Can every recursion be converted to trees? [closed] - recursion

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 5 years ago.
Improve this question
I wanted to know if there if any formal way of arguing in favor this. To be honest, I am not sure this is a good question but my purpose for asking is to know if we can always use trees as a mental model while thinking of recursion.
To paraphrase better, I want to know "Does every recursion formula correspond to a tree traversal?". Also, see my comments on Dirk's answer
The suggested duplicate question does not answer my question. My question has nothing to do with iteration.

When explaining recursion, tree traversal is a typical example. But, I would argue that not every recursion corresponds to a tree traversal:
In certain languages (lisp being one of them) recursion is used to realize iterations. There, you also have to express infinite loops with recursion, which I would assume does not fit your notion of "tree as mental model for recursion". (If you wonder how to implement an infinite loop with recursion and not run into stack overflows: There is a mechanism called tail call elimination which solves that problem.)

Below is recursive function which operates on integers, a non-tree-like input
const add = (x, y) =>
x + y
const sumTo = (x = 0) =>
x === 0
? x
: add (x, sumTo (x - 1))
console.log (sumTo ()) // 0
console.log (sumTo (1)) // 1
console.log (sumTo (2)) // 3
console.log (sumTo (4)) // 10
Yet it evolves a tree-like (recursive) computation – sumTo (4)...
add ( 4
, add ( 3
, add ( 2
, add ( 1
, 0
)
)
)
)
// => 10
A tail-recursive version has a different computational process, though. This is distinction is the same made by Dirk Herrmann (another answer here)
const add = (x, y) =>
x + y
const sumTo = (x = 0, acc = 0) =>
x === 0
? acc
: sumTo (x - 1, acc + x)
console.log (sumTo ()) // 0
console.log (sumTo (1)) // 1
console.log (sumTo (2)) // 3
console.log (sumTo (4)) // 10
In this case, when tail call elimination is available, sumTo (4) evolves an iterative computation
sumTo (3, 4)
sumTo (2, 7)
sumTo (1, 9)
sumTo (0, 10)
// => 10
So to answer your question, no. Recursive procedures (functions that reference themselves by their own name) may or may not evolve recursive processes.
This topic is talked about in Structure and Interpretation of Computer Programs, section 1.2.1

