change several column names() in data.frame() with str_replace_all() - r

I read this this question and practiced matching patterns, but I am still not figuring it.
I have a panel with the same measure, several times per year. Now, I want to rename them in a logical way. My raw data looks a bit like this,
set.seed(667)
dta <- data.frame(id = 1:6,
R1213 = runif(6),
R1224 = runif(6, 1, 2),
R1255 = runif(6, 2, 3),
R1235 = runif(6, 3, 4))
# install.packages(c("tidyverse"), dependencies = TRUE)
require(tidyverse)
(tbl <- dta %>% as_tibble())
#> # A tibble: 6 x 5
#> id R1213 R1224 R1255 R1235
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.488 1.60 2.07 3.07
#> 2 2 0.692 1.42 2.76 3.19
#> 3 3 0.262 1.34 2.33 3.82
#> 4 4 0.330 1.77 2.61 3.93
#> 5 5 0.582 1.92 2.15 3.86
#> 6 6 0.930 1.88 2.56 3.59
Now, I use str_replace_all() to rename them, here with only one variable in where I use pate, and everything is fine (it might also be possible to optimize this in other ways, if so please feel to let me know),
names(tbl) <- tbl %>% names() %>%
str_replace_all('^R1.[125].$', 'A') %>%
str_replace_all('^R1.[3].$', paste0('A.2018.', 1))
tbl
#> # A tibble: 6 x 5
#> id A A A A.2018.1
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.488 1.60 2.07 3.07
#> 2 2 0.692 1.42 2.76 3.19
#> 3 3 0.262 1.34 2.33 3.82
#> 4 4 0.330 1.77 2.61 3.93
#> 5 5 0.582 1.92 2.15 3.86
#> 6 6 0.930 1.88 2.56 3.59
Eveything call A is actually from the same year, let's say 2017, but with the suffix .1, .2, etc. need to appended. I start over and again use paste0('A.2017.', 1:3), but this time with three suffices,
tbl <- dta %>% as_tibble()
names(tbl) <- tbl %>% names() %>%
str_replace_all('^R1.[125].$', paste0('A.2017.', 1:3)) %>%
str_replace_all('^R1.[7].$', paste0('A.2018.', 1))
tbl
#> Warning message:
#> In stri_replace_all_regex(string, pattern, fix_replacement(replacement), :
#> longer object length is not a multiple of shorter object length
#> > tbl
#> # A tibble: 6 x 5
#> id A.2017.2 A.2017.3 A.2017.1 R1235
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.488 1.60 2.07 3.07
#> 2 2 0.692 1.42 2.76 3.19
#> 3 3 0.262 1.34 2.33 3.82
#> 4 4 0.330 1.77 2.61 3.93
#> 5 5 0.582 1.92 2.15 3.86
#> 6 6 0.930 1.88 2.56 3.59
this does come out, but the order is reversed and I am told longer object length is not a multiple of shorter object length, but isen't 3 the right length? I am looking to do this in a cleaner and simpler way. Also, I don't really like names(tbl) <-, if that can be done in a more elegant way.

