Create a group of numbers that does not exceed 34 - r

I need to create groups of numbers which summed up do not reach 34.
For example: I have an array x<-c(28,26,20,5,3,2,1) and I need to create the following groups: a=(28,5,1), b=(26,3,2), c=(20) because the sums of the groups a, b and c do not exceed 34.
Is it possible to implement this procedure in R?

If I understand correctly this is what you want to do:
create_groups <- function(input, threshold) {
input <- sort(input, decreasing = TRUE)
result <- vector("list", length(input))
sums <- rep(0, length(input))
for (k in input) {
i <- match(TRUE, sums + k <= threshold)
if (!is.na(i)) {
result[[i]] <- c(result[[i]], k)
sums[i] <- sums[i] + k
}
}
result[sapply(result, is.null)] <- NULL
result
}
create_groups(x, 34)
# [[1]]
# [1] 28 5 1
#
# [[2]]
# [1] 26 3 2
#
# [[3]]
# [1] 20
However it is not guaranteed that this greedy algorithm will output the optimal solution in terms of number of groups. For instance:
y <- c(18, 15, 11, 9, 8, 7)
create_groups(y, 34)
# [[1]]
# [1] 18 15
#
# [[2]]
# [1] 11 9 8
#
# [[3]]
# [1] 7
while the optimal solution in this case consists of only 2 groups: list(c(18, 9, 7), c(15, 11, 8)).

Assuming you want all possible combinations of subsets of x that meet this condition, you can use
x = c(28,26,20,5,3,2,1)
y = lapply(seq_along(x), function(y) combn(x, y)) # list all combinations of all subsets
le34 = sapply(y, function(z) colSums(z) <= 34) # which sums are less than 34
lapply(seq_along(y), function(i) y[[i]][,le34[[i]]] ) # list of combinations that meet condition

Related

Creating a vector of sequences

I'm trying to find all the numbers less than the square root of a inputted number.
I've written a function which will do this on entering one number. I have a sequence of numbers that I wish to evaluate the function for.
x <- 1:1000
z <- x^2+1
findy <- function(z){
y <<- seq(1, sqrt(z), 1)
}
n <- length(y)
for (i in 1:n) {
a[i] <- z[i] - y[i]
}
What I want to do is as follows.
Start with a vector z <- 1:1000
Create a new vector: w <- z^2 + 1
then for each number in this vector evaluate the function above.
Example
z <- c(1, 2, 3, 4)
w <- c(2, 5, 10, 17)
(this is where it gets tricky to describe the output)
y= 1
1,2
1,2,3
1,2,3,4
If that makes sense.
Then I would like to be able to pull out certain values of the above array.
If anyone could help then that would be amazing!
An option using sequence and split. The function returns a list.
f <- function(x) {
w <- x^2 + 1 # why do you need this line?
out <- sequence(sqrt(w)) # same as sequence(x)
split(out, cumsum(out == 1L))
}
out <- f(1:4)
out
#$`1`
#[1] 1
#
#$`2`
#[1] 1 2
#
#$`3`
#[1] 1 2 3
#
#$`4`
#[1] 1 2 3 4
To extract the vectors you can use $ or [[
out$`1` # output is a vector
[1] 1
or
out[2:3] # output is a list
#$`2`
#[1] 1 2
#$`3`
#[1] 1 2 3
See help("Extract") for details.