Related

Recursive iteration of a function getting stack overflows

I'm trying to write a Maxima function that iterates another function provided as an argument. The goal is basically...
iter(f,0) ........ gives the identity function lambda([x],x)
iter(f,1) ........ gives f
iter(f,2) ........ gives lambda([x],f(f(x))
iter(f,3) ........ gives lambda([x],f(f(f(x)))
The reason is trying to figure out how an iterated polynomial behaves - similar to the Robert May population equation, but a different polynomial.
Anyway, I'm very new to Maxima (at least to things that seem more like simple programming than just asking for a solution) and after some time trying to figure out what I'm doing wrong, I think I've eliminated all silly mistakes and I must have a more fundamental misunderstanding of how Maxima works.
What I have...
iter(f,n) := if is (n=0)
then lambda ([x], x)
else block ([n2: floor (n/2),
nr: is (n2*2#n),
ff: iter (f,n2) ], if nr then lambda ([x],f(ff(ff(x))))
else lambda ([x], ff(ff(x)) ));
Maxima accepts this. Now as a simple example function to iterate...
inc(x):=x+1;
And some tests - first the base case...
iter(inc,0);
That works - it gives lambda([x],x) as expected. Next, "iterating" one time...
iter(inc,1);
I'm expecting something equivalent to inc, but because of the way this is written, more like lambda([x],inc(identity(identity(x))) but with more clutter. What I'm actually getting is a stack overflow...
Maxima encountered a Lisp error:
Control stack exhausted (no more space for function call frames).
This is probably due to heavily nested or infinitely recursive function
calls, or a tail call that SBCL cannot or has not optimized away.
...
I can't see why the is (n=0) base-case check would fail to spot that in the recursive call, so I can't see why this iter function would be entered more than twice for n=1 - it seems pretty extreme for that the exhaust the stack.
Of course once I have the basic idea working I'll probably special-case n=1 as effectively another base case for efficiency (a less cluttered resulting function definition) and add more checks, but I just want something that doesn't stack-overflow in trivial cases for now.
What am I misunderstanding?
Here's what I came up with. It's necessary to substitute into the body of lambda since the body is not evaluated -- I guess you have encountered this important point already.
(%i3) iter(f, n) := if n = 0 then identity elseif n = 1 then f
else subst([ff = iter(f, n - 1),'f = f],
lambda([x], f(ff(x)))) $
(%i4) iter(inc, 0);
(%o4) identity
(%i5) iter(inc, 1);
(%o5) inc
(%i6) iter(inc, 2);
(%o6) lambda([x], inc(inc(x)))
(%i7) iter(inc, 3);
(%o7) lambda([x], inc(inc(inc(x))))
(%i8) iter(inc, 4);
(%o8) lambda([x], inc(inc(inc(inc(x)))))
(%i9) inc(u) := u + 1 $
(%i10) iter(inc, 4);
(%o10) lambda([x], inc(x + 3))
(%i11) %(10);
(%o11) 14
(%i12) makelist (iter(cos, k), k, 0, 10);
(%o12) [identity, cos, lambda([x], cos(cos(x))),
lambda([x], cos(cos(cos(x)))), lambda([x],
cos(cos(cos(cos(x))))), lambda([x], cos(cos(cos(cos(cos(x)))))),
lambda([x], cos(cos(cos(cos(cos(cos(x))))))),
lambda([x], cos(cos(cos(cos(cos(cos(cos(x)))))))),
lambda([x], cos(cos(cos(cos(cos(cos(cos(cos(x))))))))),
lambda([x], cos(cos(cos(cos(cos(cos(cos(cos(cos(x)))))))))),
lambda([x], cos(cos(cos(cos(cos(cos(cos(cos(cos(cos(x)))))))))))]
(%i13) map (lambda([f], f(0.1)), %);
(%o13) [0.1, 0.9950041652780257, 0.5444993958277886,
0.8553867058793604, 0.6559266636704799, 0.7924831019448093,
0.7020792679906703, 0.7635010336918854, 0.7224196362389732,
0.7502080588752906, 0.731547032044224]
Maxima is almost good at stuff like this -- since it is built on top of Lisp, the right conceptual elements are present. However, the lack of lexical scope is a serious problem when working on problems like this, because it means that when you refer to f within a function definition, it is the same f which might exist outside of it. When the solution depends on carefully distinguishing which f you mean, that's a problem.
Anyway as it stands I hope this solution is useful to you in some way.
Earlier, after a moment of inspiration, I tried the following in Maxima...
block([a:1,b:a],b);
This gave me a where I was expecting 1, which suggests that the b:a variable definition cannot see the a:1 variable definition earlier in the same block. I had assumed that later variable definitions in a block would be able to see earlier definitions, and that affects two variable definitions in my iter function - in particular, iter (f,n2) cannot see the definition of n2 which breaks the base-case check in the recursion.
What I have now (WARNING - NOT A WORKING SOLUTION) is...
iter(f,n) := if is (n=0)
then lambda ([x], x)
else block ([n2: floor (n/2)],
block ([g: iter (f,n2)],
if is (n2*2#n) then lambda ([x],f(g(g(x))))
else lambda ([x], g(g(x)) )));
I'm nesting one block inside another so that the later variable definition can see the earlier one. There is no nr (n was rounded?) variable, though TBH keeping that wouldn't have required a third nested block. I replaced ff with g at some point.
This solves the stack overflow issue - the base case of the recursion seems to be handled correctly now.
This still isn't working - it seems like the references to g now cannot see the definition of g for some reason.
iter(inc,0) ................. lambda([x],x)
iter(inc,1) ................. lambda([x],f(g(g(x))))
iter(inc,2) ................. lambda([x],g(g(x)))
...
When the recursive half-size iteration g is needed, for some reason it's not substituted. Also noticable - neither is f substituted.
As a best guess, this is probably due to the function calls being by-name in the generated lambda, and due to nothing forcing them to be substituted in or forcing the overall expression to be simplified.
(update - This SO question suggests I've understood the problem, but the solution doesn't appear to work in my case - what I'm trying to substitute is referenced via a variable no matter what.)
But it's also a different question (it's not a recursion/stack overflow issue) so I'll come back and ask another question if I can't figure it out. I'll also add a working solution here if/when I figure it out.
I tried a few more approaches using subst and the double-quote notation, but Maxima stubbornly kept referring to f and g by name. After a little thought, I switched approach - instead of generating a function, generate an expression. The working result is...
iter(v,e,n) := if is (n=0)
then ''v
else block ([n2: floor (n/2)],
block ([g: iter (v,e,n2)],
block ([gg: subst([''v=g], g)],
if is (n2*2#n) then subst([''v=e], gg)
else gg )));
The three nested block expressions are annoying - I'm probably still missing something that's obvious to anyone with any Maxima experience. Also, this is fragile - it probably needs some parameter checks, but not on every recursive call. Finally, it doesn't simplify result - it just builds an expression by applying direct substitution into itself.
What if you do everything with expressions?
(%i1) iter(e, n):= block([ans: e], thru n - 1 do ans: subst('x = e, ans), ans) $
(%i2) iter(x^2 + x, 1);
2
(%o2) x + x
(%i3) iter(x^2 + x, 2);
2 2 2
(%o3) (x + x) + x + x
(%i4) iter(x^2 + x, 3);
2 2 2 2 2 2 2
(%o4) ((x + x) + x + x) + (x + x) + x + x
You can define a function at the end:
(%i5) define(g(x), iter(x^2 + x, 3));

