignorance to speak for me.
The Setting
I am trying to plot two distinct sets of points from two distinct dataset, over the same sets of aesthetics: x, y, size. The two sets of points change in the vertical nudge with respect to the y axis, and with respect to their shape.
The issue
The plot comes out as expected (see image below the code). The only thing I have not been able to fix is related to the legends. In particular, I would like to have the size legend to display both the shapes I am using in the chart (in this case, both circles and triangles). Is there any way to do so? I browsed a bit in the internet, but I did not find any question dealing with this issue.
Data and Code
Here I put the data I am using as a reproducible example (obtained with dput()).
# Packages
library(tidyverse)
library(ggtext)
library(janitor)
library(delabj)
library(wesanderson)
library(forcats)
# Basic data
basedata<-structure(list(country = structure(c("Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina", "Argentina"), format.stata = "%44s"), iso = structure(c("ARG",
"ARG", "ARG", "ARG", "ARG", "ARG", "ARG", "ARG", "ARG", "ARG",
"ARG", "ARG", "ARG", "ARG"), label = "iso_3", format.stata = "%9s"),
region = structure(c("Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean"), label = "Region", format.stata = "%26s"),
income_group = structure(c("Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income"
), label = "Income group", format.stata = "%19s"), gdp = structure(c(519871519807.795,
519871519807.795, 519871519807.795, 519871519807.795, 519871519807.795,
519871519807.795, 519871519807.795, 519871519807.795, 519871519807.795,
519871519807.795, 519871519807.795, 519871519807.795, 519871519807.795,
519871519807.795), label = "(first) gdp_o", format.stata = "%9.0g"),
assessment = structure(c(2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1,
1, 2, 1), label = "Initial assessment", format.stata = "%12.0g", labels = c(liberalising = 1,
restrictive = 2)), start_date = structure(c(18341, 18349,
18354, 18366, 18393, 18393, 18270, 18270, 18339, 18354, 18354,
18393, 18393, 18351), label = "Announcement date", class = "Date", format.stata = "%td"),
duration = structure(c(357, 349, 344, 63, 33, 305, 156, 156,
87, 62, 344, 305, 33, 359), format.stata = "%9.0g"), GTAinterventiontype = structure(c("Export licensing requirement",
"Export licensing requirement", "Import Internal taxation",
"Import Internal taxation", "Import Internal taxation", "Import Internal taxation",
"Import licensing requirement", "Import licensing requirement",
"Import licensing requirement", "Import licensing requirement",
"Import tariff", "Import tariff", "Import tariff", "Import-related, Unknown measure"
), label = "GTA intervention type", format.stata = "%38s"),
any_food = structure(c(0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0), label = "Product: Food", format.stata = "%8.0g", labels = c(`FALSE` = 0,
`TRUE` = 1)), any_medical = structure(c(1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1), label = "Product: Any medical product", format.stata = "%8.0g", labels = c(`FALSE` = 0,
`TRUE` = 1)), food_position = structure(c("Net Exporter",
"Net Exporter", "Net Exporter", "Net Exporter", "Net Exporter",
"Net Exporter", "Net Exporter", "Net Exporter", "Net Exporter",
"Net Exporter", "Net Exporter", "Net Exporter", "Net Exporter",
"Net Exporter"), format.stata = "%12s"), meds_position = structure(c("Net Importer",
"Net Importer", "Net Importer", "Net Importer", "Net Importer",
"Net Importer", "Net Importer", "Net Importer", "Net Importer",
"Net Importer", "Net Importer", "Net Importer", "Net Importer",
"Net Importer"), format.stata = "%12s"), month = c(3, 3,
4, 4, 5, 5, 1, 1, 3, 4, 4, 5, 5, 3), Announcement = c("March",
"March", "April", "April", "May", "May", "January", "January",
"March", "April", "April", "May", "May", "March"), Domain = c("Medical",
"Medical", "Medical", "Medical", "Medical", "Medical", "Food & Meds",
"Food & Meds", "Medical", "Medical", "Medical", "Medical",
"Medical", "Medical"), gdp_group_avg = c("Low Income", "Low Income",