Extract the combinations of cells without repeating the index

I am trying to calculate the combinations of elements of a matrix but each element should appear only once.
The (real) matrix is symmetric, and can have more then 5 elements (up to ~2000):
o <- matrix(runif(25), ncol = 5, nrow = 5)
dimnames(o) <- list(LETTERS[1:5], LETTERS[1:5])
# A B C D E
# A 0.4400317 0.1715681 0.7319108946 0.3994685 0.4466997
# B 0.5190471 0.1666164 0.3430245044 0.3837903 0.9322599
# C 0.3249180 0.6122229 0.6312876740 0.8017402 0.0141673
# D 0.1641411 0.1581701 0.0001703419 0.7379847 0.8347536
# E 0.4853255 0.5865909 0.6096330935 0.8749807 0.7230507
I desire to calculate the product of all the combinations of pairs (If possible it should appear all elements:AB, CD, EF if the matrix is of 6 elements), where for each pair one letter is the column, the other one is the row. Here are some combinations:
AB, CD, E
AC, BD, E
AD, BC, E
AE, BC, D
AE, BD, C
Where the value of the single element is just 1.
Combinations not desired:
AB, BC: Element B appears twice
AB, AC: Element A appears twice
Things I tried:
I thought about removing the unwanted part of the matrix:
out <- which(upper.tri(o), arr.ind = TRUE)
out <- cbind.data.frame(out, value = o[upper.tri(o)])
out[, 1] <- colnames(o)[out[, 1]]
out[, 2] <- colnames(o)[out[, 2]]
# row col value
# 1 A B 0.1715681
# 2 A C 0.7319109
# 3 B C 0.3430245
# 4 A D 0.3994685
# 5 B D 0.3837903
# 6 C D 0.8017402
# 7 A E 0.4466997
# 8 B E 0.9322599
# 9 C E 0.0141673
# 10 D E 0.8347536
My attempt involves the following process:
Make a copy of the matrix (out)
Store first value of the first row.
Remove all the pairs that involve any of the pair.
Select the next pair of the resulting matrix
Repeat until all rows are removed of the matrix
Repeat 2:5 starting from a different row
However, this method has one big problem, it doesn't guarantee that all the combinations are stored, and it could store several times the same combination.
My expected output is a vector, where each element is the product of the values in the cell selected by the combination:
AB, CD: 0.137553
How can I extract all those combinations efficiently?
This might work. I tested this on N elements = 5 and 6.
Note that this is not optimised, and hopefully can provide a framework for you to work from. With a much larger array, I can see steps involving apply and combn being a bottleneck.
The idea here is to generate a collection of unique sets first before calculating the product of the sets from another data.frame that stores values of sets.
Unique sets are identified by counting the number of unique elements in all combination pairs. For example, if N elements = 6, we expect length(unlist(combination)) == 6. The same is true if N elements = 7 (there will only be 3 pairs plus a remainder element). In cases where N elements is odd, we can ignore the remaining, unpaired element since it is constrained by the other elements.
library(dplyr)
library(reshape2)
## some functions
unique_by_n <- function(inlist, N){