Building on David's suggestion - how about something like the following using dplyr::rename_at?
library(dplyr)
## Get data
set.seed(667)
dta <- data.frame(id = 1:6,
R1213 = runif(6),
R1224 = runif(6, 1, 2),
R1255 = runif(6, 2, 3),
R1235 = runif(6, 3, 4)) %>%
as_tibble()
## Rename
dta <- dta %>%
rename_at(.vars = grep('^R1.[125].$', names(.)),
.funs = ~paste0("A.2017.", 1:length(.)))
dta
#> # A tibble: 6 x 5
#> id A.2017.1 A.2017.2 A.2017.3 R1235
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.196 1.74 2.51 3.49
#> 2 2 0.478 1.85 2.06 3.69
#> 3 3 0.780 1.32 2.21 3.26
#> 4 4 0.705 1.49 2.49 3.33
#> 5 5 0.942 1.59 2.66 3.58
#> 6 6 0.906 1.90 2.87 3.93
Vectorised solution for multiple patterns
For a complete solution that can be used for multiple patterns and replacements, we can make use of purr::map2_dfc as follows.
library(dplyr)
library(purrr)
## Get data
set.seed(667)
dta <- data.frame(id = 1:6,
R1213 = runif(6),
R1224 = runif(6, 1, 2),
R1255 = runif(6, 2, 3),
R1235 = runif(6, 3, 4)) %>%
as_tibble()
## Define a function to keep a hold out data set, then rename iteratively for each pattern and replacement.
rename_multiple_years <- function(df, patterns,
replacements,
hold_out_var = "id") {
hold_out_df <- df %>%
select_at(.vars = hold_out_var)
rename_df <- map2_dfc(patterns, replacements, function(pattern, replacement) {
df %>%
rename_at(.vars = grep(pattern, names(.)),
.funs = ~paste0(replacement, 1:length(.))) %>%
select_at(.vars = grep(replacement, names(.)))
})
final_df <- bind_cols(hold_out_df, rename_df)
return(final_df)
}
## Call function on specified patterns and replacements
renamed_dta <- dta %>%
rename_multiple_years(patterns = c("^R1.[125].$", "^R1.[3].$"),
replacements = c("A.2017.", "A.2018."))
renamed_dta
#> # A tibble: 6 x 5
#> id A.2017.1 A.2017.2 A.2017.3 A.2018.1
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.196 1.74 2.51 3.49
#> 2 2 0.478 1.85 2.06 3.69
#> 3 3 0.780 1.32 2.21 3.26
#> 4 4 0.705 1.49 2.49 3.33
#> 5 5 0.942 1.59 2.66 3.58
#> 6 6 0.906 1.90 2.87 3.93
Towards tidy data
Now that the variables have been renamed you might find it useful to have your data in a tidy format. The following using tidyr::gather might be useful.
library(tidyr)
library(dplyr)
#Use tidy dataframe gather all variables, split by "." and drop A column (or keep if a measurement id)
renamed_dta %>%
gather(key = "measure", value = "value", -id) %>%
separate(measure, c("A", "year", "measure"), "[[.]]") %>%
select(-A)
#> # A tibble: 24 x 4
#> id year measure value
#> <int> <chr> <chr> <dbl>
#> 1 1 2017 1 0.196
#> 2 2 2017 1 0.478
#> 3 3 2017 1 0.780
#> 4 4 2017 1 0.705
#> 5 5 2017 1 0.942
#> 6 6 2017 1 0.906
#> 7 1 2017 2 1.74
#> 8 2 2017 2 1.85
#> 9 3 2017 2 1.32
#> 10 4 2017 2 1.49
#> # ... with 14 more rows

Related

How to refer to variable (column name) with tidyverse in a function? [duplicate]

This question already has answers here:
How to pass column name as argument to function for dplyr verbs?
(4 answers)
Closed 7 months ago.
This question is linked to this one but I cannot get it to work when I want to use multiple functions.
I have a function as follows:
f3 <- function(x){
d <- mtcars %>% group_by(cyl, gear) %>% summarize(across(all_of(x),
m = mean(x),
sd = sd(x),
n = length(x),
se = sd / sqrt(n),
tscore = qt(0.975, n-1),
margin = tscore * se,
uppma = mean + margin,
lowma = mean - margin),
.groups = 'drop')
}
But when I call the function like this it doesn't work:
d <- f3(x = c('wt'))
My required output is df with columns called m, sd, n, se, tscore, margin, uppma, lowma with the result of that function across the groups I made with group_by()
You can call the function using symbols rather than strings for the column names by using the {{ ('curly curly') operator:
library(tidyverse)
f3 <- function(x){
mtcars %>%
group_by(cyl, gear) %>%
summarize(m = mean({{x}}),
sd = sd({{x}}),
n = length({{x}}),
se = sd / sqrt(n),
tscore = qt(0.975, n-1),
margin = tscore * se,
uppma = m + margin,
lowma = m - margin,
.groups = 'drop')
}
f3(x = wt)
#> # A tibble: 8 x 10
#> cyl gear m sd n se tscore margin uppma lowma
#> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 4 3 2.46 NA 1 NA NaN NaN NaN NaN
#> 2 4 4 2.38 0.601 8 0.212 2.36 0.502 2.88 1.88
#> 3 4 5 1.83 0.443 2 0.314 12.7 3.98 5.81 -2.16
#> 4 6 3 3.34 0.173 2 0.123 12.7 1.56 4.89 1.78
#> 5 6 4 3.09 0.413 4 0.207 3.18 0.657 3.75 2.44
#> 6 6 5 2.77 NA 1 NA NaN NaN NaN NaN
#> 7 8 3 4.10 0.768 12 0.222 2.20 0.488 4.59 3.62
#> 8 8 5 3.37 0.283 2 0.2 12.7 2.54 5.91 0.829