"Low Income", "Low Income", "Low Income", "Low Income", "Low Income",
"Low Income", "Low Income", "Low Income", "Low Income", "Low Income",
"Low Income", "Low Income"), gdp_group_med = c("High Income",
"High Income", "High Income", "High Income", "High Income",
"High Income", "High Income", "High Income", "High Income",
"High Income", "High Income", "High Income", "High Income",
"High Income"), shp_point = c(23, 23, 21, 21, 23, 21, 23,
21, 21, 21, 21, 21, 23, 21), length_cat = c("More than 3 months",
"More than 3 months", "More than 3 months", "[1-3] months",
"[1-3] months", "More than 3 months", "More than 3 months",
"More than 3 months", "[1-3] months", "[1-3] months", "More than 3 months",
"More than 3 months", "[1-3] months", "More than 3 months"
), type = structure(c(2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 1L), .Label = c("Liberalizig", "Restrictive"
), class = "factor")), row.names = c(NA, -14L), class = "data.frame")
# Subset 1 - assessment == 1
prova1<-structure(list(country = c("Argentina", "Argentina", "Argentina",
"Argentina", "Argentina", "Argentina", "Argentina", "Argentina",
"Argentina"), iso = c("ARG", "ARG", "ARG", "ARG", "ARG", "ARG",
"ARG", "ARG", "ARG"), region = c("Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean"), income_group = c("Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income"), gdp = c(519871519807.795,
519871519807.795, 519871519807.795, 519871519807.795, 519871519807.795,
519871519807.795, 519871519807.795, 519871519807.795, 519871519807.795
), assessment = c(1, 1, 1, 1, 1, 1, 1, 1, 1), start_date = structure(c(18354,
18366, 18393, 18270, 18339, 18354, 18354, 18393, 18351), class = "Date"),
duration = c(344, 63, 305, 156, 87, 62, 344, 305, 359), GTAinterventiontype = c("Import Internal taxation",
"Import Internal taxation", "Import Internal taxation", "Import licensing requirement",
"Import licensing requirement", "Import licensing requirement",
"Import tariff", "Import tariff", "Import-related, Unknown measure"
), any_food = c(0, 0, 0, 1, 0, 0, 0, 0, 0), any_medical = c(1,
1, 1, 1, 1, 1, 1, 1, 1), food_position = c("Net Exporter",
"Net Exporter", "Net Exporter", "Net Exporter", "Net Exporter",
"Net Exporter", "Net Exporter", "Net Exporter", "Net Exporter"
), meds_position = c("Net Importer", "Net Importer", "Net Importer",
"Net Importer", "Net Importer", "Net Importer", "Net Importer",
"Net Importer", "Net Importer"), month = c(4, 4, 5, 1, 3,
4, 4, 5, 3), Announcement = c("April", "April", "May", "January",
"March", "April", "April", "May", "March"), Domain = c("Medical",
"Medical", "Medical", "Food & Meds", "Medical", "Medical",
"Medical", "Medical", "Medical"), gdp_group_avg = c("Low Income",
"Low Income", "Low Income", "Low Income", "Low Income", "Low Income",
"Low Income", "Low Income", "Low Income"), gdp_group_med = c("High Income",
"High Income", "High Income", "High Income", "High Income",
"High Income", "High Income", "High Income", "High Income"
), shp_point = c(21, 21, 21, 21, 21, 21, 21, 21, 21), length_cat = c("More than 3 months",
"[1-3] months", "More than 3 months", "More than 3 months",
"[1-3] months", "[1-3] months", "More than 3 months", "More than 3 months",
"More than 3 months"), type = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), .Label = c("Liberalizig", "Restrictive"
), class = "factor")), row.names = c(3L, 4L, 6L, 8L, 9L,
10L, 11L, 12L, 14L), class = "data.frame")
# Subset 2 - assessment == 2
prova2<-structure(list(country = c("Argentina", "Argentina", "Argentina",
"Argentina", "Argentina"), iso = c("ARG", "ARG", "ARG", "ARG",
"ARG"), region = c("Latin America & Caribbean", "Latin America & Caribbean",
"Latin America & Caribbean", "Latin America & Caribbean", "Latin America & Caribbean"
), income_group = c("Upper middle income", "Upper middle income",
"Upper middle income", "Upper middle income", "Upper middle income"
), gdp = c(519871519807.795, 519871519807.795, 519871519807.795,
519871519807.795, 519871519807.795), assessment = c(2, 2, 2,