Fibonacci sequence in solving an equation

Im trying to figure out an equation. This is f(n)=f(n-1) + 3n^2 - n. I also have the values to use as f(1), f(2), f(3). How would i go about solving this??
You would usually use recursion but, whether you do that or an iterative solution, you're missing (or simply haven't shown us) a vital bit of information, the terminating condition such as f(1) = 1 (for example).
With that extra piece of information, you could code up a recursive solution relatively easily, such as the following pseudo-code:
define f(n):
if n == 1:
return 1
return f(n-1) + (3 * n * n) - n
As an aside, that's not actually Fibonacci, which is the specific 1, 1, 2, 3, 5, 8, 13, ... sequence.
It can be said to be Fibonacci-like but it's actually more efficient to do this one recursively since it only involves one self-referential call per level whereas Fibonacci needs two:
define f(n):
if n <= 2:
return 1
return f(n-2) + f(n-1)
And if you're one of those paranoid types who doesn't like recursion (and I'll admit freely it can have its problems in the real world of limited stack depths), you could opt for the iterative version.
define f(n):
if n == 1:
return 1
parent = 1
for num = 2 to n inclusive:
result = parent + (3 * num * num) - num
parent = result
return result
If you ask this question on a programming site such as Stack Overflow, you can expect to get code as an answer.
On the other hand, if you are looking for a closed formula for f(n), then you should direct your question to a specialised StackExchange site such as Computer Science.
Note: what you are looking for is called the repertoire method. It can be used to solve your problem (the closed formula is very simple).