## select unique combinations by count
## if unique, expect n = 6 if n elements = 6)
if(N %% 2) N <- N - 1 ## for odd numbers
return(length(unique(unlist(inlist))) == N)
}
get_combs <- function(x,xall){
## format and catches remainder if matrix of odd elements
xu <- unlist(x)
remainder <- setdiff(xall,xu) ## catch remainder if any
xset <- unlist(lapply(x, paste0, collapse=''))
finalset <- c(xset, remainder)
return(finalset)
}
## make dataset
set.seed(0) ## set reproducible example
#o <- matrix(runif(25), ncol = 5, nrow = 5) ## uncomment to test 5
#dimnames(o) <- list(LETTERS[1:5], LETTERS[1:5])
o <- matrix(runif(36), ncol = 6, nrow = 6)
dimnames(o) <- list(LETTERS[1:6], LETTERS[1:6])
o[lower.tri(o)] <- t(o)[lower.tri(o)] ## make matrix symmetric
n_elements = nrow(o)
#### get matrix
dat <- melt(o, varnames = c('Rw', 'Cl'), as.is = TRUE)
dat$Set <- apply(dat, 1, function(x) paste0(sort(unique(x[1:2])), collapse = ''))
## get unique sets (since your matrix is symmetric)
dat <- subset(dat, !duplicated(Set))
#### get sets
elements <- rownames(o)
allpairs <- expand.grid(Rw = elements, Cl = elements) %>%
filter(Rw != Cl) ## get all pairs
uniqpairsgrid <- unique(t(apply(allpairs,1,sort)))
uniqpairs <- split(uniqpairsgrid, seq(nrow(uniqpairsgrid))) ## get unique pairs
allpaircombs <- combn(uniqpairs,floor(n_elements/2)) ## get combinations of pairs
uniqcombs <- allpaircombs[,apply(allpaircombs, 2, unique_by_n, N = n_elements)] ## remove pairs with repeats
finalcombs <- apply(uniqcombs, 2, get_combs, xall=elements)
#### calculate results
res <- apply(finalcombs, 2, function(x) prod(subset(dat, Set %in% x)$value)) ## calculate product
names(res) <- apply(finalcombs, 2, paste0, collapse=',') ## add names
resdf <- data.frame(Sets = names(res), Products = res, stringsAsFactors = FALSE, row.names = NULL)
print(resdf)
#> Sets Products
#> 1 AB,CD,EF 0.130063454
#> 2 AB,CE,DF 0.171200062
#> 3 AB,CF,DE 0.007212619
#> 4 AC,BD,EF 0.012494787
#> 5 AC,BE,DF 0.023285088
#> 6 AC,BF,DE 0.001139712
#> 7 AD,BC,EF 0.126900247
#> 8 AD,BE,CF 0.158919605
#> 9 AD,BF,CE 0.184631344
#> 10 AE,BC,DF 0.042572488
#> 11 AE,BD,CF 0.028608495
#> 12 AE,BF,CD 0.047056905
#> 13 AF,BC,DE 0.003131029
#> 14 AF,BD,CE 0.049941770
#> 15 AF,BE,CD 0.070707311
Created on 2018-07-23 by the [reprex package](http://reprex.tidyverse.org) (v0.2.0.9000).
Maybe the following does what you want.
Note that I was more interested in being right than in performance.
Also, I have set the RNG seed, to have reproducible results.
set.seed(9840) # Make reproducible results
o <- matrix(runif(25), ncol = 5, nrow = 5)
dimnames(o) <- list(LETTERS[1:5], LETTERS[1:5])
cmb <- combn(LETTERS[1:5], 2)
n <- ncol(cmb)
res <- NULL
nms <- NULL
for(i in seq_len(n)){
for(j in seq_len(n)[-seq_len(i)]){
x <- unique(c(cmb[, i], cmb[, j]))
if(length(x) == 4){
res <- c(res, o[cmb[1, i], cmb[2, i]] * o[cmb[1, j], cmb[2, j]])
nms <- c(nms, paste0(cmb[1, i], cmb[2, i], '*', cmb[1, j], cmb[2, j]))
}
}
}
names(res) <- nms
res