2, 2), start_date = structure(c(18341, 18349, 18393, 18270, 18393
), class = "Date"), duration = c(357, 349, 33, 156, 33), GTAinterventiontype = c("Export licensing requirement",
"Export licensing requirement", "Import Internal taxation", "Import licensing requirement",
"Import tariff"), any_food = c(0, 0, 0, 1, 0), any_medical = c(1,
1, 1, 1, 1), food_position = c("Net Exporter", "Net Exporter",
"Net Exporter", "Net Exporter", "Net Exporter"), meds_position = c("Net Importer",
"Net Importer", "Net Importer", "Net Importer", "Net Importer"
), month = c(3, 3, 5, 1, 5), Announcement = c("March", "March",
"May", "January", "May"), Domain = c("Medical", "Medical", "Medical",
"Food & Meds", "Medical"), gdp_group_avg = c("Low Income", "Low Income",
"Low Income", "Low Income", "Low Income"), gdp_group_med = c("High Income",
"High Income", "High Income", "High Income", "High Income"),
shp_point = c(23, 23, 23, 23, 23), length_cat = c("More than 3 months",
"More than 3 months", "[1-3] months", "More than 3 months",
"[1-3] months"), type = structure(c(2L, 2L, 2L, 2L, 2L), .Label = c("Liberalizig",
"Restrictive"), class = "factor")), row.names = c(1L, 2L,
5L, 7L, 13L), class = "data.frame")
Notice that prova1 and prova2 are just two subset of basedata. The code of the plot is the followig
countrydata %>%
ggplot(aes(x = start_date, y = fct_rev(GTAinterventiontype), shape = type)) +
geom_point(data = prova1, aes(color = fct_rev(GTAinterventiontype),size=duration, shape = fct_rev(type)), alpha = 0.65, position = position_nudge(y = +0.05)) +
geom_point(data = prova2, aes(color = fct_rev(GTAinterventiontype),size=duration, shape = fct_rev(type)), alpha = 0.65, position = position_nudge(y = -0.05)) +
scale_shape(drop=FALSE) +
guides(color = FALSE,
shape = guide_legend(order = 1, nrow = 2, ncol = 1),
size = guide_legend(order = 2)) +
delabj::theme_delabj() +
delabj::scale_color_delabj() +
#delabj::legend_none() +
labs(shape = 'Type',
size = "Duration",
x="",
y="",
title = paste("ARG", "Med-related Measures by Announcement date", sep = ": "),
subtitle = "Bubbles are proportional to expected duration of the measure",
caption = "")
The resulting plot is this one.
Any idea, suggestion, or even warning of unfeasibility (if it really so) is more than welcome!
Try this. Basic idea is to duplicate the breaks and the symbols for the size legend. In a second step I adjust the symbols via guide_legend. Perhaps not perfect but after trying some approaches the best I can come up with.
library(tidyverse)
library(ggtext)
library(janitor)
library(delabj)
library(wesanderson)
library(forcats)
# Breaks, labels and symbols
breaks <- c(100, 200, 300)
n_breaks <- length(breaks)
labels <- c(breaks, rep("", n_breaks))
shapes <- c(rep(16, n_breaks), rep(17, n_breaks))
breaks2 <- rep(breaks, 2)
basedata %>%
ggplot(aes(x = start_date, y = fct_rev(GTAinterventiontype), shape = type)) +
geom_point(data = prova1, aes(color = fct_rev(GTAinterventiontype), size=duration, shape = fct_rev(type)), alpha = 0.65, position = position_nudge(y = +0.05)) +
scale_size_continuous(breaks = breaks2, labels = labels,
guide = guide_legend(order = 2, nrow = 2, byrow = TRUE,
override.aes = list(shape = shapes),
direction = "horizontal", label.vjust = -.5)) +
geom_point(data = prova2, aes(color = fct_rev(GTAinterventiontype), size=duration, shape = fct_rev(type)), alpha = 0.65, position = position_nudge(y = -0.05)) +
scale_shape(drop=FALSE) +
guides(color = FALSE,
shape = guide_legend(order = 1, nrow = 2, ncol = 1)) +
delabj::theme_delabj() +
delabj::scale_color_delabj() +
#delabj::legend_none() +
labs(shape = 'Type',
size = "Duration",
x="",
y="",
title = paste("ARG", "Med-related Measures by Announcement date", sep = ": "),
subtitle = "Bubbles are proportional to expected duration of the measure",
caption = "")
I'm trying to plot a series of demographics factors. Each plot show the frequency distributions of demographic variables by gender. It runs nicely, but some of the labels are ordered in alphabetic order and not in meaningful order eg. Education, Marital Status and SIC2007.