map_dfr outputting a row rather than a column

This is similar to purrr::map_dfr binds by columns, not row as expected but the solutions there aren't working for me. I have a dataframe like
beta_df <- structure(list(intercept = c(-2.75747056032685, -2.90831892599742,
-2.92478082251453, -2.99701559041538, -2.88885796048347, -3.09564193631675
), B1 = c(0.0898235360814854, 0.0291839369781567, 0.0881023522236231,
0.231703026085554, 0.0441573699433149, 0.258219673780526), B2 = c(-0.222367437619057,
0.770536384299238, 0.199648657850609, 0.0529038155448773, 0.00310458335580774,
0.132604387458483), B3 = c(1.26339268033385, 1.29883641278223,
0.949504940387809, 1.26904511447941, 0.863882674439083, 0.823907268679309
), B4 = c(2.13662994525526, 1.02340744740827, 0.959079691725652,
1.60672779812489, 1.19095838867883, -0.0693120654049908)), row.names = c(NA,
-6L), class = c("tbl_df", "tbl", "data.frame"))
#> # A tibble: 6 × 5
#> intercept B1 B2 B3 B4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -2.76 0.0898 -0.222 1.26 2.14
#> 2 -2.91 0.0292 0.771 1.30 1.02
#> 3 -2.92 0.0881 0.200 0.950 0.959
#> 4 -3.00 0.232 0.0529 1.27 1.61
#> 5 -2.89 0.0442 0.00310 0.864 1.19
#> 6 -3.10 0.258 0.133 0.824 -0.0693
I'd like to turn this into a tibble with columns for the mean, 0.025 and 0.975 quantiles. For the quantile function this works:
beta_df %>%
map_dfr(quantile,0.025)
#> # A tibble: 5 × 1
#> `2.5%`
#> <dbl>
#> 1 -3.08
#> 2 0.0311
#> 3 -0.194
#> 4 0.829
#> 5 0.0592
And this gets me both quantiles
bind_cols(beta_df %>%
map_dfr(quantile, 0.025),
beta_df %>%
map_dfr(quantile, 0.975))
#> # A tibble: 5 × 2
#> `2.5%` `97.5%`
#> <dbl> <dbl>
#> 1 -3.08 -2.77
#> 2 0.0311 0.255
#> 3 -0.194 0.699
#> 4 0.829 1.30
#> 5 0.0592 2.07
But for mean,
beta_df %>%
map_dfr(mean)
#> # A tibble: 1 × 5
#> intercept B1 B2 B3 B4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -2.93 0.124 0.156 1.08 1.14
Gives me a long row rather than a column. How can I turn the mean of each column of the original dataframe into a row of a single column dataframe labelled mean?
The reason is because the output of quantile() is a named vector whereas for the mean() is just a single value.
Lets create a custom function with the mean that outputs a named vector,
myMean <- function(x) {setNames(mean(x), nm = 'theMean')}
Applying that using map_dfr we get,
library(dplyr)
beta_df %>%
purrr::map_dfr(myMean)
# A tibble: 5 x 1
theMean
<dbl>
1 -2.93
2 0.124
3 0.156
4 1.08
5 1.14

Can I overlook a missing variable in a summing part of a function?