Choose closest x elements by index in a list/vector

If I have a vector such as x <-c(1,2,3,4,5,6,7,8,9), I want a function f such that
f(vector,index,num) where it takes the vector and gives me num "closest" elements to that one on the index
Examples:
f(x,3,4) = c(1,2,4,5)
f(x,1,5) = c(2,3,4,5,6)
f(x,8,3) = c(6,7,9)
Since there is also the issue where if we have an odd num, we will need to choose whether to pick left or right side by symmetry, let's go with choosing the left side (but right side is ok too)
i.e f(x,4,5) = c(1,2,3,5,6) and f(x,7,3) = c(5,6,8)
I hope my question is clear, thank you for any help/responses!
edit: The original vector of c(1:9) is arbitrary, the vector could be a vector of strings, or a vector of length 1000 with shuffled numbers with repeats etc.
i.e c(1,7,4,2,3,7,2,6,234,56,8)
num_closest_by_indices <- function(v, idx, num) {
# Try the base case, where idx is not within (num/2) of the edge
i <- abs(seq_along(x) - idx)
i[idx] <- +Inf # sentinel
# If there are not enough elements in the base case, incrementally add more
for (cutoff_idx in seq(floor(num/2), num)) {
if (sum(i <= cutoff_idx) >= num) {
# This will add two extra indices every iteration. Strictly if we have an even length, we should add the leftmost one first and `continue`, to break ties towards the left.
return(v[i <= cutoff_idx])
}
}
}
Here's an illustration of this algorithm: we rank the indices in order of desirability, then pick the lowest num legal ones:
> seq_along(x)
1 2 3 4 5 6 7 8 9
> seq_along(x) - idx
-2 -1 0 1 2 3 4 5 6
> i <- abs(seq_along(x) - idx)
2 1 0 1 2 3 4 5 6
> i[idx] <- +Inf # sentinel to prevent us returning the element itself
2 1 Inf 1 2 3 4 5 6
Now we can just find num elements with smallest values (break ties arbitrarily, unless you have a preference (left)).
Our first guess is all indices <= (num/2) ; this might not be enough if index is within (num/2) of the start/end.
> i <= 2
TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
> v[i <= 2]
1 2 4 5
So, adapting #dash2's code to handle the corner cases where some indices are illegal (nonpositive, or > length(x)), i.e. ! %in% 1:L. Then min(elems) would be the number of illegal indices which we cannot pick, hence we must pick abs(min(elems)) more.
Notes:
in the end the code is simpler and faster to handle it by three piecewise cases. Aww.
it actually seems to simplify things if we pick (num+1) indices, then remove idx before returning the answer. Using result[-idx] to remove it.
Like so:
f <- function (vec, elem, n) {
elems <- seq(elem - ceiling(n/2), elem + floor(n/2))
if (max(elems) > length(vec)) elems <- elems - (max(elems) - length(vec))
if (elems[1] < 1) elems <- elems + (1 - elems[1])
elems <- setdiff(elems, elem)
vec[elems]
}
Giving results:
> f(1:9, 1, 5)
[1] 2 3 4 5 6
> f(1:9, 9, 5)
[1] 4 5 6 7 8
> f(1:9, 2, 5)
[1] 1 3 4 5 6
> f(1:9, 4, 5)
[1] 1 2 3 5 6
> f(1:9, 4, 4)
[1] 2 3 5 6
> f(1:9, 2, 4)
[1] 1 3 4 5
> f(1:9, 1, 4)
[1] 2 3 4 5
> f(1:9, 9, 4)
[1] 5 6 7 8