Recursion on staircase

I'm trying to understand the solution provided in a book to the following question:
"A child is running up a staircase with n steps and can hop either 1 step, 2 steps or 3 steps at a time. Implement a method to count how many possible ways the child can run up the stairs."
The book's solution is as follows, stemming from the fact that "the last move may be a single step hop from n - 1, a double step hop from step n - 2 or a triple step hop from step n - 3"
public static int countWaysDP(int n, int[] map) {
if (n < 0)
return 0;
else if (n == 0)
return 1;
else if (map[n] > -1)
return map[n];
else {
map[n] = countWaysDP(n - 1, map) + countWaysDP(n - 2, map) + countWaysDP(n - 3, map);
return map[n]; }
}
My confusion is:
Why should the program return 1 if the number of steps is zero? The way I think about it, if the number of steps is zero, then there are zero ways to traverse the staircase. Wouldn't a better solution be something like "if (n <= 0) return 0; else if (n == 1) return 1"?
I'm not sure I understand the rationale behind making this a static method? Google says that a static method is one that is called by the entire class, and not by an object of the class. So the book's intention seems to be something like:
.
class Staircase {
static int n;
public:
static int countWaysDP(int n, int[] map); }
instead of:
class Staircase {
int n;
public:
int countWaysDP(int n, int[] map); }
Why? What's the problem with there being multiple staircases instantiated by the class?
Thanks.
(Note: Book is Cracking the Coding Interview)
To answer your first question, it turns it is the beauty of mathematics: if there is 1 step for the staircase, there is 1 way to solve it. If there is 0 steps, there is also 1 way to solve it, which is to do nothing.
It is like, for an n-step staircase, for m times, you can either walk 1, 2, or 3 steps to finish it. So if n is 1, then m is 1, and there is 1 way. If n is 0, m is 0, and there is also 1 way -- the way of not taking any step at all.
If you write out all the ways for a 2-step staircase, it is [[1, 1], [2]], and for 1-step staircase, it is [[1]], and for 0-staircase, it is [[]], not []. The number of elements inside of the array [[]] is 1, not 0.
This will become the fibonacci series if the problem is that you can walk 1 step or 2 steps. Note that fib(0) = 1 and fib(1) = 1, and it corresponds to the same thing: when staircase is 1 step, there is 1 way to solve it. When there is 0 steps, there is 1 way to solve it, and it is by doing nothing. It turns out the number of ways to walk a 2-step staircase is fib(2) is 2 and it equals fib(1) + fib(0) = 1 + 1 = 2, and it wouldn't have worked if fib(0) were equal to 0.
Answer 2:
A Static method means the function doesn't need any information from the object.
The function just takes an input (in the parameters), processes it and returns something.
When you don't see any "this" in a function, you can set it as static.
Non-static methods usually read some properties (this-variables) and/or store values in some properties.
Answer 1:
I converted this to javascript, just to show what happens.
http://jsbin.com/linake/1/edit?html,js,output
I guess this is the point. Recursion often works opposite to what you could expect. It often returns values in the opposite order.
For 5 staircases:
First it returns n=1; then n=2, ... up to n=5;
n=5 has to wait until n=4 is ready, n=4 has to wait until n=3 is ready, ...
So here is your n=0 and n<0:
The first return of the function has n=1; that calls this
map[n] = countWaysDP(n - 1, map) + countWaysDP(n - 2, map) + countWaysDP(n - 3, map)
So that is
map[n] = countWaysDP(0, map) + countWaysDP(-1, map) + countWaysDP(-2, map)
There countWaysDP(0, map) returns 1; the other terms are meaningless, so they return 0. That's why there are these clauses for n==0 and n<0
notice, you can add
+ countWaysDP(n - 4, map)
if you want to see what happens when the child can also jump 4 cases
Also notice:
As I said in answer 2, you see this function doesn't require any object. It just processes data and returns something.
So, in your case, having this function in your class is useful because your functions are grouped (they 're not just loose functions scattered around your script), but making it static means the compiler doesn't have to carry around the memory of the object (especially the properties of the object).
I hope this makes sense. There are surely people that can give more accurate answers; I'm a bit out of my element answering this (I mostly do javascript).
To try and answer your first question, why it returns 1 instead of 0, say you're looking at a stair with 2 steps in total, the recursive call then becomes:
countWaysDP(2 - 1, map) + countWaysDP(2 - 2, map) + countWaysDP(2 - 3, map);
The second recursive call is the one where n becomes zero, that's when we have found a successful path, because from 2 steps, there's obviously a path of taking 2 steps. Now, if you write as you suggested:
n == 1: return 1
you would not accept taking two steps from the two stepped stair! What the statement means is that you only count the path if it ends with a single step!
You need to think about it has a tree with 3 possible options on each node.
If the size of the staircase is 4
we will have something like this:
(4)--1-->(3)--..(Choose a step and keep branching)...
|__2-->(2)--..(Until you get size of zero)............
|__3-->(1)--1-->(0) # <--Like this <--
At the end if you count all the leafs with size of zero you will get all the possible ways.
So you can think it like this, what if you take a step and then consider update the size of the stair like this size-step, where your steps can be (1,2,3)
Doing that you can code something like this:
choices = (1, 2, 3)
counter = 0
def test(size):
global counter
if size == 0:
counter += 1
for choice in choices:
if size - choice >= 0:
test(size - choice)
return counter