This is a shortened version of my real df. I have a function (called: calc) which creates a new variable called 'total', for simplicity this adds up three variables: a, b, c. When I add a dataframe, to that function, that does not feature one variable (say c) so only has a & b, the function falls over. Is there a 'function' / simple way that counts the variables regardless if they are missing?
calc <- function(x) {x %>% mutate(total = a + b + c)}
data.2 has two columns a & b with many rows of values, but when running that in the function it cannot find c so does not calculate.
new.df <- calc(data.2)
Many thanks.
If you want to perform rowwise sum or mean they have na.rm argument which you can use to ignore NA values.
library(dplyr)
calc <- function(x) {x %>% mutate(total = rowSums(select(., a:c), na.rm = TRUE))}
In general case if you are not able to find a function which gives you an out-of-box solution you can replace NA values with 0 maybe and then perform the operation that you want to perform.
calc <- function(x) {
x %>%
mutate(across(a:c, tidyr::replace_na, 0),
total = a + b + c)
}
You can use rowwise() and c_across() with any_of() (or any other tidyselect function) from dplyr (>= 1.0.0).
library(dplyr)
df <- data.frame(a = rnorm(10), b = rnorm(10))
dfc <- data.frame(a = rnorm(10), b = rnorm(10), c = rnorm(10))
calc <- function(x) {
x %>%
rowwise() %>%
mutate(total = sum(c_across(any_of(c("a", "b", "c"))))) %>%
ungroup()
}
calc(df)
#> # A tibble: 10 x 3
#> a b total
#> <dbl> <dbl> <dbl>
#> 1 -0.884 0.851 -0.0339
#> 2 -1.56 -0.464 -2.02
#> 3 -0.884 0.815 -0.0689
#> 4 -1.46 -0.259 -1.71
#> 5 0.211 -0.528 -0.317
#> 6 1.85 0.190 2.04
#> 7 -1.31 -0.921 -2.23
#> 8 0.450 0.394 0.845
#> 9 -1.14 0.428 -0.714
#> 10 -1.11 0.417 -0.698
calc(dfc)
#> # A tibble: 10 x 4
#> a b c total
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.0868 0.632 1.81 2.36
#> 2 0.568 -0.523 0.240 0.286
#> 3 -0.0325 0.377 -0.437 -0.0921
#> 4 0.660 0.456 1.28 2.39
#> 5 -0.123 1.75 -1.03 0.599
#> 6 0.641 1.39 0.902 2.93
#> 7 0.266 0.520 0.904 1.69
#> 8 -1.53 0.319 0.439 -0.776
#> 9 0.942 0.468 -1.69 -0.277
#> 10 0.254 -0.600 -0.196 -0.542
If you want to be able to generalize beyond those 3 variables you can use any tidyselect methodology.
df <- data.frame(a = rnorm(10), b = rnorm(10))
dfc <- data.frame(a = rnorm(10), b = rnorm(10), c = rnorm(10))
calc <- function(x) {
x %>%
rowwise() %>%
mutate(total = sum(c_across(everything()))) %>%
ungroup()
}
calc(df)
#> # A tibble: 10 x 3
#> a b total
#> <dbl> <dbl> <dbl>
#> 1 0.775 1.17 1.95
#> 2 -1.05 1.21 0.155
#> 3 2.07 -0.264 1.81
#> 4 1.11 0.793 1.90
#> 5 -0.700 -0.216 -0.916
#> 6 -1.04 -1.03 -2.07
#> 7 -0.525 1.60 1.07
#> 8 0.354 0.828 1.18
#> 9 0.126 0.110 0.236
#> 10 -0.0954 -0.603 -0.698
calc(dfc)
#> # A tibble: 10 x 4
#> a b c total
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.616 0.767 0.0462 0.196
#> 2 -0.370 -0.538 -0.186 -1.09
#> 3 0.337 1.11 -0.700 0.751
#> 4 -0.993 -0.531 -0.984 -2.51
#> 5 0.0538 1.50 -0.0808 1.47
#> 6 -0.907 -1.54 -0.734 -3.18
#> 7 -1.65 -0.242 1.43 -0.455
#> 8 -0.166 0.447 -0.281 -0.000524
#> 9 0.0637 -0.0185 0.754 0.800
#> 10 1.81 -1.09 -2.15 -1.42
Created on 2020-09-10 by the reprex package (v0.3.0)

Trying to generate a data frame from values in another data frame using dplyr and purrr