Start a function with the variable argument x first, and the reference table and n after
.nearest_n <- function(x, table, n) {
The algorithm assumes that table is numeric, without any duplicates, and all values finite; n has to be less than or equal to the length of the table
## assert & setup
stopifnot(
is.numeric(table), !anyDuplicated(table), all(is.finite(table)),
n <= length(table)
)
Sort the table and then 'clamp' maximum and minimum values
## sort and clamp
table <- c(-Inf, sort(table), Inf)
len <- length(table)
Find the interval in table where x occurs; findInterval() uses an efficient search. Use the interval index as the initial lower index, and add 1 for the upper index, making sure to stay in-bounds.
## where to start?
lower <- findInterval(x, table)
upper <- min(lower + 1L, len)
Find the nearest n neighbors by comparing the lower and upper index distance to x, record the nearest value, and increment the lower or upper index as appropriate and making sure to stay in-bounds
## find
nearest <- numeric(n)
for (i in seq_len(n)) {
if (abs(x - table[lower]) < abs(x - table[upper])) {
nearest[i] = table[lower]
lower = max(1L, lower - 1L)
} else {
nearest[i] = table[upper]
upper = min(len, upper + 1L)
}
}
Then return the solution and finish the function
nearest
}
The code might seem verbose, but is actually relatively efficient because the only operations on the entire vector (sort(), findInterval()) are implemented efficiently in R.
A particular advantage of this approach is that it can be vectorized in it's first argument, calculating the test for using lower (use_lower = ...) as a vector and using pmin() / pmax() as clamps.
.nearest_n <- function(x, table, n) {
## assert & setup
stopifnot(
is.numeric(table), !anyDuplicated(table), all(is.finite(table)),
n <= length(table)
)
## sort and clamp
table <- c(-Inf, sort(table), Inf)
len <- length(table)
## where to start?
lower <- findInterval(x, table)
upper <- pmin(lower + 1L, len)
## find
nearest <- matrix(0, nrow = length(x), ncol = n)
for (i in seq_len(n)) {
use_lower <- abs(x - table[lower]) < abs(x - table[upper])
nearest[,i] <- ifelse(use_lower, table[lower], table[upper])
lower[use_lower] <- pmax(1L, lower[use_lower] - 1L)
upper[!use_lower] <- pmin(len, upper[!use_lower] + 1L)
}
# return
nearest
}
For instance
> set.seed(123)
> table <- sample(100, 10)
> sort(table)
[1] 5 29 41 42 50 51 79 83 86 91
> .nearest_n(c(30, 20), table, 4)
[,1] [,2] [,3] [,4]
[1,] 29 41 42 50
[2,] 29 5 41 42
Generalize this by taking any argument and coercing it to the required form using a reference look-up table table0 and the indexes into it table1
nearest_n <- function(x, table, n) {
## coerce to common form
table0 <- sort(unique(c(x, table)))
x <- match(x, table0)
table1 <- match(table, table0)
## find nearest
m <- .nearest_n(x, table1, n)
## result in original form
matrix(table0[m], nrow = nrow(m))
}
As an example...
> set.seed(123)
> table <- sample(c(letters, LETTERS), 30)
> nearest_n(c("M", "Z"), table, 5)
[,1] [,2] [,3] [,4] [,5]
[1,] "o" "L" "O" "l" "P"
[2,] "Z" "z" "Y" "y" "w"