How to prove that "Total" is not recursive (decidable) [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 9 years ago.
Improve this question
Halt = { f,x | f(x)↓ } is re (semi-decidable) but undecidable
Total = { f | ∀x f(x)↓ } is non-re (not even semi-decidable)
I need some help in proving that the Total problem is not recursive (decidable).
I know the diagonalization proof for the Halting problem, I just need the same kind of proof for the Total problem. I'm posting the Halting Problem Proof for reference:
Halting Problem Proof
Assume we can decide the halting problem. Then there exists some total function Halt such
that
1 if [x] (y) is defined
Halt(x,y) =
0 if [x] (y) is not defined
Here, we have numbered all programs and [x] refers to the x-th program in this ordering. We
can view Halt as a mapping from ℵ into ℵ by treating its input as a single number
representing the pairing of two numbers via the one-one onto function
pair(x,y) = <x,y> = 2^x (2y + 1) – 1
with inverses
<z>1 = exp(z+1,1)
<z>2 = ((( z + 1 ) // 2^<z>1) – 1 ) // 2
Now if Halt exist, then so does Disagree, where
0 if Halt(x,x) = 0, i.e, if Φx (x) is not defined
Disagree(x) =
µy (y == y+1) if Halt(x,x) = 1, i.e, if Φx (x) is defined
Since Disagree is a program from ℵ into ℵ , Disagree can be reasoned about by Halt. Let d
be such that Disagree = Φd, then
Disagree(d) is defined ⇔ Halt(d,d) = 0 ⇔ Φd (d) is undefined ⇔ Disagree(d) is undefined
But this means that Disagree contradicts its own existence. Since every step we took was
constructive, except for the original assumption, we must presume that the original assumption was in error. Thus, the Halting Problem is not solvable.

How do I use Master theorem to describe recursion?