I'm trying to create a data frame that is generated based on the content of another data frame. In the example below I use the n_seqs column of a tibble to specify the mean for the rnorm function and then I generate my_tibble. The first column of my_tibble should contain the value from the group column and the subsequent columns should contain the 10 random values from running rnorm. As the reproducible example below shows, I'm able to get this to work through a fairly hacky approach.
I don't understand...
Why I have to do pull and can't specify n_seqs in the map function. Also
Whether there's a way to name the individual entries in the list so that I can use map_dfr or bind_rows
What is the best dplyr/purrr approach do get the desired result?
library(tidyverse)
my_tibble <- tibble(group=c("A", "B", "C"), n_seqs=c(5,7,10)) %>%
pull(n_seqs) %>%
map(function(x){ z <- rnorm(x, n=10); names(z) <- letters[1:10]; return(z) })
my_tibble
#> [[1]]
#> a b c d e f g h
#> 6.518214 4.305639 6.106827 5.118304 4.255043 5.678025 4.345129 4.914239
#> i j
#> 6.727135 6.030590
#>
#> [[2]]
#> a b c d e f g h
#> 7.969410 7.558780 8.265322 8.004338 6.862732 5.517313 8.061683 4.062385
#> i j
#> 6.693430 7.858993
#>
#> [[3]]
#> a b c d e f g
#> 9.066362 9.921300 10.724671 8.643903 9.783747 9.102569 10.489579
#> h i j
#> 9.156070 9.863332 11.148255
#error
my_tibble %>% bind_rows(.)
#> Error in bind_rows_(x, .id): Argument 1 must have names
# deprecated warning, but desired output
my_tibble %>% rbind_list %>% mutate(sample=c("A", "B", "C")) %>% select(sample, everything())
#> Warning: 'rbind_list' is deprecated.
#> Use 'bind_rows()' instead.
#> See help("Deprecated")
#> # A tibble: 3 x 11
#> sample a b c d e f g h i j
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 A 6.52 4.31 6.11 5.12 4.26 5.68 4.35 4.91 6.73 6.03
#> 2 B 7.97 7.56 8.27 8.00 6.86 5.52 8.06 4.06 6.69 7.86
#> 3 C 9.07 9.92 10.7 8.64 9.78 9.10 10.5 9.16 9.86 11.1
#desired output
my_tibble %>% do.call(rbind, .) %>% as.tibble() %>% mutate(sample=c("A", "B", "C")) %>% select(sample, everything())
#> # A tibble: 3 x 11
#> sample a b c d e f g h i j
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 A 6.52 4.31 6.11 5.12 4.26 5.68 4.35 4.91 6.73 6.03
#> 2 B 7.97 7.56 8.27 8.00 6.86 5.52 8.06 4.06 6.69 7.86
#> 3 C 9.07 9.92 10.7 8.64 9.78 9.10 10.5 9.16 9.86 11.1
Created on 2018-06-12 by the reprex package (v0.2.0).
The list elements are named vectors.
We convert it to to a tibble and then do the bind_rows or use map_df
my_tibble %>%
map_df(~ as.list(.x) %>%
as_tibble)
# A tibble: 3 x 10
# a b c d e f g h i j
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 7.40 4.96 5.69 5.03 4.26 5.19 3.20 6.47 5.15 7.17
#2 7.48 6.29 7.61 6.07 5.75 7.29 6.56 7.00 7.07 6.41
#3 9.43 9.86 11.2 8.48 10.6 10.3 11.1 9.70 10.4 10.3
Or data.frame (with as.data.frame.list)
my_tibble %>%
map_df(as.data.frame.list)
# a b c d e f g h
#1 7.401618 4.960760 5.689739 5.028002 4.256727 5.188792 3.195041 6.465555
#2 7.475510 6.290054 7.610726 6.065902 5.746367 7.291446 6.556708 7.001105
#3 9.431331 9.864821 11.178087 8.476433 10.593946 10.332950 11.063100 9.695816
# i j
#1 5.153253 7.172612
#2 7.074341 6.410479
#3 10.370019 10.267099
Regarding the first question, we can use map within mutate and then pull the column
tibble(group=c("A", "B", "C"), n_seqs=c(5,7,10)) %>%
mutate(new_col = map(n_seqs, ~ as.list(rnorm(.x, n = 10)) %>%
set_names(letters[1:10]))) %>%
pull(new_col) %>%
bind_rows
# A tibble: 3 x 10
# a b c d e f g h i j
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 5.45 4.98 4.68 4.07 3.51 3.92 6.00 4.38 3.62 6.87
#2 7.43 6.76 8.06 7.89 6.38 9.21 6.74 5.58 6.86 7.21
#3 12.3 10.1 10.5 9.92 9.67 9.97 10.8 12.1 11.0 11.2
Based on the comments, if we need the 'group' column as well
tibble(group= c("A", "B", "C"), n_seqs = c(5, 7, 10)) %>%
nest(-group) %>%
mutate(new_col = map(data, ~
.x %>%
pull(n_seqs) %>%
rnorm(., n = 10 ) %>%
set_names(letters[1:10]) %>%
as.list %>%
as_tibble)) %>%
select(-data) %>%
unnest
# A tibble: 3 x 11
# group a b c d e f g h i j
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 A 6.77 5.34 4.38 4.56 4.49 5.19 5.18 5.92 5.32 4.63
#2 B 6.06 7.63 6.94 7.18 8.10 8.75 6.05 8.64 6.13 7.27
#3 C 10.2 9.72 11.4 9.34 10.7 9.99 9.07 11.2 7.91 9.47
NOTE: Values are different as we didn't set a seed
Why I have to do pull and can't specify n_seqs in the map function
Because unlike mutate or summarize, map is meant to work on lists and vectors, so it can't infer column from a data frame.
Whether there's a way to name the individual entries in the list so
that I can use map_dfr or bind_rows
See #akrun's answer, you need to convert each individual vector to list before using bind_rows or map_df.
What is the best dplyr/purrr approach do get the desired result?
Try start from sapply which simplifies the result as a matrix instead of map which you can conveniently convert to a data frame later. Here is one in baseR only:
df <- tibble(group=c("A", "B", "C"), n_seqs=c(5,7,10))
sapply(df$n_seqs, rnorm, n=10) %>%
t %>% as.data.frame %>%
setNames(letters[1:10])
# A tibble: 3 x 10
# a b c d e f g h i j
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4.93 4.99 3.64 4.19 4.84 3.15 3.81 5.87 2.25 5.80
#2 6.34 5.30 7.56 5.73 6.84 7.30 6.84 7.91 6.60 6.36
#3 9.42 9.28 8.46 10.6 9.73 9.39 10.2 10.8 10.2 9.30