Data structure
structure(list(DMSex = c("Male", "Female", "Male", "Male"), Income = c(980,
-8, 3000, 120), IncCat = c("-1", "-8", "-1", "-1"), HrWkAc = c(-1,
-1, -1, -1), ShiftWk = c(-1, -1, -1, -1), ShiftPat = c(-1, -1,
-1, -1), SOC2010C = c("-1", "9.2.3.3", "-1", "-1"), XSOC2010 = c(-1,
9233, -1, -1), IndexNo = c(-1, 1398, -1, -1), ES2010 = c(-1,
7, -1, -1), nssec = c(-1, 13.4, -1, -1), SECFlag = c(-1, 0, -1,
-1), LSOC2000 = c("-1", "9.2.3.3", "-1", "-1"), XSOC2000 = c(-1,
9233, -1, -1), seg = c(-1, 11, -1, -1), sc = c(-1, 5, -1, -1),
SIC2007 = c(-1, 87, -1, -1), Educ = c(1, 1, -1, 2), EducCur = c(10,
1, -1, -1), FinFTEd = c(-1, -1, -1, 1), FinFTEdY = c(-1,
-1, -1, 21), HiQual = c(22, 10, -1, 1), sic20070 = c(-1,
87, -1, -1), dhhtype = c(6, 8, 7, 3), dagegrp = c(2, 3, 3,
3), dmarsta = c("Single, never married", "Single, never married",
"Interview not achieved", "Married/cohabitating"), dhiqual = c(" Secondary",
" A level or equivalent", "Item not applicable", "Degree or higher"
), dnssec8 = c(-1, 8, -1, -1), duresmc = c(14, 15, 11, 16
), dgorpaf = c(7, 8, 5, 10), dukcntr = c(1, 1, 1, 1), dnrkid04 = c(0,
0, 0, 0), dilodefr = c(3, 3, -1, 3), deconact = c(8, 8, -1,
11), dtenure = c(2, 3, 2, 3), dtotac = c(-1, -1, -1, -1),
dtotus = c(-1, -1, -1, -1), dsic = c("Item not applicable",
"Public admin, education and health", "Item not applicable",
"Item not applicable"), dsoc = c(-1, 9, -1, -1), DVAge_category = c("15 to 30",
"15 to 30", "15 to 30", "15 to 30"), Income_category = c("Less than 1000",
"Less than 1000", "1001 to 3000", "Less than 1000"), HoursWorked_category = c("Less than 20 hours",
"Less than 20 hours", "Less than 20 hours", "Less than 20 hours"
)), row.names = c(NA, -4L), class = c("tbl_df", "tbl", "data.frame"
))
#Age variable
demographics$dagegrp_category<-ifelse(demographics$dagegrp_01 > 2 & demographics$dagegrp < 6, age<-"15 to 30",
ifelse(demographics$dagegrp> 6 & demographics$dagegrp < 9, age<-"31 to 45",
ifelse(demographics$dagegrp > 9 & demographics$dagegrp < 12 , age<-"46 to 60",
ifelse(demographics$dagegrp > 12 & demographics$dagegrp < 15 , age<-"61 to 75",
ifelse(demographics$dagegrp > 15 & demographics$dagegrp < 18 , age<-"76+",
age<- "zombie")))))
demographics$DVAge_category<-c("15 to 30","31 to 45", "46 to 60","61 to 75", "76+", "zombie")[findInterval(demographics$dagegrp , c(-Inf, 6, 10, 12, 15,18, Inf))]
Age<-as.vector(demographics$DVAge_category)
#Gender variable
demographics$DMSex[demographics$DMSex==1]<-"Male"
demographics$DMSex[demographics$DMSex==2]<-"Female"
Gender<-as.vector(demographics$DMSex)
#Income variable
demographics$Income_category<-ifelse(demographics$Income < 1001, income<-"Less than 1000",
ifelse(demographics$Income > 999 & demographics$Income < 3001, income<-"1001 to 3000",
ifelse(demographics$Income > 3001 & demographics$Income < 6001, income <-"3001 to 6000",
ifelse(demographics$Income > 6001 & demographics$Income < 10001 , income<-"6001 to 10000",
income<- "zombie"))))
demographics$Income_category<-c("Less than 1000","1001 to 3000", "3001 to 6000", "6001 to 10000","zombie")[findInterval(demographics$Income , c(-Inf, 1001, 3001, 6001,10001, Inf) ) ]
Income<-as.vector(demographics$Income_category)
#Marital status variable
demographics$dmarsta[demographics$dmarsta==-1]<-"Interview not achieved"
demographics$dmarsta[demographics$dmarsta==1]<-"Single, never married"
demographics$dmarsta[demographics$dmarsta==2]<-"Married/cohabitating"
demographics$dmarsta[demographics$dmarsta==3]<-"Divorced/widowed"
MaritalStatus<-as.vector(demographics$dmarsta)
#Education
demographics$dhiqual[demographics$dhiqual==-8]<-"Don't know"