Recently I have been studying recursion; how to write it, analyze it, etc. I have thought for a while that recurrence and recursion were the same thing, but some problems on recent homework assignments and quizzes have me thinking there are slight differences, that 'recurrence' is the way to describe a recursive program or function.
This has all been very Greek to me until recently, when I realized that there is something called the 'master theorem' used to write the 'recurrence' for problems or programs. I've been reading through the wikipedia page, but, as usual, things are worded in such a way that I don't really understand what it's talking about. I learn much better with examples.
So, a few questions:
Lets say you are given this recurrence:
r(n) = 2*r(n-2) + r(n-1);
r(1) = r(2)
= 1
Is this, in fact, in the form of the master theorem? If so, in words, what is it saying? If you were to be trying to write a small program or a tree of recursion based on this recurrence, what would that look like? Should I just try substituting numbers in, seeing a pattern, then writing pseudocode that could recursively create that pattern, or, since this may be in the form of the master theorem, is there a more straightforward, mathematical approach?
Now, lets say you were asked to find the recurrence, T(n), for the number of additions performed by the program created from the previous recurrence. I can see that the base case would probably be T(1) = T(2) = 0, but I'm not sure where to go from there.
Basically, I am asking how to go from a given recurrence to code, and the opposite. Since this looks like the master theorem, I'm wondering if there is a straightforward and mathematical way of going about it.
EDIT: Okay, I've looked through some of my past assignments to find another example of where I'm asked, 'to find the recurrence', which is the part of this question I'm having the post trouble with.
Recurrence that describes in the best
way the number of addition operations
in the following program fragment
(when called with l == 1 and r == n)
int example(A, int l, int r) {
if (l == r)
return 2;
return (A[l] + example(A, l+1, r);
}
A few years ago, Mohamad Akra and Louay Bazzi proved a result that generalizes the Master method -- it's almost always better. You really shouldn't be using the Master Theorem anymore...
See, for example, this writeup: http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
Basically, get your recurrence to look like equation 1 in the paper, pick off the coefficients, and integrate the expression in Theorem 1.
Zachary:
Lets say you are given this
recurrence:
r(n) = 2*r(n-2) + r(n-1); r(1) = r(2)
= 1
Is this, in fact, in the form of the
master theorem? If so, in words, what
is it saying?
I think that what your recurrence relation is saying is that for function of "r" with "n" as its parameter (representing the total number of data sets you're inputting), whatever you get at the nth position of the data-set is the output of the n-1 th position plus twice whatever is the result of the n-2 th position, with no non-recursive work being done. When you try to solve a recurrence relation, you're trying to go about expressing it in a way that doesn't involve recursion.
However, I don't think that that is in the correct form for the Master Theorem Method. Your statement is a "second order linear recurrence relation with constant coefficients". Apparently, according to my old Discrete Math textbook, that's the form you need to have in order to solve the recurrence relation.
Here's the form that they give:
r(n) = a*r(n-1) + b*r(n-2) + f(n)
For 'a' and 'b' are some constants and f(n) is some function of n. In your statement, a = 1, b = 2, and f(n) = 0. Whenever, f(n) is equal to zero the recurrence relation is known as "homogenous". So, your expression is homogenous.
I don't think that you can solve a homogenous recurrence relation using the Master Method Theoerm because f(n) = 0. None of the cases for Master Method Theorem allow for that because n-to-the-power-of-anything can't equal zero. I could be wrong, because I'm not really an expert at this but I don't that it's possible to solve a homogenous recurrence relation using the Master Method.
I that that the way to solve a homogeneous recurrence relation is to go by 5 steps:
1) Form the characteristic equation, which is something of the form of:
x^k - c[1]*x^k-1 - c[2]*x^k-2 - ... - c[k-1]*x - c[k] = 0
If you've only got 2 recursive instances in your homogeneous recurrence relation then you only need to change your equation into the Quadratic Equation where
x^2 - a*x - b = 0
This is because a recurrence relation of the form of
r(n) = a*r(n-1) + b*r(n-2)
Can be re-written as
r(n) - a*r(n-1) - b*r(n-2) = 0
2) After your recurrence relation is rewritten as a characteristic equation, next find the roots (x[1] and x[2]) of the characteristic equation.
3) With your roots, your solution will now be one of the two forms:
if x[1]!=x[2]
c[1]*x[1]^n + c[2]*x[2]^n
else
c[1]*x[1]^n + n*c[2]*x[2]^n
for when n>2.
4) With the new form of your recursive solution, you use the initial conditions (r(1) and r(2)) to find c[1] and c[2]
Going with your example here's what we get:
1)
r(n) = 1*r(n-1) + 2*r(n-2)
=> x^2 - x - 2 = 0
2) Solving for x
x = (-1 +- sqrt(-1^2 - 4(1)(-2)))/2(1)
x[1] = ((-1 + 3)/2) = 1
x[2] = ((-1 - 3)/2) = -2
3) Since x[1] != x[2], your solution has the form:
c[1](x[1])^n + c[2](x[2])^n
4) Now, use your initial conditions to find the two constants c[1] and c[2]:
c[1](1)^1 + c[2](-2)^1 = 1
c[1](1)^2 + c[2](-2)^2 = 1
Honestly, I'm not sure what your constants are in this situation, I stopped at this point. I guess you'd have to plug in numbers until you'd somehow got a value for both c[1] and c[2] which would both satisfy those two expressions. Either that or perform row reduction on a matrix C where C equals:
[ 1 1 | 1 ]
[ 1 2 | 1 ]
Zachary:
Recurrence that describes in the best
way the number of addition operations
in the following program fragment
(when called with l == 1 and r == n)
int example(A, int l, int r) {
if (l == r)
return 2;
return (A[l] + example(A, l+1, r);
}
Here's the time complexity values for your given code for when r>l:
int example(A, int l, int r) { => T(r) = 0
if (l == r) => T(r) = 1
return 2; => T(r) = 1
return (A[l] + example(A, l+1, r); => T(r) = 1 + T(r-(l+1))
}
Total: T(r) = 3 + T(r-(l+1))
Else, when r==l then T(r) = 2, because the if-statement and the return both require 1 step per execution.
Your method, written in code using a recursive function, would look like this:
function r(int n)
{
if (n == 2) return 1;
if (n == 1) return 1;
return 2 * r(n-2) + r(n-1); // I guess we're assuming n > 2
}
I'm not sure what "recurrence" is, but a recursive function is simply one that calls itself.
Recursive functions need an escape clause (some non-recursive case - for example, "if n==1 return 1") to prevent a Stack Overflow error (i.e., the function gets called so much that the interpreter runs out of memory or other resources)
A simple program that would implement that would look like:
public int r(int input) {
if (input == 1 || input == 2) {
return 1;
} else {
return 2 * r(input - 2) + r(input -1)
}
}
You would also need to make sure that the input is not going to cause an infinite recursion, for example, if the input at the beginning was less than 1. If this is not a valid case, then return an error, if it is valid, then return the appropriate value.
"I'm not exactly sure what 'recurrence' is either"
The definition of a "recurrence relation" is a sequence of numbers "whose domain is some infinite set of integers and whose range is a set of real numbers." With the additional condition that that the function describing this sequence "defines one member of the sequence in terms of a previous one."
And, the objective behind solving them, I think, is to go from a recursive definition to one that isn't. Say if you had T(0) = 2 and T(n) = 2 + T(n-1) for all n>0, you'd have to go from the expression "T(n) = 2 + T(n-1)" to one like "2n+2".
sources:
1) "Discrete Mathematics with Graph Theory - Second Edition", by Edgar G. Goodair and Michael M. Parmenter
2) "Computer Algorithms C++," by Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran.

Resources