Clustering a second vector according to a clustered first vector in R

I have a vector that has been divided into two clusters (as discussed in this question):
x <- c(1, 4, 5, 6, 9, 29, 32, 46, 55)
tree <- hclust(dist(x), method = "single")
split(x, cutree(tree, h = 19))
# $`1`
# [1] 1 4 5 6 9
#
# $`2`
# [1] 29 32 46 55
Now suppose I have another cluster of the same length, which I wish to divide into the same number of clusters by the same indices as x, take the following vector y as an example:
set.seed(77)
y = rnorm(9)
y
#[1] -0.54964 1.09105 0.63978 1.04258 0.16970 1.13780 -0.97055 -0.13183
#[9] 0.14623
The desired result should be like this:
# $`1`
# [1] -0.54964 1.09105 0.63978 1.04258 0.16970
#
# $`2`
# [1] 1.13780 -0.97055 -0.13183 0.14623
Just like you did for x:
split(y, cutree(tree, h = 19))
And since you are now using cutree(tree, h = 19) in multiple places, you might as well assign it to a variable:
groups <- cutree(tree, h = 19)
split(x, groups)
split(y, groups)

Find first greater element with higher index

I have two vectors, A and B. For every element in A I want to find the index of the first element in B that is greater and has higher index. The length of A and B are the same.
So for vectors:
A <- c(10, 5, 3, 4, 7)
B <- c(4, 8, 11, 1, 5)
I want a result vector:
R <- c(3, 3, 5, 5, NA)
Of course I can do it with two loops, but it's very slow, and I don't know how to use apply() in this situation, when the indices matter. My data set has vectors of length 20000, so the speed is really important in this case.
A few bonus questions:
What if I have a sequence of numbers (like seq = 2:10), and I want to find the first number in B that is higher than a+s for every a of A and every s of seq.
Like with question 1), but I want to know the first greater, and the first lower value, and create a matrix, which stores which one was first. So for example I have a of A, and 10 from seq. I want to find the first value of B, which is higher than a+10, or lower than a-10, and then store it's index and value.
sapply(sapply(seq_along(a),function(x) which(b[-seq(x)]>a[x])+x),"[",1)
[1] 3 3 5 5 NA
This is a great example of when sapply is less efficient than loops.
Although the sapply does make the code look neater, you are paying for that neatness with time.
Instead you can wrap a while loop inside a for loop inside a nice, neat function.
Here are benchmarks comparing a nested-apply loop against nested for-while loop (and a mixed apply-while loop, for good measure). Update: added the vapply..match.. mentioned in comments. Faster than sapply, but still much slower than while loop.
BENCHMARK:
test elapsed relative
1 for.while 0.069 1.000
2 sapply.while 0.080 1.159
3 vapply.match 0.101 1.464
4 nested.sapply 0.104 1.507
Notice you save a third of your time; The savings will likely be larger when you start adding the sequences to A.
For the second part of your question:
If you have this all wrapped up in an nice function, it is easy to add a seq to A
# Sample data
A <- c(10, 5, 3, 4, 7, 100, 2)
B <- c(4, 8, 11, 1, 5, 18, 20)
# Sample sequence
S <- seq(1, 12, 3)
# marix with all index values (with names cleaned up)
indexesOfB <- t(sapply(S, function(s) findIndx(A+s, B)))
dimnames(indexesOfB) <- list(S, A)
Lastly, if you want to instead find values of B less than A, just swap the operation in the function.
(You could include an if-clause in the function and use only a single function. I find it more efficient
to have two separate functions)
findIndx.gt(A, B) # [1] 3 3 5 5 6 NA 8 NA NA
findIndx.lt(A, B) # [1] 2 4 4 NA 8 7 NA NA NA
Then you can wrap it up in one nice pacakge
rangeFindIndx(A, B, S)
# A S indxB.gt indxB.lt
# 10 1 3 2
# 5 1 3 4
# 3 1 5 4
# 4 1 5 NA
# 7 1 6 NA
# 100 1 NA NA
# 2 1 NA NA
# 10 4 6 4
# 5 4 3 4
# ...
FUNCTIONS
(Notice they depend on reshape2)
rangeFindIndx <- function(A, B, S) {
# For each s in S, and for each a in A,
# find the first value of B, which is higher than a+s, or lower than a-s
require(reshape2)
# Create gt & lt matricies; add dimnames for melting function
indexesOfB.gt <- sapply(S, function(s) findIndx.gt(A+s, B))
indexesOfB.lt <- sapply(S, function(s) findIndx.lt(A-s, B))
dimnames(indexesOfB.gt) <- dimnames(indexesOfB.gt) <- list(A, S)
# melt the matricies and combine into one
gtltMatrix <- cbind(melt(indexesOfB.gt), melt(indexesOfB.lt)$value)
# clean up their names
names(gtltMatrix) <- c("A", "S", "indxB.gt", "indxB.lt")
return(gtltMatrix)
}
findIndx.gt <- function(A, B) {
lng <- length(A)
ret <- integer(0)
b <- NULL
for (j in seq(lng-1)) {
i <- j + 1
while (i <= lng && ((b <- B[[i]]) < A[[j]]) ) {
i <- i + 1
}
ret <- c(ret, ifelse(i<lng, i, NA))
}
c(ret, NA)
}
findIndx.lt <- function(A, B) {
lng <- length(A)
ret <- integer(0)
b <- NULL
for (j in seq(lng-1)) {
i <- j + 1
while (i <= lng && ((b <- B[[i]]) > A[[j]]) ) { # this line contains the only difference from findIndx.gt
i <- i + 1
}
ret <- c(ret, ifelse(i<lng, i, NA))
}
c(ret, NA)
}

Resources