Provide tibble names in purrr

I would like to know if it is possible to provide column names in the as_tibble function. I know that I could use the rename function to change column names, but I would like to save the number of lines I write. Lets say I want my column names to be a1, a2, a3.
> library(purrr)
> library(tidyverse)
> 1:3 %>%
+ map(~ rnorm(104, .x)) %>%
+ map_dfc(~as_tibble(.x))
# A tibble: 104 x 3
value value1 value2
<dbl> <dbl> <dbl>
1 2.91139409 1.44646163 1.298360
2 0.87725704 4.05341889 3.892296
3 0.73230088 2.72506579 3.520865
4 1.02862344 2.09576397 4.009980
5 0.49159059 -1.23746772 3.172201
6 0.24665840 1.80876495 2.927716
7 0.75112051 2.22486452 2.896452
8 -0.06036349 3.63503054 3.218324
9 1.84431314 1.88562406 2.398761
10 0.70866474 0.08947359 3.954770
# ... with 94 more rows
We can put as_tibble with map_dfc, and then use setNames(paste0("a", seq_len(ncol(.)))) to change column name based on the number of columns.
library(tidyverse)
set.seed(123)
1:3 %>%
map_dfc(~as_tibble(rnorm(104, .x))) %>%
setNames(paste0("a", seq_len(ncol(.))))
# A tibble: 104 x 3
a1 a2 a3
<dbl> <dbl> <dbl>
1 0.440 1.05 4.65
2 0.770 1.95 2.95
3 2.56 1.22 3.12
4 1.07 0.332 3.24
5 1.13 1.62 4.23
6 2.72 2.92 2.48
7 1.46 1.42 2.01
8 -0.265 2.61 4.68
9 0.313 0.382 2.56
10 0.554 1.94 2.28
# ... with 94 more rows

Resources