demographics$dhiqual[demographics$dhiqual==-1]<-"Item not applicable"
demographics$dhiqual[demographics$dhiqual==1]<-"Degree or higher"
demographics$dhiqual[demographics$dhiqual==2]<-"Higher education"
demographics$dhiqual[demographics$dhiqual==3]<-" A level or equivalent"
demographics$dhiqual[demographics$dhiqual==4]<-" Secondary"
demographics$dhiqual[demographics$dhiqual==5]<-" Other"
Education<-as.vector(demographics$dhiqual)
#Hours worked per week in main job variable
demographics$HoursWorked_category<-ifelse(demographics$dtotac < 21, workhours<-"Less than 20 hours",
ifelse(demographics$dtotac > 20 & demographics$dtotac< 41, workhours <-"Between 21 to 40 hours",
ifelse(demographics$dtotac > 40 & demographics$dtotac < 61, workhours <-"Between 41 to 60 hours",
ifelse(demographics$dtotac > 62, workhours<-"More than 61 hours",
workhours<- "Not Applicable"))))
demographics$HoursWorked_category<-c("Less than 20 hours", "Between 21 to 40 hours", "Between 41 to 60 hours","More than 61 hours","Not Applicable")[findInterval(demographics$dtotac, c(-Inf, 21, 41, 61, 62, Inf) ) ]
WorkHours<-as.vector(demographics$HoursWorked_category)
#DV: SIC 2007 industry divisions (grouped)
demographics$dsic[demographics$dsic==-8]<-"Don't know"
demographics$dsic[demographics$dsic==-1]<-"Item not applicable"
demographics$dsic[demographics$dsic==1]<-"Agriculture, forestry and fishing"
demographics$dsic[demographics$dsic==2]<-"Manufacturing"
demographics$dsic[demographics$dsic==3]<-"Energy and water supply"
demographics$dsic[demographics$dsic==4]<-"Construction"
demographics$dsic[demographics$dsic==5]<-"Distribution, hotels and restaurants"
demographics$dsic[demographics$dsic==6]<-"Transport and communication"
demographics$dsic[demographics$dsic==7]<-"Banking and finances"
demographics$dsic[demographics$dsic==8]<-"Public admin, education and health"
demographics$dsic[demographics$dsic==9]<-"Other services"
demographics$industry_category<-c("Don't know", "Item not applicable", "Agriculture, forestry and fishing","Manufacturing","Energy and water supply",
"Construction", "Distribution, hotels and restaurants", "Transport and communication", "Banking and finances",
"Public admin, education and health", "Other service")
SIC2007<-as.vector(demographics$dsic)
# creating df
df<-data.frame(Gender, Age, Education, MaritalStatus, Income, WorkHours, SIC2007)
df %>%
#tidy, not gender
gather(variable, value, -c(Gender))%>%
#group by value, variable, then gender
group_by(value, variable, Gender) %>%
#summarise to obtain table cell frequencies
summarise(freq=n()) %>%
#Plot
ggplot(aes(x=value, y=freq, group=Gender))+geom_bar(aes(fill=Gender), stat='identity', position='dodge')+ facet_wrap(~variable, scales='free_x') + theme(legend.position="right", axis.text.x = element_text(angle = 60, hjust = 1)) + labs(x="Characteristics", y="Frequencies")
In ggplot2, the data is ordered according to the factor levels of the data.frame column.
To (re)set the order in your plot, just set the order of the factor by:
df$variable <- factor(df$variable, levels = c(...))
You could do this by first storing the data.frame, before piping to the ggplot function, then manually setting the levels of the variables you want to change. It is maybe a bit inefficient, but this should do the trick:
## Make your plotting data.frame
df2 <- df %>%
gather(variable, value, -c(Gender))%>%
group_by(value, variable, Gender) %>%
summarise(freq=n())
## Apply custom order to MaritalStatus variable:
custom <- c(sort(unique(MaritalStatus))[c(4,3,1,2)],
....)
df2$variable <- factor(df2$variable, levels = c(levels(df2$variable)[!levels(df2$variable) %in% custom],
custom))